JPH10230541A - Apparatus for producing resin molded object - Google Patents
Apparatus for producing resin molded objectInfo
- Publication number
- JPH10230541A JPH10230541A JP9152595A JP15259597A JPH10230541A JP H10230541 A JPH10230541 A JP H10230541A JP 9152595 A JP9152595 A JP 9152595A JP 15259597 A JP15259597 A JP 15259597A JP H10230541 A JPH10230541 A JP H10230541A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- extruder
- pressure
- gas
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/94—Lubricating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/365—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
- B29C48/37—Gear pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/375—Plasticisers, homogenisers or feeders comprising two or more stages
- B29C48/387—Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/375—Plasticisers, homogenisers or feeders comprising two or more stages
- B29C48/39—Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/53—Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92514—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/9258—Velocity
- B29C2948/926—Flow or feed rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92828—Raw material handling or dosing, e.g. active hopper or feeding device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92876—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/92895—Barrel or housing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92904—Die; Nozzle zone
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱可塑性樹脂、特
に、溶融粘度が高くて溶融押出が困難な樹脂や、熱分解
しやすい樹脂、低沸点の添加剤もしくは熱分解しやすい
添加剤を含有する樹脂等からなる樹脂成形体の製造装置
に関するものである。The present invention relates to a thermoplastic resin, particularly a resin having a high melt viscosity, which is difficult to melt-extrude, a resin which is easily thermally decomposed, an additive having a low boiling point or an additive which is easily thermally decomposed. The present invention relates to an apparatus for manufacturing a resin molded body made of a resin or the like.
【0002】[0002]
【従来の技術】超高分子量ポリエチレンや、超高重合度
ポリ塩化ビニル、高塩素化度ポリ塩化ビニル等の樹脂
は、溶融粘度が高い、分解しやすい等の理由で成形が非
常に難しい樹脂とされ、一般に難成形樹脂と称されてい
る。2. Description of the Related Art Resins such as ultra-high molecular weight polyethylene, ultra-high polymerization degree polyvinyl chloride, and high chlorination degree polyvinyl chloride are resins that are extremely difficult to mold due to high melt viscosity and easy decomposition. It is generally called a difficult-to-mold resin.
【0003】従来、このように溶融粘度が非常に高い難
成形樹脂では、同樹脂から成形体を製造するのに、つぎ
のような方法が採られている。Conventionally, in the case of such a difficult-to-mold resin having a very high melt viscosity, the following method has been employed for producing a molded article from the resin.
【0004】(1) 圧縮成形またはラム押出成形によ
り、溶融状態を経ることなく直接板状あるいは棒状の成
形体を作製し、この成形体を切削等の切出し加工により
所望の製品に賦形する方法。 (2) 難成形樹脂を有機溶媒に溶解し、キャスティン
グ法によりフィルム化またはシート化する方法。 (3) 特公平4─47608号公報記載のように難成
形樹脂の粉末に有機溶媒を加えて得られる分散物または
混合物を加熱溶融したあと押出成形し、成形後に有機溶
媒を揮散させる方法。(1) A method in which a plate-like or rod-like molded body is directly produced without compression through a compression molding or a ram extrusion molding, and the molded body is shaped into a desired product by cutting out such as cutting. . (2) A method in which a difficult-to-mold resin is dissolved in an organic solvent and formed into a film or a sheet by a casting method. (3) A method in which a dispersion or a mixture obtained by adding an organic solvent to a powder of a difficult-to-mold resin as described in JP-B-4-47608 is heated and melted, extrusion-molded, and the organic solvent is volatilized after the molding.
【0005】しかしながら、上記(1)の方法は、生産
性が極めて低いという欠点がある。また、上記(2)お
よび(3)の方法では、溶媒が成形体中に残っていると
成形体の物性の低下を招くため、成形体を加熱して溶媒
を揮散させなければならないが、溶媒の完全揮散のため
には大掛りな装置が必要であると共に、長時間を要し、
やはり生産性が低い。加えて、溶媒をそのまま大気中に
揮散させたのでは公害を招く恐れがあるため、溶媒の回
収を行わなければならず、回収設備等の設備コストが嵩
むという問題がある。However, the method (1) has a disadvantage that productivity is extremely low. In the above methods (2) and (3), if the solvent remains in the molded article, the physical properties of the molded article are deteriorated. Therefore, the molded article must be heated to evaporate the solvent. Requires a large-scale device for complete volatilization, and takes a long time,
Again, productivity is low. In addition, if the solvent is volatilized in the air as it is, there is a risk of causing pollution. Therefore, the solvent must be recovered, and there is a problem that the equipment cost of the recovery equipment and the like increases.
【0006】また、分解温度と成形温度が近接している
難成形樹脂では、樹脂に安定剤や可塑剤を加え、樹脂の
分解を極力抑えて成形をする方法が採られている。しか
し、この方法では、安定剤や可塑剤の添加量に比例して
樹脂の物性が低下してしまい、逆に安定剤や可塑剤を添
加せずに成形すると樹脂の分解による成形体外観の劣化
や分子量減少による成形体の品質低下が避けられない。In the case of a difficult-to-mold resin whose decomposition temperature and molding temperature are close to each other, a method has been adopted in which a stabilizer or a plasticizer is added to the resin to minimize the decomposition of the resin. However, in this method, the physical properties of the resin decrease in proportion to the amount of the stabilizer or plasticizer added. Conversely, when the resin is molded without adding the stabilizer or plasticizer, the appearance of the molded article is deteriorated due to decomposition of the resin. Inevitably, the quality of the molded product is deteriorated due to the decrease in the molecular weight.
【0007】上記諸問題を解決するため、本発明の発明
者らは、先に、難成形樹脂をホッパから押出機に供給し
て押出機内で固相から溶融相へ変態せしめ、この溶融樹
脂を金型に導入して押出成形賦形するに当たり、ホッパ
を耐圧構造にするとともに、ホッパ中に高圧状態の非反
応性ガス、例えば炭酸ガス(二酸化炭素ガス)を供給
し、炭酸ガスを難成形樹脂に溶解させながら樹脂を変態
させる難成形樹脂成形体の製造方法を提案した(特願平
8─332154号)。In order to solve the above problems, the inventors of the present invention first supply a difficult-to-form resin from an hopper to an extruder, transform the solid phase into a molten phase in the extruder, and convert the molten resin into the extruder. When the hopper is introduced into a mold and subjected to extrusion molding, the hopper has a pressure-resistant structure, and a high-pressure non-reactive gas, for example, carbon dioxide gas (carbon dioxide gas) is supplied into the hopper, and the carbon dioxide gas is converted into a hard-to-mold resin. (Japanese Patent Application No. 8-332154) has proposed a method for producing a difficult-to-mold resin molded article which transforms the resin while dissolving the resin.
【0008】[0008]
【発明が解決しようとする課題】上記方法を実施する際
に装置上の課題となるのは、押出機における高圧状態の
非反応性ガスの圧力シールを如何に行うかという点であ
る。すなわち、圧力シールが十分に行われていないと、
抜けによってガスの圧力が低下した場合、一旦溶融樹脂
に溶解していた非反応性ガスが樹脂から揮散したりその
内部で気泡化する恐れがある。また、このような状態で
は、金型内で樹脂中の非反応性ガスの溶解量が低下し、
溶融粘度が上昇して賦形が困難となる。しかも、後述す
る非発泡成形体がうまく得られなかったり、発泡成形体
でも気泡のばらついた成形体となる嫌いがある。したが
って、金型へ押出機で溶融した溶融樹脂原料を導入する
際には、圧力シールを十分に行って樹脂の加圧状態を維
持する必要がある。A problem with the apparatus in carrying out the above method is how to seal the high pressure non-reactive gas in the extruder. That is, if the pressure seal is not sufficiently performed,
When the pressure of the gas decreases due to the escape, the non-reactive gas once dissolved in the molten resin may volatilize from the resin or become bubbles inside the resin. In such a state, the amount of the non-reactive gas in the resin dissolved in the mold decreases,
The melt viscosity increases, making shaping difficult. In addition, there is a tendency that a non-foamed molded article to be described later cannot be obtained well, and even a foamed molded article tends to be a molded article in which bubbles vary. Therefore, when introducing the molten resin raw material melted by the extruder into the mold, it is necessary to sufficiently perform pressure sealing to maintain the resin pressurized state.
【0009】そこで、例えば、高圧ガスの圧力をシール
した熱可塑性樹脂発泡体の製造方法としては、射出成形
機のホッパと、スクリュ軸受部に耐圧シール構造を有す
るスクリュ内蔵シリンダとの間に攪拌装置付きの耐圧チ
ャンバを設置し、耐圧チャンバ内にペレット状樹脂を供
給し、耐圧チャンバ内で同樹脂に高圧の炭酸ガスを溶解
させた後、高温高圧状態のスクリュ内蔵シリンダに該樹
脂を移送する方法が提案されている(特開平8─851
28号公報)。Therefore, for example, as a method for producing a thermoplastic resin foam sealed with the pressure of a high-pressure gas, a stirrer is provided between a hopper of an injection molding machine and a screw built-in cylinder having a pressure-resistant seal structure in a screw bearing portion. A method of installing a pressure-resistant chamber with a gas supply, supplying a pellet-shaped resin into the pressure-resistant chamber, dissolving high-pressure carbon dioxide gas in the resin in the pressure-resistant chamber, and then transferring the resin to a screw built-in cylinder in a high-temperature and high-pressure state. (Japanese Patent Laid-Open No. 8-851)
No. 28).
