Nothing Special   »   [go: up one dir, main page]

JPH10213546A - Automatic analyzer for enzyme activation measuring - Google Patents

Automatic analyzer for enzyme activation measuring

Info

Publication number
JPH10213546A
JPH10213546A JP9028495A JP2849597A JPH10213546A JP H10213546 A JPH10213546 A JP H10213546A JP 9028495 A JP9028495 A JP 9028495A JP 2849597 A JP2849597 A JP 2849597A JP H10213546 A JPH10213546 A JP H10213546A
Authority
JP
Japan
Prior art keywords
value
sample
absorbance
measurement
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9028495A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakano
清和 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9028495A priority Critical patent/JPH10213546A/en
Publication of JPH10213546A publication Critical patent/JPH10213546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an enzyme activation value equal to a measured value under an optimal reaction condition by correcting an absorbed light intensity changing amount measured value per unit time by an average correction value when a partially deteriorated rate measuring reagent is used. SOLUTION: A reagent blank liquid is measured and, from its absorbed light intensities ARBm to ARBn , a ΔARB/Δt operation part 46 obtains an absorbed light intensity changing amount ΔARB/Δt per unit time. Also, a reagent reaction liquid is measured and, from its absorbed light intensities Asm to Asn , an absorbed light intensity changing amount operation part 44 obtains a Δ absorbed light intensity changing amount ΔAs /Δt per unit time. The absorbed light intensities Asm to Asn are corrected by a reagent blank correction operation part 42 to obtain absorbed light intensities A'sm to A'sn , correction values Fvm to Fvn corresponding to these are selected by a correction value selection part 32 and its average correction value Fv B is obtained by an average correction value calculation part 34. Then, an enzyme activation value calculation pat 36 substrats ΔARB/Δt from the absorbed light changing amount ΔAs /Δt, multiplies the average correction value Fv B by a K value from a K value storage part 48 to calculate an enzyme activation value C and outputs this.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は生化学自動分析装置
に関し、特に酵素活性を測定する生化学自動分析装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biochemical automatic analyzer, and more particularly to an automatic biochemical analyzer for measuring enzyme activity.

【0002】[0002]

【従来の技術】酵素活性を測定するには、酵素を含んだ
試料と基質を含んだ試薬とを混合させて試料反応液と
し、その試料反応液の吸光度を測定してその単位時間当
たりの吸光度変化量を求め、その吸光度変化量から酵素
活性値を算出する。
2. Description of the Related Art In order to measure enzyme activity, a sample containing an enzyme and a reagent containing a substrate are mixed to prepare a sample reaction solution, and the absorbance of the sample reaction solution is measured to determine the absorbance per unit time. The amount of change is determined, and the enzyme activity value is calculated from the amount of change in absorbance.

【0003】[0003]

【発明が解決しようとする課題】酵素活性測定に使用す
る試薬の成分濃度により、酵素活性測定値が異なった結
果になる。すなわち、同一の試薬を用いても、経時変化
によって試薬中の成分の一部が分解して低下することに
より、調製直後の試薬と時間を経過した後の試薬とでは
酵素活性測定値が異なる結果になる。
The measured value of the enzyme activity differs depending on the component concentration of the reagent used for the enzyme activity measurement. In other words, even when the same reagent is used, some of the components in the reagent are decomposed and degraded due to changes over time, so that the measured enzyme activity differs between the reagent immediately after preparation and the reagent after a lapse of time. become.

【0004】また、臨床用の生化学自動分析装置は、病
院や検査センターなどの医療機関で使用されているた
め、測定試料には酵素成分が異常な高値を示す検体が存
在する。生化学自動分析装置では多くの試料を一定の精
度で測定するための測定条件を定めており、高濃度(高
活性)の酵素を含む試料に遭遇した場合には、レート測
定時間中あるいはそれ以前の段階で試薬成分である基質
が低下してしまい、非至適条件となることから低活性値
に、また極めて高活性試料の場合には非定常反応条件と
なり、測定ができないという事態が起こる。特に、超高
活性の酵素試料は、試料量を少なくするか、又は試料を
希釈するなどの方法で再度試料反応液を調製して測定し
ている。本発明者は試料反応液の酵素活性を測定する際
の単位時間あたりの吸光度変化量が反応液中の基質濃度
を反映した吸光度に依存すること、及びこの吸光度変化
量が試料反応液の吸光度によって適正な試薬成分濃度条
件(至適条件と呼ぶ)下における測定結果に修正できる
ことを見いだした。
[0004] In addition, since clinical biochemical automatic analyzers are used in medical institutions such as hospitals and test centers, there are test samples whose enzyme components show abnormally high values. Automated biochemical analyzers define measurement conditions for measuring many samples with a certain degree of accuracy. If a sample containing a high concentration (highly active) enzyme is encountered, it must be used during or before the rate measurement time. At this stage, the substrate as a reagent component is reduced, and the conditions become non-optimal, so that a low activity value is obtained. In the case of an extremely high-activity sample, a non-steady-state reaction condition occurs, and a situation occurs in which measurement cannot be performed. In particular, an enzyme sample having an extremely high activity is measured by preparing a sample reaction solution again by reducing the amount of the sample or diluting the sample. The inventor has determined that the amount of change in absorbance per unit time when measuring the enzyme activity of the sample reaction solution depends on the absorbance reflecting the substrate concentration in the reaction solution, and that the amount of change in absorbance depends on the absorbance of the sample reaction solution. It has been found that measurement results can be corrected under appropriate reagent component concentration conditions (referred to as optimum conditions).