【0010】しかし、この方法では、スクリュの軸受部
の耐圧シール構造を例えば金属で構成すると、軸受部が
摺動しているため磨耗の問題を招く。However, in this method, if the pressure-resistant seal structure of the screw bearing is made of, for example, metal, the bearing is slid, causing a problem of wear.
【0011】また、特開平8─11190号公報には、
このような高圧ガスの圧力シールの問題を解決するた
め、タンデム押出機を用いて第1押出機にて樹脂を完全
に溶融させ、この溶融樹脂に高圧の不活性ガスを供給
し、同溶融樹脂によって高圧不活性ガスのシールを行
い、第1押出機の樹脂充満部と、第1押出機および第2
押出機をつなぐアダプター部との間で樹脂に不活性ガス
を溶解させる方法が示されている。Further, Japanese Patent Application Laid-Open No. H8-11190 discloses that
In order to solve such a problem of pressure sealing of a high-pressure gas, a resin is completely melted in a first extruder using a tandem extruder, and a high-pressure inert gas is supplied to the molten resin. The high pressure inert gas is sealed by the first extruder, the first extruder and the second extruder and the second extruder.
A method is disclosed in which an inert gas is dissolved in a resin between an extruder and an adapter section.
【0012】しかし、この方法では、供給される不活性
ガスの圧力より樹脂の背圧が高ければ、ガスのシールは
可能であるが、樹脂が溶融してからでないとガスの供給
を行えないという制限がある。したがって、難成形樹脂
の成形のような場合、樹脂の粘度が非常に高い樹脂の成
形を行うには、樹脂が溶融するまでに樹脂中に高圧のガ
スを溶融させる必要があるので、上記方法ではこの要求
に対応することができない。However, in this method, if the back pressure of the resin is higher than the pressure of the supplied inert gas, the gas can be sealed, but the gas cannot be supplied until the resin is melted. There is a limit. Therefore, in the case of molding a difficult-to-mold resin, in order to mold a resin having a very high viscosity, it is necessary to melt a high-pressure gas in the resin before the resin is melted. We cannot respond to this request.
【0013】[0013]
【発明が解決しようとする課題】本発明は、上記問題を
解決するため、樹脂が溶融する前に樹脂中に十分に高圧
の非反応性ガスを溶解させることができ、かつ押出機の
シリンダー内の高圧状態にされた非反応性ガスの圧力シ
ールを確実に行うことができる樹脂成形体の製造装置を
提供することを目的とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is capable of dissolving a sufficiently high-pressure non-reactive gas in a resin before the resin is melted, It is an object of the present invention to provide an apparatus for manufacturing a resin molded body capable of reliably performing pressure sealing of a non-reactive gas in a high pressure state.
【0014】[0014]
【課題を解決するための手段】このような目的を達成す
るために、請求項1に記載の発明にかかる樹脂成形体の
製造装置(以下、「請求項1の製造装置」と記す)は、
シリンダ内にスクリュを配してなる押出機と、押出機の
供給端部上側に設けられたホッパとを備える樹脂成形体
の製造装置において、ホッパがこれに導入される高圧状
態の非反応性ガスを圧力保持する耐圧構造となされ、押
出機のシリンダ内の所定位置に高圧状態の非反応性ガス
を供給するガス供給装置が押出機に接続され、駆動装置
に連結するスクリュの駆動軸が粘性流体によってシール
されている構成とした。In order to achieve such an object, an apparatus for manufacturing a resin molded article according to the invention of claim 1 (hereinafter referred to as a "production apparatus of claim 1") is provided.
In an apparatus for manufacturing a resin molded body having an extruder in which a screw is disposed in a cylinder and a hopper provided above a supply end of the extruder, a non-reactive gas in a high-pressure state in which the hopper is introduced into the A pressure supply structure for holding the pressure, a gas supply device for supplying a high-pressure non-reactive gas to a predetermined position in the cylinder of the extruder is connected to the extruder, and the driving shaft of the screw connected to the driving device is a viscous fluid. The structure is sealed by
【0015】また、請求項2に記載の発明にかかる樹脂
成形体の製造装置(以下、「請求項2の製造装置」と記
す)は、シリンダ内にスクリュを配してなる押出機と、
押出機の供給端部上側に設けられたホッパとを備える樹
脂成形体の製造装置において、ホッパがこれに導入され
る高圧状態の非反応性ガスを圧力保持する耐圧構造とな
され、押出機のシリンダ内の所要位置に高圧状態の非反
応性ガスを供給するガス供給装置が押出機に接続され、
駆動装置に連結するスクリュの駆動軸が押出機の排出部
側に設けられている構成とした。Further, an apparatus for producing a resin molded article according to the invention of claim 2 (hereinafter referred to as “production apparatus of claim 2”) comprises: an extruder having a screw disposed in a cylinder;
In a manufacturing apparatus for a resin molded article having a hopper provided on an upper side of a supply end of an extruder, the hopper has a pressure-resistant structure for holding a high-pressure non-reactive gas introduced thereto, and a cylinder of the extruder. A gas supply device that supplies a non-reactive gas in a high pressure state to a required position in the is connected to the extruder,
The drive shaft of the screw connected to the drive device was provided on the discharge side of the extruder.
【0016】上記請求項1の製造装置および請求項2の
製造装置において、請求項3に記載の発明にかかる樹脂
成形体の製造装置(以下、「請求項3の製造装置」と記
す)のように、押出機の排出端部に潤滑冷却金型を接続
することが好ましい。また、請求項4に記載の発明にか
かる樹脂成形体の製造装置(以下、「請求項4の製造装
置」と記す)のように、押出機の排出端部と潤滑冷却金
型との間に樹脂圧調整装置を設けることも好ましい。こ
の樹脂圧調整装置としては、請求項5に記載の発明にか
かる樹脂成形体の製造装置(以下、「請求項5の製造装
置」と記す)のように、ギアポンプが好ましい。In the manufacturing apparatus of the first aspect and the manufacturing apparatus of the second aspect, the manufacturing apparatus of the resin molded article according to the third aspect of the present invention (hereinafter referred to as "the manufacturing apparatus of the third aspect"). Preferably, a lubrication cooling mold is connected to the discharge end of the extruder. Further, as in the apparatus for manufacturing a resin molded product according to the invention of claim 4 (hereinafter referred to as “the manufacturing apparatus of claim 4”), a space between the discharge end of the extruder and the lubrication cooling mold is provided. It is also preferable to provide a resin pressure adjusting device. As the resin pressure adjusting device, a gear pump is preferable, as in the device for manufacturing a resin molded product according to the invention of claim 5 (hereinafter referred to as “the manufacturing device of claim 5”).
【0017】本発明による樹脂成形体の製造装置が適用
できる対象樹脂の代表例は難成形樹脂であるが、対象樹
脂は難成形樹脂に限られたものではなく、例えば、熱可
塑性樹脂を用いて高濃度に無機ガスを溶解させ、微細気
泡の発泡体の製造にも適用できる。難成形樹脂として
は、溶融粘度が高くて溶融押出が困難な樹脂や、熱分解
しやすい樹脂、低沸点の添加剤もしくは熱分解しやすい
添加剤を含有する樹脂等が挙げられる。A typical example of the target resin to which the apparatus for manufacturing a resin molded article according to the present invention can be applied is a difficult-to-mold resin, but the target resin is not limited to the difficult-to-mold resin, and for example, a thermoplastic resin may be used. It can be applied to the production of fine cell foams by dissolving inorganic gas at a high concentration. Examples of the difficult-to-mold resin include a resin having a high melt viscosity and being difficult to be melt-extruded, a resin easily decomposed by heat, a resin containing a low boiling point additive or an additive easily decomposed by heat, and the like.
【0018】溶融粘度が高くて溶融押出が困難な樹脂と
しては、超高分子量ポリエチレン、超高重合度ポリ塩化
ビニル、ポリテトラフルオロエチレン、ポリイミド等の
樹脂が挙げられる。また、熱分解しやすい樹脂として
は、ポリ乳酸、ポリヒドロキシブチレート等の生分解性
樹脂、高塩素化度ポリ塩化ビニル、ポリアクリロニトリ
ル等が挙げられる。Examples of the resin which has a high melt viscosity and is difficult to melt-extrude include resins such as ultrahigh molecular weight polyethylene, ultrahigh polymerization degree polyvinyl chloride, polytetrafluoroethylene and polyimide. Examples of resins that are easily decomposed thermally include biodegradable resins such as polylactic acid and polyhydroxybutyrate, polyvinyl chloride having a high degree of chlorination, and polyacrylonitrile.
【0019】本発明において使用される非反応性ガス
は、常温・常圧で気体である有機ないしは無機物質であ
って、上記難成形樹脂と反応を起こさず、同樹脂を劣化
させないものであれば、特に限定されず使用できる。例
えば、炭酸ガス、窒素、アルゴン、ネオン、ヘリウム、
酸素等の無機ガスや、フロンガス、低分子量の炭化水素
等の有機ガスが挙げられる。これらは単独でも使用され
てもよいし、2種以上併用されてもよい。このうち無機
ガス、特に炭酸ガスは、ガスの回収が不要であり、樹脂
に対する溶解度が高くて樹脂の溶融粘度の低下が著しい
ため、最も好ましい。The non-reactive gas used in the present invention is an organic or inorganic substance which is a gas at normal temperature and normal pressure and which does not react with the difficult-to-mold resin and does not deteriorate the resin. Can be used without particular limitation. For example, carbon dioxide, nitrogen, argon, neon, helium,
Examples include inorganic gases such as oxygen, and organic gases such as chlorofluorocarbon and low molecular weight hydrocarbons. These may be used alone or in combination of two or more. Of these, inorganic gas, particularly carbon dioxide gas, is most preferable because it does not require gas recovery, has high solubility in the resin, and significantly lowers the melt viscosity of the resin.