【0005】本発明の第1の目的は、基質の一部が劣化
したレート測定用試薬を使用する際や、酵素活性測定条
件で非至適あるいは非定常反応条件となる高活性の試料
に遭遇したとき至適反応条件下での測定値と同等の酵素
活性値を得るようにすることにある。本発明の第2の目
的は、超高活性の酵素試料で試料量を少なくするか試料
を希釈するなどの方法で再度試料反応液を調製して、よ
り正確な測定値を得るために再測定する場合の適切な再
測定用の試料量又は希釈率を求める方法を提供すること
にある。
[0005] A first object of the present invention is to use a reagent for rate measurement in which a part of a substrate is degraded, or to encounter a sample with high activity under non-optimal or unsteady reaction conditions in enzyme activity measurement conditions. The purpose is to obtain an enzyme activity value equivalent to the measured value under optimal reaction conditions. The second object of the present invention is to prepare a sample reaction solution again by a method such as reducing the amount of a sample with an ultra-highly active enzyme sample or diluting the sample, and remeasurement to obtain a more accurate measurement value. It is an object of the present invention to provide a method for obtaining an appropriate sample amount or dilution rate for re-measurement in the case where the measurement is performed.

【0006】超高活性の酵素試料を再測定する従来の1
つの方法として、試料反応液のレート測定時間と非定常
反応条件を判定する吸光度の関係から誘導する方法があ
る。これは、定常反応においてはレート反応がほぼ一定
の反応速度を示すことから、試料量とレート測定時間の
関係を推測でき、再測定時の試料量条件を推定できるこ
とに基づいている。しかし、測定試薬の基質濃度の変
化、すなわち調製時の原試薬の製造ロット間差や調製後
の経時的変化により、試薬すなわち試料反応液中の基質
濃度が低下して測定可能な濃度範囲が変わるため、これ
らの変化を考慮して余裕のある再測定試料量又は希釈率
を決めておく必要があるが、従来の方法ではその余裕の
程度が正確にはわからないという欠点がある。
A conventional method for re-measuring an enzyme sample having an extremely high activity
One method is to derive from the relationship between the rate measurement time of the sample reaction solution and the absorbance for determining the unsteady reaction conditions. This is based on the fact that the rate reaction shows a substantially constant reaction rate in a steady-state reaction, so that the relationship between the sample amount and the rate measurement time can be estimated, and the sample amount condition at the time of re-measurement can be estimated. However, a change in the substrate concentration of the measurement reagent, that is, a difference between the production lots of the original reagent at the time of preparation or a change over time after the preparation lowers the substrate concentration in the reagent, that is, the sample reaction solution, and changes the measurable concentration range. For this reason, it is necessary to determine the re-measurement sample amount or the dilution ratio with a margin in consideration of these changes, but there is a disadvantage that the degree of the margin cannot be accurately determined by the conventional method.

【0007】他の従来の方法として、予め再測定時の試
料量又は希釈率を定めておく方法もある。これは、酵素
活性測定条件(主に、試薬中の基質濃度とレート測定時
間)や試料及び測定酵素の種類を決めれぱ、測定すべき
濃度範囲が概略推定できることに基づいている。しか
し、予め再測定時の試料量又は希釈率を定めておくこと
は測定精度上からは必ずしも最適の条件とはいえず、ま
た不要な希釈作業を行なうことは自動分析装置の処理能
力を低下させるなどの問題を生じる。
As another conventional method, there is a method in which a sample amount or a dilution rate at the time of re-measurement is determined in advance. This is based on the fact that the enzyme activity measurement conditions (mainly the substrate concentration in the reagent and the rate measurement time), the type of the sample and the enzyme to be measured are determined, and the concentration range to be measured can be roughly estimated. However, determining the sample amount or dilution ratio at the time of re-measurement in advance is not always the optimal condition from the viewpoint of measurement accuracy, and performing unnecessary dilution work lowers the processing capacity of the automatic analyzer. And other problems.