【0020】非反応性ガスの溶解量は、溶解によって樹
脂の溶融粘度が成形に適した粘度になる量であれば特に
限定されず、樹脂の種類、非反応性ガスの種類等によっ
て適宣決められる。The amount of the non-reactive gas dissolved is not particularly limited as long as the melt viscosity of the resin becomes a viscosity suitable for molding by dissolution, and is appropriately determined depending on the type of the resin, the type of the non-reactive gas, and the like. Can be
【0021】本発明による樹脂成形体の製造装置は、発
泡成形体および非発泡成形体のいずれの成形体の製造に
も使用できる。発泡成形体を得る場合には、押出成形時
に従来の押出発泡用の構造の金型を用いればよく、金型
出口での圧力降下度合いに影響を与える金型形状、樹脂
流動粘度、または金型温度、押出量等の成形条件を適宣
設定することによって気泡の形態および気泡径をコント
ロールすることができる。The apparatus for producing a resin molded article according to the present invention can be used for producing any of a foamed molded article and a non-foamed molded article. When obtaining a foam molded article, a mold having a conventional structure for extrusion foaming may be used at the time of extrusion molding, and a mold shape, a resin flow viscosity, or a mold which affects the degree of pressure drop at a mold outlet. By appropriately setting the molding conditions such as the temperature and the extrusion amount, it is possible to control the form and the diameter of the bubbles.
【0022】一方、非発泡成形体を得る場合には、以下
のような方法を採用することができる。On the other hand, when a non-foamed molded article is obtained, the following method can be adopted.
【0023】(i) 金型内で樹脂を充分冷却させて固化状
態で押し出す方法。この方法では、金型内での樹脂流動
抵抗を小さくするために液体潤滑剤を用いたり、金型に
振動を与えて、壁面と樹脂表面との摩擦抵抗を小さくす
る等の対策を講じることも好ましい。 (ii) 金型出口から圧力を保持したまま急冷サイジング
を行う方法。(I) A method in which the resin is sufficiently cooled in a mold and extruded in a solidified state. In this method, it is also possible to take measures such as using a liquid lubricant to reduce the flow resistance of the resin in the mold, or applying vibration to the mold to reduce the frictional resistance between the wall surface and the resin surface. preferable. (ii) A method of performing rapid sizing while maintaining the pressure from the mold outlet.
【0024】(iii) 金型出口から発泡した成形体を賦形
する時に塑性変形の温度領域でこれを加圧することによ
り成形体から気泡を除去する方法。(Iii) A method of removing air bubbles from a molded body by applying pressure in a temperature range of plastic deformation when forming the foamed body from a mold outlet.
【0025】上記(i) の方法において液体潤滑剤を用い
る方法としては、従来公知の方法が任意に適用できる。
この方法に用いられる液体潤滑剤としては、成形温度で
分解、沸騰などが起こりにくく、かつ樹脂に溶融せず、
樹脂の劣化を促進することのない化学的に安定な物質が
好ましい。このような条件を満足する潤滑剤の例として
は、液状のポリシロキサン、エチレングリコール等の多
価アルコール、およびそのアルキルエステル並びにアル
キルエーテル、ポリオキシアルキレンおよびそのアルキ
ルエステル並びにアルキルエーテル、ポリオキシアルキ
レンおよびその2種以上のアルキレンオキサイドのラン
ダム、ブロックまたはグラフトコポリマー等が挙げられ
る。中でも成形体の表面に付着した後の除去が容易な点
で上記のような多価アルコール等の水溶性の潤滑剤が好
ましい。As the method using the liquid lubricant in the above method (i), a conventionally known method can be arbitrarily applied.
As the liquid lubricant used in this method, decomposition, boiling, etc. are difficult to occur at the molding temperature, and do not melt in the resin,
A chemically stable substance that does not promote the deterioration of the resin is preferable. Examples of the lubricant satisfying such conditions include liquid polysiloxane, polyhydric alcohol such as ethylene glycol, and its alkyl ester and alkyl ether, polyoxyalkylene and its alkyl ester, and alkyl ether, polyoxyalkylene and Examples thereof include random, block or graft copolymers of two or more alkylene oxides. Above all, water-soluble lubricants such as the above-mentioned polyhydric alcohols are preferable in that they are easily removed after adhering to the surface of the molded article.
【0026】また、樹脂表面が潤滑剤で一様に覆われる
ためには金型内壁を多孔質体で構成し、金型内面に潤滑
剤が滲みでるようにこの金型内壁の外部から金型内壁に
潤滑剤を供給することが望ましい。上記多孔質体の材質
としては、例えば、アルミニウム、ステンレス鋼、チタ
ン、金、銀、銅等を主体とした金属系材料とアルミナ、
ムライト、ケイ酸、ジルコニア等を主体とした非金属系
材料がある。潤滑剤供給に必要な圧力および流量は使用
する潤滑剤の種類と金型内壁を構成する多孔質体の気孔
径、気孔率、金型内壁厚で決定される。In order to uniformly cover the surface of the resin with the lubricant, the inner wall of the mold is made of a porous material, and the inside of the mold is exposed from the outside of the inner wall of the mold so that the lubricant may seep into the inner surface of the mold. It is desirable to supply a lubricant to the inner wall. As the material of the porous body, for example, aluminum, stainless steel, titanium, gold, silver, a metal-based material mainly composed of copper and the like, alumina,
There are nonmetallic materials mainly composed of mullite, silicic acid, zirconia, and the like. The pressure and flow rate required for supplying the lubricant are determined by the type of the lubricant used, the pore diameter, the porosity of the porous body constituting the inner wall of the mold, and the thickness of the inner wall of the mold.
【0027】潤滑剤を樹脂界面に均一に塗布するために
は、金型壁面を構成する多孔質体として、細孔分布曲線
がシャープで、細孔が均一に分散したものを選定するこ
とが好ましい。このような条件を満足する多孔質体とし
ては、非鉄金属系材料を使用することが望ましい。In order to uniformly apply the lubricant to the resin interface, it is preferable to select a porous body having a sharp pore distribution curve and uniformly dispersed pores as the porous body constituting the mold wall surface. . As a porous body satisfying such conditions, it is desirable to use a non-ferrous metal-based material.
【0028】また、金型に振動を与える手段としては、
従来公知のものが適用でき、例えば、振動モーター、バ
イブレーター、超音波等を用いて金型に振動を与える。
この場合、振動の周波数は、特に限定されないが、好ま
しくは100〜100000Hz、より好ましくは50
0〜3000Hzである。一方、振動の振幅は好ましく
は0.5〜1000μm、より好ましくは1〜500μ
mである。As means for applying vibration to the mold,
Conventionally known ones can be applied. For example, the mold is vibrated by using a vibration motor, a vibrator, an ultrasonic wave or the like.
In this case, the frequency of the vibration is not particularly limited, but is preferably 100 to 100000 Hz, more preferably 50 to 100 Hz.
0 to 3000 Hz. On the other hand, the vibration amplitude is preferably 0.5 to 1000 μm, more preferably 1 to 500 μm.
m.
【0029】上記(iii) の方法において、難成形樹脂が
結晶性樹脂である場合、塑性変形の温度領域は、好まし
くは(融点−20℃)〜(融点+100℃)の温度範
囲、より好ましくは(融点)〜(融点+50℃)の温度
範囲である。In the above method (iii), when the difficult-to-mold resin is a crystalline resin, the plastic deformation temperature range is preferably in the range of (melting point−20 ° C.) to (melting point + 100 ° C.), more preferably (Melting point) to (Melting point + 50 ° C).
【0030】一方、難成形樹脂が非晶性樹脂である場
合、塑性変形の温度領域は、好ましくは(ガラス転移温
度−10℃)〜(ガラス転移温度+150℃)の温度範
囲、より好ましくは(ガラス転移温度)〜(ガラス転移
温度+80℃)の温度範囲である。On the other hand, when the difficult-to-mold resin is an amorphous resin, the plastic deformation temperature range is preferably in the range of (glass transition temperature -10 ° C.) to (glass transition temperature + 150 ° C.), and more preferably (glass transition temperature + 150 ° C.). (Glass transition temperature) to (glass transition temperature + 80 ° C.).
【0031】賦形に際して成形体にかける圧力は、好ま
しくは2〜300kgf/cm2 、より好ましくは5〜250
kgf/cm2 、特に好ましくは10〜200kgf/cm2 であ
る。The pressure applied to the compact during shaping is preferably 2 to 300 kgf / cm 2 , more preferably 5 to 250 kgf / cm 2 .
kgf / cm 2, particularly preferably 10~200kgf / cm 2.
【0032】加圧下の賦形に要する時間(以下、「賦形
時間」と記す)は好ましくは1秒以上、より好ましくは
5秒以上である。賦形時間が1秒未満であると樹脂内部
に発泡が残り、均一な形状の成形体が得られず、所望の
物性も充分に発現しなくなる恐れがある。また、賦形時
間の上限は持たないが、この時間があまり長いと生産性
が低くなるので好ましくない。The time required for shaping under pressure (hereinafter referred to as "shaping time") is preferably at least 1 second, more preferably at least 5 seconds. If the shaping time is less than 1 second, foaming remains in the resin, a molded article having a uniform shape cannot be obtained, and desired physical properties may not be sufficiently exhibited. Further, although there is no upper limit of the shaping time, if this time is too long, the productivity is lowered, which is not preferable.