【0008】[0008]

【課題を解決するための手段】第1の目的を達成するた
めに、本発明では図1に示されるように、酵素活性測定
用試料反応液のレート測定時間内の吸光度測定値Asm〜
Asnから単位時間あたりの吸光度変化量ΔAs/Δtを
算出する吸光度変化量演算部44と、酵素活性測定用試
料反応液の吸光度から至適反応条件下での単位時間あた
りの吸光度変化量を求めるための修正値Fvを記憶して
いる修正値記憶部30と、測定した試料反応液の吸光度
Asm〜Asnに対応するそれぞれの修正値Fvを修正値記
憶部30から選択する修正値選択部32と、その選択さ
れた修正値の平均値FvBを算出する平均修正値演算部3
4と、吸光度変化量演算部44により算出された単位時
間あたりの吸光度変化量測定値ΔAs/Δtを平均修正
値演算部34により算出された平均修正値FvBにより補
正し、酵素活性値Cを算出して出力する酵素活性値演算
部36とを備えている。
In order to achieve the first object, according to the present invention, as shown in FIG. 1, an absorbance measurement value Asm of a sample reaction solution for enzyme activity measurement within a rate measurement time is used.
An absorbance change calculator 44 for calculating the absorbance change ΔAs / Δt per unit time from Asn, and an absorbance change per unit time under optimal reaction conditions from the absorbance of the sample reaction solution for enzyme activity measurement. A correction value storage unit 30 that stores the correction values Fv of the sample reaction solution, a correction value selection unit 32 that selects the respective correction values Fv corresponding to the measured absorbances Asm to Asn of the sample reaction solution from the correction value storage unit 30, Average correction value calculation unit 3 for calculating the average value FvB of the selected correction values
4 and the measured absorbance change per unit time ΔAs / Δt calculated by the absorbance change calculator 44 by the average correction value FvB calculated by the average correction calculator 34 to calculate the enzyme activity C. And an enzyme activity value calculating section 36 for outputting the result.

【0009】第2の目的を達成するために、図2に示さ
れるように、試薬ブランク液吸光度ARBを記憶する試薬
ブランク測定値記憶部38と、試料量v、試薬量R1,
R2、限界吸光度AL、終点吸光度AF及び測定時間Δt
(tm〜tn)を含むレート測定条件を記憶するレート
測定条件記憶部50と、上記の酵素活性値演算部36で
算出された酵素活性値C、試薬ブランク測定値記憶部3
8に記憶されている試薬ブランク測定値ARB、及びレー
ト測定条件記憶部50に記憶されているレート測定条件
を用いて再測定用の試料量vs又は再測定用試料の希釈
率を算出する再測定用試料量/希釈率演算部52とを備
えている。
In order to achieve the second object, as shown in FIG. 2, a reagent blank measurement value storage section 38 for storing the reagent blank solution absorbance A RB, a sample amount v, a reagent amount R 1,
R2, limit absorbance AL, end absorbance AF and measurement time Δt
A rate measurement condition storage unit 50 for storing rate measurement conditions including (tm to tn); an enzyme activity value C calculated by the enzyme activity value calculation unit 36; and a reagent blank measurement value storage unit 3.
Re-measurement for calculating the re-measurement sample volume vs. or the dilution rate of the re-measurement sample using the reagent blank measurement value A RB stored in No. 8 and the rate measurement condition stored in the rate measurement condition storage unit 50 And a sample amount / dilution ratio calculation unit 52.

【0010】[0010]

【発明の実施の形態】図1では、試薬ブランク測定値A
RBf,ARBm〜ARBnを記憶する試薬ブランク測定値記憶
部38が設けられている。ARBfはレート反応開始液添
加前の試薬ブランク液の吸光度である。また、試料反応
液の吸光度測定値Asf,Asm〜Asnを記憶する試料反応
液測定値記憶部40が設けられ、次の(1)式により試
料ブランク補正された吸光度Asm'〜Asn'を算出する試
料ブランク補正演算部42が設けられている。Asfはレ
ート反応開始液添加前の試料反応液の吸光度、R1,R2
はそれぞれ第1試薬及び第2試薬の液量である。 Asm'=Asm-(Asf-ARBf)(v+R1)/(v+R1+R2) : Asn'=Asn-(Asf-ARBf)(v+R1)/(v+R1+R2) (1)
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG.
A reagent blank measurement value storage unit 38 for storing RBf, ARBm to ARBn is provided. A RBf is the absorbance of the reagent blank before the addition of the rate reaction starting solution. Further, a sample reaction liquid measurement value storage section 40 for storing the absorbance measurement values Asf, Asm to Asn of the sample reaction liquid is provided, and the absorbance Asm 'to Asn' corrected for the sample blank is calculated by the following equation (1). A sample blank correction calculation unit 42 is provided. Asf is the absorbance of the sample reaction solution before the addition of the rate reaction starting solution, R1 and R2.
Is the liquid volume of the first reagent and the liquid volume of the second reagent, respectively. Asm '= Asm- (Asf-ARBf) (v + R1) / (v + R1 + R2): Asn' = Asn- (Asf-ARBf) (v + R1) / (v + R1 + R2) (1)