【0033】成形体に圧力をかける方法としては、上記
所定の圧力および賦形時間を満足できるものであれば特
に限定されないが、例えば、成形体を、ダブルベルトプ
レスのように面圧で賦形する方法や、ベルトとロールの
間で賦形する方法や、ロールとロールとの間で賦形する
方法等が挙げられる。The method of applying pressure to the molded body is not particularly limited as long as the above-mentioned predetermined pressure and molding time can be satisfied. For example, the molded body is shaped by a surface pressure like a double belt press. , A method of shaping between a belt and a roll, a method of shaping between a roll and a roll, and the like.
【0034】また、賦形に際してロールやベルト表面に
エンボス模様などの凹凸模様を施しておくことによっ
て、成形体表面にも凹凸模様が転写され、装飾性に優れ
た難成形樹脂成形体を得ることができる。賦形後の冷却
温度は樹脂の熱変形温度未満である。冷却温度が熱変形
温度以上であると、巻取り等の工程で成形体が変形して
しまう恐れがある。Further, by forming an uneven pattern such as an embossed pattern on the surface of the roll or the belt at the time of shaping, the uneven pattern is transferred to the surface of the formed article to obtain a difficult-to-mold resin molded article having excellent decorativeness. Can be. The cooling temperature after shaping is lower than the heat deformation temperature of the resin. If the cooling temperature is equal to or higher than the heat deformation temperature, the molded body may be deformed in a process such as winding.
【0035】上記賦形プロセスは、押出により成形体を
得る方法であるが、本発明による製造装置は押出成形に
限られたものではなく、賦形プロセスを変えることによ
り、例えば、射出成形やプレス成形に応用可能である。The above-mentioned shaping process is a method of obtaining a molded body by extrusion. However, the manufacturing apparatus according to the present invention is not limited to the extrusion molding. By changing the shaping process, for example, injection molding or pressing can be performed. Applicable to molding.
【0036】請求項1の製造装置において、粘性流体と
は、1 〜1000000poiseの粘度を持つ流体で、具体的には
高粘性オイルや溶融樹脂等が挙げられる。このうち溶融
樹脂を用いる場合は、熱により劣化しないものが好まし
い。粘性流体を駆動軸の回りに供給する方法としては、
特に限定されないが、例えば、別の押出機から潤滑性に
優れた粘性流体を押し出し、この粘性流体を駆動軸回り
に連続的に供給する方法が挙げられる。[0036] In the manufacturing apparatus according to claim 1, the viscous fluid, a fluid having a viscosity of 1 ~1000000Poise, and specific examples thereof include high viscosity oil or a molten resin. When a molten resin is used, a resin that does not deteriorate due to heat is preferable. As a method of supplying a viscous fluid around the drive shaft,
Although not particularly limited, for example, there is a method in which a viscous fluid having excellent lubricity is extruded from another extruder, and the viscous fluid is continuously supplied around the drive shaft.
【0037】粘性流体の圧力は、押出機のシリンダ内の
高圧状態のガスがシールできれば、特に限定されない
が、好ましくは5 kg/cm2〜供給ガス圧、さらに好ましく
は、10kg/cm2〜供給ガス圧である。すなわち、粘性流体
の圧力が5kg/cm2未満であると、シリンダ内のガス圧に
よって粘性流体が駆動軸の潤滑剤としての役割を十分に
果たすことができなくなり、供給ガス圧より高くなる
と、粘性流体がシリンダ内の溶融樹脂に混入する恐れが
ある。The pressure of the viscous fluid is not particularly limited as long as the high-pressure gas in the cylinder of the extruder can be sealed, but is preferably 5 kg / cm 2 to supply gas pressure, and more preferably 10 kg / cm 2 to supply. Gas pressure. That is, if the pressure of the viscous fluid is less than 5 kg / cm 2 , the viscous fluid cannot sufficiently serve as a lubricant for the drive shaft due to the gas pressure in the cylinder. Fluid may mix into the molten resin in the cylinder.
【0038】粘性流体の送り速度は、好ましくは0.1 〜
5 kg/hr 、さらに好ましくは1 〜3kg/hr であり、粘性
流体の圧力はギアポンプ等によって調整することができ
る。The feed rate of the viscous fluid is preferably 0.1 to
The pressure is 5 kg / hr, more preferably 1-3 kg / hr, and the pressure of the viscous fluid can be adjusted by a gear pump or the like.
【0039】[0039]
【発明の実施の形態】以下に、本発明の実施の形態を、
図面を参照しつつ詳しく説明する。図1は、請求項2の
製造装置の1例を模式的に示したものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described in detail with reference to the drawings. FIG. 1 schematically shows an example of the manufacturing apparatus according to the second aspect.
【0040】図1に示すように、この製造装置(A) は、
シリンダ(11)内にスクリュ(12)を配してなる押出機(1a)
と、押出機(1a)の供給端部上側に開閉バルブ(21)を介し
て設けられたホッパ(2) と、押出機(1a)の排出端部に連
設された潤滑冷却金型(3) とから主として構成されてい
る。As shown in FIG. 1, this manufacturing apparatus (A)
Extruder (1a) with screw (12) arranged in cylinder (11)
And a hopper (2) provided above the supply end of the extruder (1a) via an open / close valve (21), and a lubricating cooling mold (3) connected to the discharge end of the extruder (1a). ).
【0041】ホッパ(2) は、ホッパ(2) 内に高圧状態の
非反応性ガスが注入できるように耐圧構造になっている
とともに、非反応性ガスのガスボンベ(22)が接続され、
そのガス供給ラインに開閉バルブ(23)および加圧ポンプ
(24)が設けられている。すなわち、開閉バルブ(23)を開
いてホッパ(2) 内にガスボンベ(22)から加圧ポンプ(24)
によって高圧状態にされた非反応性ガスが供給されるよ
うになっているとともに、供給された非反応性ガスが、
ホッパ(2)内に充填された樹脂ペレットなどの樹脂原料
(9) に溶解されるようになっている。The hopper (2) has a pressure-resistant structure so that a high-pressure non-reactive gas can be injected into the hopper (2), and is connected to a non-reactive gas cylinder (22).
Open / close valve (23) and pressurizing pump in the gas supply line
(24) is provided. That is, the open / close valve (23) is opened and the pressurized pump (24) is inserted into the hopper (2) from the gas cylinder (22).
A non-reactive gas brought to a high pressure state is supplied, and the supplied non-reactive gas is
Resin raw materials such as resin pellets filled in the hopper (2)
(9) to be dissolved.
【0042】一方、押出機(1a)には、シリンダ(11)内に
高圧状態の非反応性ガスを供給する下記構成のガス供給
装置(4) が設けられている。すなわち、このガス供給装
置(4) は、押出機(1a)のホッパ接続部のやや後流部の上
側に設けられた固体輸送部へのガス供給用の前流ガス供
給孔(41a) と、押出機(1a)の長手方向の中央上側に設け
られた溶融体輸送部へのガス供給用の後流ガス供給孔(4
1b) とを備えている。On the other hand, the extruder (1a) is provided with a gas supply device (4) having the following structure for supplying a high-pressure non-reactive gas into the cylinder (11). That is, the gas supply device (4) is a fore gas supply hole (41a) for supplying gas to the solid transporting part provided on the slightly upstream part of the hopper connection part of the extruder (1a), A downstream gas supply hole (4) for supplying gas to the melt transport section provided at the upper center in the longitudinal direction of the extruder (1a).
1b).
【0043】そして、これら前後流ガス供給孔(41a) 、
(41b) が、それぞれガス供給ラインを介してガスボンベ
(42)に接続されているとともに、各ガス供給ラインに開
閉バルブ(43a) 、(43b) および加圧ポンプ(44a) 、(44
b) が設けられている。The upstream and downstream gas supply holes (41a)
(41b) are connected to gas cylinders via gas supply lines.
(42) and open / close valves (43a) and (43b) and pressurizing pumps (44a) and (44
b) is provided.
【0044】すなわち、このガス供給装置(4)は、加圧
ポンプ(44a) を作動させ、バルブ(43a) を開くと、ガス
ボンベ(42)の非反応性ガスを高圧状態として前流ガス供
給孔(41a) からシリンダ(11)の固体輸送部へ供給でき、
加圧ポンプ(44b) を作動させ、バルブ(43b) を開くと、
ガスボンベ(42)の非反応性ガスを高圧状態として後流ガ
ス供給孔(41b) からシリンダ(11)の溶融体輸送部へ供給
できるようになっている。もちろん、前後流ガス供給孔
(41a) 、(41b) の両側から同時に供給できるようにもな
っている。That is, when the gas supply device (4) operates the pressurizing pump (44a) and opens the valve (43a), the non-reactive gas in the gas cylinder (42) is brought into a high pressure state and the upstream gas supply hole is opened. (41a) to the solids transport section of cylinder (11)
Activate the pressure pump (44b) and open the valve (43b).
The non-reactive gas in the gas cylinder (42) can be supplied to the melt transport section of the cylinder (11) from the downstream gas supply hole (41b) in a high pressure state. Of course, the upstream and downstream gas supply holes
(41a) and (41b) can be supplied simultaneously from both sides.
【0045】スクリュ(12)は、その駆動軸(13)がシリン
ダ(11)の排出端部側である後流端壁を貫通して外部に突
出し、この突出端が減速機(5) を介して駆動装置として
のモータ(6) が連結されていて、ホッパ(2)からシリン
ダ(11)内に供給された樹脂材料(9) を混合しつつ溶融し
て排出端部側へ送るようになっている。The screw (12) has its drive shaft (13) protruding to the outside through a downstream end wall on the discharge end side of the cylinder (11), and this protruding end is passed through a speed reducer (5). A motor (6) as a driving device is connected to the resin material (9) supplied from the hopper (2) into the cylinder (11) while being mixed and melted and sent to the discharge end side. ing.
【0046】潤滑冷却金型(3) は、押出機(1a)の排出端
部に設けられた排出管路(7) を介して押出機(1a)に接続
され、金型内壁(32)が多孔質体で形成されていて、金型
内壁(32)を形成する多孔質体の上面に設けられた潤滑剤
溜め(31)から多孔質体を通して金型内面(33)に潤滑剤を
供給できるようになっている。すなわち、押出機(1a)か
ら送られて来る加圧状態を維持した溶融樹脂原料(91)
を、金型内面(33)に潤滑剤溜め(31)から潤滑剤を供給し
て金型内面(33)と溶融樹脂原料(91)との摩擦抵抗を少な
くしながら所望の形状に成形し冷却しつつ押し出すよう
になっている。The lubricating cooling mold (3) is connected to the extruder (1a) through a discharge pipe (7) provided at the discharge end of the extruder (1a), and the inner wall (32) of the mold is cooled. The lubricant can be supplied to the mold inner surface (33) through the porous body from a lubricant reservoir (31) provided on the upper surface of the porous body forming the mold inner wall (32), which is formed of a porous body. It has become. That is, the molten resin raw material (91) maintained in the pressurized state sent from the extruder (1a)
The lubricant is supplied from the lubricant reservoir (31) to the mold inner surface (33) to form a desired shape while cooling the frictional resistance between the mold inner surface (33) and the molten resin raw material (91), and then cooled. And push it out.
【0047】また、排出管路(7) の途中には、樹脂圧調
整装置としてのギアポンプ(71)が設けられていて、溶融
樹脂原料(91)を所定の圧力で潤滑冷却金型(3) に供給で
きるようになっている。Further, a gear pump (71) as a resin pressure adjusting device is provided in the middle of the discharge pipe (7), and the molten resin raw material (91) is lubricated and cooled at a predetermined pressure. Can be supplied.
【0048】さらに、押出機(1a)と潤滑冷却金型(3)
は、ともに温度コントロール装置(図示省略)を有し、
所定の温度に制御できるようになっている。Further, the extruder (1a) and the lubricating cooling mold (3)
Both have a temperature control device (not shown),
It can be controlled to a predetermined temperature.
【0049】この製造装置(A) は、以上のように、スク
リュ(12)の駆動軸(13)が溶融樹脂にが満たされた状態に
なるシリンダ(11)の排出端部側に設けられているので、
シリンダ(11)内に供給された非反応性ガスのガス圧をシ
リンダ(11)内で溶融された溶融樹脂原料(91)の背圧より
小さくすることによって、シリンダ(11)と駆動軸(13)と
間からの非反応性ガスの漏れを溶融樹脂原料(91)により
確実に防止することができる。すなわち、シリンダ(11)
内を高圧状態に保つことができ、一旦溶解した非反応性
ガスが溶融樹脂原料(91)から揮散したり、シリンダ(11)
内部で気泡化したりしない。したがって、均一な非発泡
成形体を安定して得ることができる。As described above, the manufacturing apparatus (A) is provided on the discharge end side of the cylinder (11) in which the drive shaft (13) of the screw (12) is filled with the molten resin. Because
By making the gas pressure of the non-reactive gas supplied into the cylinder (11) smaller than the back pressure of the molten resin raw material (91) melted in the cylinder (11), the cylinder (11) and the drive shaft (13 ) Can reliably prevent non-reactive gas from leaking from the molten resin raw material (91). That is, the cylinder (11)
The interior can be maintained at a high pressure, and the non-reactive gas once dissolved can volatilize from the molten resin raw material (91), or the cylinder (11)
Does not bubble inside. Therefore, a uniform non-foamed molded article can be stably obtained.
【0050】また、上記ホッパ(2) の部分だけでなく、
ホッパ(2) 、シリンダ(11)の固体輸送部、シリンダ(11)
の溶融体輸送部の3ヶ所で必要に応じて任意に高圧状態
の非反応性ガスを供給することができるようになってい
る、すなわち、(a)開閉バルブ(23)を開いてホッパ
(2) 内に非反応性ガスを供給すると、非反応性ガスをホ
ッパ(2) 内で樹脂に溶解させることができ、(b)開閉
バルブ(43a) を開いて前流ガス供給孔(41a) からシリン
ダ(11)の固体輸送部へ非反応性ガスを供給すると、非反
応性ガスをシリンダ(11)の固体輸送部およびその後流に
て樹脂に溶解させることができ、(c)開閉バルブ(43
b) を開いて後流ガス供給孔(41b) からシリンダ(11)の
溶融体輸送部へ非反応性ガスを供給すると、非反応性ガ
スをシリンダ(11)の溶融体輸送部およびその後流にて樹
脂に溶解させることができるようになっているので、樹
脂が固相から溶融相へ変態する前に同樹脂に高圧状態の
非反応性ガスを供給し溶解させることができるのに加え
て、溶融した後の樹脂にも高圧状態の非反応性ガスを供
給し、溶解させることができる。In addition to the hopper (2),
Hopper (2), solid transport section of cylinder (11), cylinder (11)
It is possible to arbitrarily supply a high-pressure non-reactive gas as required at three places in the melt transport section of (a), ie, (a) opening the on-off valve (23) and opening the hopper
When the non-reactive gas is supplied into (2), the non-reactive gas can be dissolved in the resin in the hopper (2), and (b) the on-off valve (43a) is opened to open the upstream gas supply hole (41a). ) To supply the non-reactive gas to the solid transport section of the cylinder (11), the non-reactive gas can be dissolved in the resin in the solid transport section of the cylinder (11) and in the subsequent flow. (43
b) is opened and the non-reactive gas is supplied from the downstream gas supply hole (41b) to the melt transport section of the cylinder (11), and the non-reactive gas is supplied to the melt transport section of the cylinder (11) and the downstream stream. In addition to being able to supply and dissolve a high-pressure non-reactive gas to the resin before the resin is transformed from the solid phase to the molten phase, A non-reactive gas in a high-pressure state can be supplied to the melted resin to dissolve it.
【0051】すなわち、このように樹脂に非反応性ガス
を高圧下で溶解させることにより、樹脂間に非反応性ガ
スが拡散してポリマー鎖間の自由体積を大きくする働き
が生じ、結果として該樹脂が可塑化されて溶融粘度やガ
ラス転移温度を下げることができ、高粘度の樹脂でも溶
融押出がなし得、熱分解しやすい樹脂に対しては成形温
度を低下させることができる。That is, by dissolving the non-reactive gas in the resin under high pressure, the non-reactive gas diffuses between the resins to increase the free volume between the polymer chains. Since the resin is plasticized, the melt viscosity and the glass transition temperature can be reduced. Even if the resin has a high viscosity, melt extrusion cannot be performed, and the molding temperature can be lowered for a resin which is easily thermally decomposed.
【0052】したがって、成形しようとする樹脂に応じ
て非反応性ガスの溶解量を最良の状態にコントロールし
所望製品の形状に応じた金型へと導き、賦形することが
できる。Therefore, it is possible to control the amount of the non-reactive gas dissolved in the best condition in accordance with the resin to be molded, guide it to a mold corresponding to the shape of the desired product, and shape the product.
【0053】また、この製造装置(A) では、金型とし
て、潤滑冷却金型(3) を用いるようにしたので、所望の
成形体をスムーズに得ることができる。しかも、排出管
路(7) の途中にギアポンプ(71)を設けて押出機(1a)から
溶融樹脂原料(91)をこの金型(3) へ供給するようにした
ので、溶融樹脂原料(91)を常に定量で金型(3) に導入で
き、良好な成形体を得ることができる。In this manufacturing apparatus (A), a lubricating cooling mold (3) is used as a mold, so that a desired molded product can be obtained smoothly. Moreover, a gear pump (71) is provided in the middle of the discharge pipe (7) to supply the molten resin material (91) from the extruder (1a) to the mold (3). ) Can be always quantitatively introduced into the mold (3), and a good molded product can be obtained.
【0054】なお、固体輸送部および溶融体輸送部の両
方に高圧状態の非反応性ガスを供給し、樹脂に溶解させ
る方法は、生産性を向上すべく押出量を上げる場合に有
効な手段となる。The method of supplying a high-pressure non-reactive gas to both the solid transporting section and the melt transporting section and dissolving it in the resin is effective means for increasing the throughput in order to improve productivity. Become.
【0055】また、いずれの方法においても、樹脂原料
への高圧状態の非反応性ガスの供給は、樹脂が固相から
溶融相へ変態する前に行う必要がある。これは、そうし
ないと、難成形樹脂のうち溶融粘度が非常に高い樹脂の
場合に、例えば、同樹脂がスクリュ等で可塑化する際に
トルクの急激な上昇によりスクリュが回転不能に陥る等
の問題が起きる恐れがあり、また、熱に非常に敏感な樹
脂の場合には、溶融状態で非反応性ガスを溶解させるま
でに熱分解が進む恐れがあるからである。In any of the methods, the supply of the high-pressure non-reactive gas to the resin raw material must be performed before the resin is transformed from a solid phase to a molten phase. If this is not done, if the melt viscosity of the difficult-to-mold resin is extremely high, for example, when the resin is plasticized with a screw, etc., the screw will not rotate due to a sudden increase in torque, etc. This is because a problem may occur, and in the case of a resin that is very sensitive to heat, thermal decomposition may proceed before the non-reactive gas is dissolved in a molten state.
【0056】さらに、対象とする難成形樹脂が結晶性樹
脂である場合には、同樹脂が固相から溶融相へ変態する
前に前流ガス供給孔(41a) から高圧状態のガスを供給し
て樹脂に溶解させるのに加えて、後流ガス供給孔(41b)
から溶融体輸送部へも高圧状態の非反応性ガスを供給
し、樹脂に溶解させることが好ましい。これは、結晶性
樹脂の場合、樹脂の固相状態ではガスが非晶部分にしか
溶解しないため、溶解量が少なくその効果が小さいから
であり、結晶構造が崩壊している溶融体輸送部へも高圧
状態の非反応性ガスを供給することにより必要な溶融量
を補うことができる。Further, when the target hard-to-mold resin is a crystalline resin, a high-pressure gas is supplied from the upstream gas supply hole (41a) before the resin is transformed from a solid phase to a molten phase. In addition to dissolving in the resin, the downstream gas supply hole (41b)
It is preferable to supply a non-reactive gas in a high pressure state to the melt transporting unit from above, and dissolve it in the resin. This is because, in the case of crystalline resin, the gas dissolves only in the amorphous portion in the solid phase state of the resin, so the dissolved amount is small and its effect is small, and it is difficult to reach the melt transport section where the crystal structure is collapsed. The required amount of melting can be compensated by supplying the non-reactive gas in a high pressure state.
【0057】図2は、請求項1の製造装置の1例を模式
的にあらわしている。図2に示すように、この製造装置
(B) は、スクリュ(12 ´) の駆動軸(13 ´)がシリンダ
(11 ´) の樹脂供給側壁を貫通するように設けられた押
出機(1b)を有し、この駆動軸(13 ´) の貫通孔から高圧
ガスが漏れ出ないように粘性流体供給装置(8) を備える
とともに、後流端壁に排出管路(7´) が接続されている
以外は、前述の製造装置(A) と同様になっている。FIG. 2 schematically shows an example of the manufacturing apparatus according to the first aspect. As shown in FIG.
(B) shows that the drive shaft (13 ') of the screw (12') is a cylinder.
(11 ') having an extruder (1b) provided so as to penetrate the resin supply side wall, and a viscous fluid supply device (8) so that high-pressure gas does not leak from a through hole of the drive shaft (13'). ), And is the same as the above-described manufacturing apparatus (A) except that a discharge pipe (7 ′) is connected to the downstream end wall.
【0058】すなわち、粘性流体供給装置(8) は、押出
機(81)と、循環路(82)とを備え、粘性流体としての溶融
樹脂 (図示せず)を押出機(81)から押し出して循環路(8
2)を介して循環路(82)の途中に設けられたギアポンプ(8
3)によって5kgf/cm2〜供給ガス圧の範囲の圧力で定量的
に駆動軸(13 ´) を囲繞するように設けられたシール部
(84)に供給したのち、循環路(82)を介して再び押出機(8
1)に戻るようになっているとともに、押出機(81)のベン
ト口に接続された真空ポンプ(85)によって戻ってきた溶
融樹脂中の気泡を脱気できるようになっている。That is, the viscous fluid supply device (8) includes an extruder (81) and a circulation path (82), and extrudes a molten resin (not shown) as a viscous fluid from the extruder (81). Circuit (8
A gear pump (8) provided in the middle of the circulation path (82) through (2)
3) A seal portion provided so as to quantitatively surround the drive shaft (13 ') at a pressure in the range of 5 kgf / cm 2 to the supply gas pressure according to 3).
(84), and again through the circulation path (82).
While returning to 1), air bubbles in the molten resin returned by the vacuum pump (85) connected to the vent port of the extruder (81) can be degassed.
【0059】この製造装置(B) は、以上のように、駆動
軸(13 ´) の部分が粘性流体によってシール部(84)でシ
ールされるようになっているので、シリンダ(11 ´) 内
の高圧状状態の非反応性ガスが駆動軸(13 ´) 部分から
シリンダ(11 ´) 外に漏れ出ることがなく、シリンダ(1
1 ´) 内を高圧状態に保つことができる。As described above, in the manufacturing apparatus (B), the drive shaft (13 ') is sealed by the seal portion (84) with the viscous fluid. High pressure state non-reactive gas does not leak out of the cylinder (11 ') from the drive shaft (13'),
1)) can be maintained in a high pressure state.
【0060】また、シリンダ(11 ´) 内のガス圧力がシ
ールに用いている粘性流体の圧力より高いので、ガスシ
ールに用いられる粘性流体がシリンダ(11 ´) 内の樹脂
原料中に混入することはない。Further, since the gas pressure in the cylinder (11 ') is higher than the pressure of the viscous fluid used for the seal, the viscous fluid used for the gas seal may be mixed into the resin raw material in the cylinder (11'). There is no.
【0061】なお、高圧ガス側のガス圧より低い粘性流
体により高圧ガスのシールを行えるのは、押出機(1b)の
スクリュ(12 ´) により樹脂が前流に送られるときに限
られるが、それ以外の場合でもガスシールに用いている
粘性流体が循環していれば一気にガスが吹き出すという
ようなことがない。また、粘性流体の圧力がシリンダ(1
1 ´) 内のガス圧より低いので、シリンダ(11 ´) 内の
非反応性ガスが粘性流体中に溶け込むが、この溶解した
ガスは、押出機(81)のベント口に接続された真空ポンプ
(85)によって脱気されるようになっているため、粘性流
体のシール性がより確実に確保できる。The high-pressure gas can be sealed with the viscous fluid lower than the gas pressure on the high-pressure gas side only when the resin is sent to the upstream by the screw (12 ') of the extruder (1b). In other cases, if the viscous fluid used for the gas seal is circulating, the gas does not blow out at once. In addition, the pressure of the viscous fluid is
Since the pressure is lower than the gas pressure in 1 ′), the non-reactive gas in the cylinder (11 ′) dissolves in the viscous fluid. This dissolved gas is supplied to the vacuum pump connected to the vent of the extruder (81).
Since the gas is deaerated by (85), the sealing property of the viscous fluid can be more reliably ensured.
【0062】本発明にかかる製造装置は、上記の実施の
形態に限定されない。例えば、上記の実施の形態の製造
装置(A),(B) では、いずれもガスボンベ(22),(42) の非
反応性ガスを加圧ポンプ(24),(44a),(44b)によって加圧
してそれぞれ供給するようにしていたが、ガスボンベか
ら直接供給するようにしても構わない。また、製造装置
(B) では、スクリュ(12 ´) の駆動軸(13 ´) が、シリ
ンダ(11 ´) の樹脂供給側壁を貫通するように設けられ
ていたが、製造装置(A) と同様に、シリンダ(11 ´) の
排出端部側である後流端壁を貫通して外部に突出させる
ようにしても構わない。The manufacturing apparatus according to the present invention is not limited to the above embodiment. For example, in the manufacturing apparatuses (A) and (B) of the above embodiment, the non-reactive gas in the gas cylinders (22) and (42) are all pumped by the pressure pumps (24), (44a) and (44b). Although they are supplied under pressure, they may be supplied directly from a gas cylinder. Also manufacturing equipment
In (B), the drive shaft (13 ') of the screw (12') is provided so as to penetrate the resin supply side wall of the cylinder (11 '). 11 ') may be made to protrude to the outside through the downstream end wall on the discharge end side.
【0063】[0063]
【実施例】以下に、実施例により本発明を具体的に説明
するが、本発明はこれに限定されるものではない。EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.
【0064】(実施例1)図1に示すような製造装置を
用いて以下のようにして成形体を製造した。まず、難成
形樹脂として超高粘度材料の超高分子量ポリエチレン
(三井石油化学工業社製「ハイゼックス・ミリオン24
0M」平均分子量230万、融点136℃)を単軸押出
機(スクリュー径40mm、L/D=30)のホッパーか
ら押出機のシリンダー内に供給した。ガスとしては炭酸
ガスを用い、炭酸ガスは単軸押出機の固体輸送部に15
0kgf/cm2 の圧力で圧入した。(Example 1) A molded product was produced as follows using a production apparatus as shown in FIG. First, as a difficult-to-mold resin, ultra-high-molecular-weight polyethylene of ultra-high-viscosity material ("HIZEX Million 24" manufactured by Mitsui Petrochemical Industries, Ltd.
0M "average molecular weight 2.3 million, melting point 136 ° C) was fed into the cylinder of the extruder from a hopper of a single screw extruder (screw diameter 40 mm, L / D = 30). Carbon dioxide gas is used as the gas, and the carbon dioxide gas is supplied to the solid transport section of the single screw extruder.
It was press-fitted with a pressure of 0 kgf / cm 2 .
【0065】このようにして200℃に設定された単軸
押出機のシリンダー内で樹脂を溶融し、さらに、単軸押
出機の溶融体輸送部から炭酸ガスを200kgf/cm2 の圧
力で供給し、単軸押出機内で5kg/hrの条件下で十分に
溶融混練したところ、駆動軸からのガス漏れは認められ
なかった。また、このとき押出機の背圧は、350kgf/
cm2 であった。The resin is melted in the cylinder of the single-screw extruder set at 200 ° C. in this way, and carbon dioxide gas is further supplied from the melt transport section of the single-screw extruder at a pressure of 200 kgf / cm 2. When the mixture was sufficiently melt-kneaded in a single-screw extruder under the condition of 5 kg / hr, no gas leakage from the drive shaft was observed. At this time, the back pressure of the extruder was 350 kgf /
It was cm 2.
【0066】引き続いて、溶融樹脂原料を単軸押出機の
排出管路に接続されたギアポンプを介して、100℃に
設定された潤滑冷却金型に供給し、成形するとともに急
冷・固化させ、ロッド状をした径10mmの中実成形体を
押出成形した。Subsequently, the molten resin raw material is supplied to a lubricating cooling mold set at 100 ° C. through a gear pump connected to a discharge pipe of a single screw extruder, molded, quenched and solidified. A 10 mm diameter solid compact was extruded.
【0067】この中実成形体の断面を顕微鏡観察したと
ころ、気泡は確認されず、表面が平滑で均一な非発泡の
中実成形体であることが確認できた。なお、この潤滑冷
却金型では、潤滑剤溜まりに溜められた潤滑剤としての
ポリエチレングリコールを5cc/ 分で多孔質体によって
形成された金型内壁を通して金型内面に供給し、溶融樹
脂との界面全周に渡って均一に潤滑剤を塗布するように
しておいた。Microscopic observation of the cross section of this solid molded product confirmed that no air bubbles were observed, and that the solid molded product was a non-foamed solid molded product having a uniform surface. In this lubrication cooling mold, polyethylene glycol as a lubricant stored in the lubricant reservoir is supplied to the inner surface of the mold at a rate of 5 cc / min. The lubricant was applied uniformly over the entire circumference.
【0068】(実施例2)図2に示すような製造装置を
用いて、以下のようにして成形体を製造した。まず、難
成形樹脂として熱敏感系材料のポリ乳酸(ベーリンガー
インゲルハイム社製「RESOMER L209」、重
量平均分子量50万)を単軸押出機(スクリュー径40
mm、L/D=30)のホッパーから単軸押出機のシリン
ダー内に供給した。ガスとしては炭酸ガスを用い、炭酸
ガスは単軸押出機の固体輸送部に100kgf/cm2 の圧力
で圧入した。そして、押出機のシリンダ内で押出量2kg
/hr、バレル設定温度170℃の条件下で十分に溶融混
練した。(Example 2) Using a manufacturing apparatus as shown in FIG. 2, a molded body was manufactured as follows. First, as a difficult-to-mold resin, a heat-sensitive polylactic acid (“RESOMEL L209” manufactured by Boehringer Ingelheim Co., Ltd., weight average molecular weight: 500,000) was extruded into a single screw extruder (screw diameter: 40 mm).
mm, L / D = 30) and fed into the cylinder of the single screw extruder. Carbon dioxide gas was used as the gas, and the carbon dioxide gas was injected into the solid transport section of the single screw extruder at a pressure of 100 kgf / cm 2 . Then, the extruding amount is 2kg in the cylinder of the extruder.
/ Hr at a barrel setting temperature of 170 ° C.
【0069】引き続いて、単軸押出機の排出管路に接続
されたギアポンプを介して、80℃に設定された潤滑冷
却金型に供給し、成形するとともに急冷・固化させ、ロ
ッド状をした径10mmの中実成形体を押出成形した。Subsequently, it is supplied to a lubricating cooling mold set at 80 ° C. through a gear pump connected to a discharge pipe of the single screw extruder, and is molded, rapidly cooled and solidified, and has a rod-shaped diameter. A 10 mm solid compact was extruded.
【0070】なお、粘性流体供給装置は、粘性流体供給
装置の押出機を用いて粘性流体としての高密度ポリエチ
レン(三井石油化学工業社製「ハイゼックス・8000
F」メルトフローレート=0.03、融点130℃)を
145℃で押し出し、ギアポンプを用いて単軸押出機の
駆動軸のシール部に供給した。供給された樹脂は、その
後押出機に戻され、押出機のベント部で樹脂中のガス分
を真空ポンプで脱気し、再び駆動軸に供給して循環させ
た。The viscous fluid supply device is a high-density polyethylene ("HIZEX 8000" manufactured by Mitsui Petrochemical Industries, Ltd.) as a viscous fluid by using an extruder of the viscous fluid supply device.
F) (melt flow rate = 0.03, melting point 130 ° C.) was extruded at 145 ° C. and fed to the seal of the drive shaft of the single screw extruder using a gear pump. The supplied resin was then returned to the extruder, and the gas content in the resin was degassed by a vacuum pump at the vent of the extruder, and was again supplied to the drive shaft and circulated.
【0071】また、押出機のスクリュの駆動軸からのガ
ス漏れは認められず、この時の単軸押出機の背圧は、2
50kgf/cm2 であった。潤滑冷却金型では、潤滑剤溜ま
りに溜められた潤滑剤としてのポリエチレングリコール
を5cc/ 分で多孔質体によって形成された金型内壁を通
して金型内面に供給し、溶融樹脂との界面全周に渡って
均一に潤滑剤を塗布するようにしておいた。Gas leakage from the drive shaft of the screw of the extruder was not recognized, and the back pressure of the single-screw extruder at this time was 2
It was 50 kgf / cm 2 . In the lubricating cooling mold, polyethylene glycol as a lubricant stored in the lubricant reservoir is supplied to the inner surface of the mold at a rate of 5 cc / min through the inner wall of the mold formed by the porous body, and is applied to the entire periphery of the interface with the molten resin. The lubricant was applied uniformly over the entire area.
【0072】上記のようにして得た中実成形体の断面を
顕微鏡観察したところ、気泡は確認されず、表面が平滑
で均一な非発泡の中実成形体であることが確認できた。
また、GPC(ゲル浸透クロマトグラフィ)による分子
量測定を行ったところ、押出の前後で分子量低下が見ら
れず、分解等が起こっていないことがわかった。Microscopic observation of the cross section of the solid molded body obtained as described above confirmed that no air bubbles were observed and the solid molded body had a smooth and uniform surface and was non-foamed.
In addition, when the molecular weight was measured by GPC (gel permeation chromatography), it was found that the molecular weight did not decrease before and after the extrusion, and no decomposition or the like occurred.
【0073】[0073]
【発明の効果】本発明の樹脂成形体の製造装置によれ
ば、樹脂が溶融する前に樹脂中に十分に高圧の非反応性
ガスを溶解させ、樹脂を効果的に可塑化することがで
き、溶融粘度が高くて溶融押出が困難な樹脂や、熱分解
しやすい樹脂を低温で支障なく成形することができる。According to the apparatus for manufacturing a resin molded article of the present invention, a sufficiently high-pressure non-reactive gas can be dissolved in a resin before the resin is melted, and the resin can be effectively plasticized. In addition, it is possible to mold a resin having a high melt viscosity, which is difficult to be melt-extruded, or a resin which is easily decomposed at a low temperature without any trouble.
【0074】しかも、シリンダ内の高圧ガスが駆動軸部
分から外部に抜け出ることがないため、高圧状態のガス
の圧力シールをより確実に行うことができる。Further, since the high-pressure gas in the cylinder does not escape from the drive shaft portion to the outside, the pressure seal of the gas in the high-pressure state can be performed more reliably.
【0075】また、ホッパ部分だけでなく、押出機のシ
リンダ部分にも非反応性ガスを供給できるようにしたの
で、より確実に非反応性ガスを樹脂に溶解させることが
でき、押出量を上げて生産性をより向上させることがで
きる。また、請求項2の製造装置のようにすれば、押出
機のシリンダ内の高圧の非反応性ガスのシールをより簡
易的に行うことができる。Further, since the non-reactive gas can be supplied not only to the hopper portion but also to the cylinder portion of the extruder, the non-reactive gas can be more reliably dissolved in the resin, and the extrusion amount can be increased. Thus, productivity can be further improved. Further, according to the manufacturing apparatus of the second aspect, sealing of the high-pressure non-reactive gas in the cylinder of the extruder can be performed more easily.
【0076】さらに、請求項3の製造装置のように、金
型として、潤滑冷却金型を用いれば、所望の成形体をス
ムーズに得ることができる。Further, when a lubrication cooling mold is used as the mold as in the manufacturing apparatus of the third aspect, a desired molded product can be obtained smoothly.
【0077】また、請求項4の製造装置のように、押出
機の排出管路の途中に樹脂圧調整手段、特に、樹脂圧調
整手段として請求項5の製造装置のように、ギアポンプ
を設ければ、溶融樹脂原料を常に定量で金型に導入で
き、より良好な成形体を得ることができる。加えて、得
られた成形体中には溶解した非反応性ガスは成形体から
自然に抜け出るために、樹脂を有機溶媒で可塑化させる
従来方法のような溶媒回収工程が必要でなく、生産性が
高い上に、設備の小型化および製造コストの低減が可能
である。Further, as in the manufacturing apparatus of the fourth aspect, a gear pump is provided in the middle of the discharge line of the extruder, particularly, as the manufacturing apparatus of the fifth aspect as the resin pressure adjusting means. If this is the case, the molten resin raw material can always be introduced into the mold in a constant amount, and a better molded product can be obtained. In addition, since the non-reactive gas dissolved in the obtained molded body escapes naturally from the molded body, a solvent recovery step such as a conventional method of plasticizing a resin with an organic solvent is not required, and productivity is improved. In addition, the size of the equipment can be reduced and the manufacturing cost can be reduced.
【図1】請求項2の製造装置の実施の形態をあらわし、
その概要を示す垂直縦断図である。FIG. 1 shows an embodiment of a manufacturing apparatus according to claim 2;
It is a vertical longitudinal view showing the outline.
【図2】請求項1の製造装置の実施の形態をあらわし、
その概要を示す垂直縦断図である。FIG. 2 shows an embodiment of the manufacturing apparatus according to claim 1;
It is a vertical longitudinal view showing the outline.
(A),(B)・・・製造装置 (1a),(1b)・・・押出機 (2)・・・ホッパ (3)・・・潤滑冷却金型 (4)・・・ガス供給装置 (5)・・・減速機 (6)・・・モータ(駆動装置) (7),(7 ´) ・・・排出管路 (8)・・・粘性流体供給装置 (9)・・・樹脂原料 (11),(11 ´) ・・・シリンダ (12),(12 ´) ・・・スクリュ (13),(13 ´) ・・・駆動軸 (21),(23),(43a),(43b)・・・開閉バルブ (22),(42)・・・ガスボンベ (24),(44a),(44b) ・・・加圧ポンプ (31) ・・・潤滑剤溜め (32) ・・・金型内壁 (33) ・・・金型内面 (41a)・・・前流ガス供給孔 (41b)・・・後流ガス供給孔 (71) ・・・ギアポンプ (樹脂圧調整装置) (81) ・・・押出機 (82) ・・・循環路 (83) ・・・ギアポンプ (84) ・・・シール部 (85) ・・・真空ポンプ (91) ・・・溶融樹脂原料 (A), (B): Manufacturing equipment (1a), (1b): Extruder (2): Hopper (3): Lubrication cooling mold (4): Gas supply device (5) ・ ・ ・ Reduction gear (6) ・ ・ ・ Motor (drive device) (7), (7 ′) ・ ・ ・ Discharge pipeline (8) ・ ・ ・ Viscous fluid supply device (9) ・ ・ ・ Resin Raw materials (11), (11 ') ... cylinders (12), (12') ... screws (13), (13 ') ... drive shafts (21), (23), (43a), (43b) ・ ・ ・ Open / close valve (22), (42) ・ ・ ・ Gas cylinder (24), (44a), (44b) ・ ・ ・ Pressure pump (31) ・ ・ ・ Lubricant reservoir (32) ・ ・・ Inner wall of mold (33) ・ ・ ・ Inner surface of mold (41a) ・ ・ ・ Gas supply hole for upstream (41b) ・ ・ ・ Gas supply hole for downstream (71) ・ ・ ・ Gear pump (resin pressure adjusting device) (81 ) ・ ・ ・ Extruder (82) ・ ・ ・ Circulation path (83) ・ ・ ・ Gear pump (84) ・ ・ ・ Seal part (85) ・ ・ ・ Vacuum pump (91) ・ ・ ・ Molten resin material
フロントページの続き (51)Int.Cl.6 識別記号 FI B29C 47/92 B29C 47/92 (72)発明者 松本 英志 京都市南区上鳥羽上調子町2−2 積水化 学工業株式会社内Continuation of the front page (51) Int.Cl. 6 Identification symbol FI B29C 47/92 B29C 47/92 (72) Inventor Eiji Matsumoto 2-2 Kamikoba Kaminokocho Minami-ku, Kyoto Sekisui Kagaku Corporation
Claims (5)
と、押出機の供給端部上側に設けられたホッパとを備え
る樹脂成形体の製造装置において、ホッパがこれに導入
される高圧状態の非反応性ガスを圧力保持する耐圧構造
となされ、押出機のシリンダ内の所定位置に高圧状態の
非反応性ガスを供給するガス供給装置が押出機に接続さ
れ、駆動装置に連結するスクリュの駆動軸が粘性流体に
よってシールされていることを特徴とする樹脂成形体の
製造装置。1. A high-pressure state in which a hopper is introduced into an apparatus for producing a resin molded body, comprising: an extruder having a screw disposed in a cylinder; and a hopper provided above a supply end of the extruder. A pressure supply structure for holding the non-reactive gas under pressure, a gas supply device for supplying a high-pressure non-reactive gas at a predetermined position in a cylinder of the extruder is connected to the extruder, and a screw connected to a driving device is provided. An apparatus for manufacturing a resin molded product, wherein a drive shaft is sealed with a viscous fluid.
と、押出機の供給端部上側に設けられたホッパとを備え
る樹脂成形体の製造装置において、ホッパがこれに導入
される高圧状態の非反応性ガスを圧力保持する耐圧構造
となされ、押出機のシリンダ内の所要位置に高圧状態の
非反応性ガスを供給するガス供給装置が押出機に接続さ
れ、駆動装置に連結するスクリュの駆動軸が押出機の排
出部側に設けられていることを特徴とする樹脂成形体の
製造装置。2. A high-pressure state in which a hopper is introduced into an apparatus for manufacturing a resin molded body, comprising: an extruder having a screw disposed in a cylinder; and a hopper provided above a supply end of the extruder. A pressure supply structure for holding the pressure of the non-reactive gas is connected to the extruder. An apparatus for manufacturing a resin molded product, wherein a drive shaft is provided on a discharge section side of an extruder.
れている請求項1または請求項2に記載の樹脂成形体の
製造装置。3. The apparatus for manufacturing a resin molded product according to claim 1, wherein a lubricating cooling mold is connected to a discharge end of the extruder.
樹脂圧調整装置が設けられている請求項3に記載の樹脂
成形体の製造装置。4. The apparatus for manufacturing a resin molded product according to claim 3, wherein a resin pressure adjusting device is provided between the discharge end of the extruder and the lubricating cooling mold.
4に記載の樹脂成形体の製造装置。5. The apparatus according to claim 4, wherein the resin pressure adjusting device is a gear pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9152595A JPH10230541A (en) | 1996-12-19 | 1997-06-10 | Apparatus for producing resin molded object |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-339832 | 1996-12-19 | ||
JP33983296 | 1996-12-19 | ||
JP9152595A JPH10230541A (en) | 1996-12-19 | 1997-06-10 | Apparatus for producing resin molded object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10230541A true JPH10230541A (en) | 1998-09-02 |
Family
ID=26481457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9152595A Withdrawn JPH10230541A (en) | 1996-12-19 | 1997-06-10 | Apparatus for producing resin molded object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10230541A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007066505A1 (en) * | 2005-12-06 | 2007-06-14 | Idemitsu Kosan Co., Ltd. | Method for applying ultrasonic oscillation, and resin composition |
JP2012017408A (en) * | 2010-07-08 | 2012-01-26 | Sumitomo Chemical Co Ltd | Devolatilization extruder, devolatilization extrusion method for polymer composition using the same, and manufacturing method for polymer |
WO2020021875A1 (en) | 2018-07-26 | 2020-01-30 | ダイキン工業株式会社 | Molded resin body production method |
US12138845B2 (en) | 2018-07-26 | 2024-11-12 | Daikin Industries, Ltd. | Molded resin body production method |
-
1997
- 1997-06-10 JP JP9152595A patent/JPH10230541A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007066505A1 (en) * | 2005-12-06 | 2007-06-14 | Idemitsu Kosan Co., Ltd. | Method for applying ultrasonic oscillation, and resin composition |
JP2012017408A (en) * | 2010-07-08 | 2012-01-26 | Sumitomo Chemical Co Ltd | Devolatilization extruder, devolatilization extrusion method for polymer composition using the same, and manufacturing method for polymer |
WO2020021875A1 (en) | 2018-07-26 | 2020-01-30 | ダイキン工業株式会社 | Molded resin body production method |
US12138845B2 (en) | 2018-07-26 | 2024-11-12 | Daikin Industries, Ltd. | Molded resin body production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5158986A (en) | Microcellular thermoplastic foamed with supercritical fluid | |
JP3998374B2 (en) | Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method | |
JP3655302B2 (en) | Extrusion of low density foam using water blowing agent | |
WO2018131372A1 (en) | Method and apparatus for manufacturing foamed product | |
EP1393879A1 (en) | Forming device for thermoplastic resin formed part | |
JPH10230541A (en) | Apparatus for producing resin molded object | |
JPH11179784A (en) | Manufacture device of resin molded body | |
JP2000000871A (en) | Apparatus for manufacture of resin molding | |
JP3634522B2 (en) | Method for producing difficult-to-mold resin molded body | |
JPH11198213A (en) | Production of ultra-high molecular weight polyethylene molding | |
JPH10193426A (en) | Manufacture of hard molding resin molding | |
JPH11333908A (en) | Apparatus for producing resin molding | |
JP3910723B2 (en) | Method for producing molded thermoplastic resin | |
JP6846243B2 (en) | Manufacturing method and manufacturing equipment for foam molded products | |
JP3688428B2 (en) | Production method of difficult-to-mold resin sheet | |
JPH11147246A (en) | Manufacture of ultrahigh molecular weight polyethylene sheet | |
JPH10166417A (en) | Production of thermoplastic resin molded object | |
JP3887108B2 (en) | Ultra high molecular weight polyethylene pipe and method for producing the same | |
JP3644766B2 (en) | Method for producing non-foaming difficult-to-mold resin molding | |
JPH1110700A (en) | Device for manufacture of resin molded form | |
JPS6046227A (en) | Method and device for extruding high-molecular material | |
JP6997847B2 (en) | Manufacturing method and manufacturing equipment for foam molded products | |
JPH0437771B2 (en) | ||
JP2003062892A (en) | Extrusion-molding method for expansion-molding by double-screw extruder | |
JPH11116721A (en) | Production of ultrahigh-molecular-weight polyethylene foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040601 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20050704 |