【0011】修正値選択部32は、測定した複数の吸光
度測定値Asm〜Asnを上記の(1)式により試薬ブラン
ク補正した試料反応液吸光度Asm'〜Asn'に基づいて、
修正値記憶部30からそれぞれの吸光度測定値Asm'〜
Asn'に対応する修正値を選択する。また、試薬ブラン
ク測定値記憶部38に記憶されている試薬ブランク値A
RBm〜ARBnの単位時間当たりの変化量ΔARB/Δtを算
出するΔARB/Δt演算部46も設けられている。
The correction value selection unit 32 calculates a plurality of measured absorbance values Asm to Asn based on the sample reaction solution absorbances Asm 'to Asn' obtained by correcting the reagent blank according to the above equation (1).
The respective absorbance measured values Asm 'to
Select the correction value corresponding to Asn '. Also, the reagent blank value A stored in the reagent blank measurement value storage unit 38
A ΔARB / Δt calculating unit 46 for calculating a variation ΔARB / Δt per unit time of RBm to ARBn is also provided.

【0012】試料反応液の測定吸光度変化量から酵素活
性値を求めるためのK値がK値記憶部48に記憶されて
おり、酵素活性値演算部36は次の(2)式に示される
ように、吸光度変化量演算部44により算出された単位
時間あたりの吸光度変化量測定値ΔAs/ΔtからΔAR
B/Δt演算部46により算出されたΔARB/Δtを引
き算する補正を行なった後、平均修正値演算部34によ
り算出された平均修正値FvBとK値記憶部48に記憶さ
れているK値をかけて酵素活性値Cを算出して出力す
る。 酵素活性値C={(ΔAs/Δt)−(ΔARB/Δt)}FvB・K (2)
The K value for obtaining the enzyme activity value from the measured change in absorbance of the sample reaction solution is stored in the K value storage section 48. The enzyme activity value calculation section 36 calculates the K value as shown in the following equation (2). From the measured absorbance change per unit time ΔAs / Δt calculated by the absorbance change calculator 44, ΔAR
After performing a correction for subtracting ΔARB / Δt calculated by the B / Δt calculation unit 46, the average correction value FvB calculated by the average correction value calculation unit 34 and the K value stored in the K value storage unit 48 are calculated. Then, the enzyme activity value C is calculated and output. Enzyme activity value C = {(ΔAs / Δt) − (ΔARB / Δt)} FvB · K (2)

【0013】図1の発明の動作は図3のフローチャート
図に示されたように進められる。すなわち、試薬ブラン
ク液が測定されてその吸光度ARBf,ARBm〜ARBnと単
位時間当たりの吸光度変化量ΔARB/Δtが求められ
る。試料反応液の吸光度Asm〜Asnが測定され、最小自
乗法により単位時間当たりの吸光度変化量ΔAs/Δt
が求められる。そして、測定された試料反応液の吸光度
Asm〜Asnについて上記(1)式に基づいて試料ブラン
ク値を補正した試料反応液吸光度Asm'〜Asn'が求めら
れる。また、試料ブランク値を補正した試料反応液吸光
度Asm'〜Asn'に対応した修正値Fvm〜Fvnが選択さ
れ、その平均値FvBが算出される。そして、上記の
(2)式により酵素活性値Cが算出されて出力される。
The operation of the invention of FIG. 1 proceeds as shown in the flowchart of FIG. That is, the reagent blank solution is measured, and its absorbances ARBf, ARBm to ARBn and the amount of change in absorbance per unit time ΔARB / Δt are obtained. The absorbances Asm to Asn of the sample reaction solution are measured, and the change in absorbance per unit time ΔAs / Δt is determined by the least squares method.
Is required. Then, based on the measured absorbances Asm to Asn of the sample reaction solution, the sample reaction solution absorbances Asm 'to Asn' obtained by correcting the sample blank values based on the above equation (1) are obtained. Further, the correction values Fvm to Fvn corresponding to the sample reaction solution absorbances Asm 'to Asn' obtained by correcting the sample blank values are selected, and the average value FvB is calculated. Then, the enzyme activity value C is calculated by the above equation (2) and output.

【0014】算出された再測定用の試料量vs又は再測
定用試料の希釈率を用いて再測定を行なうために、図2
に示されるように、算出された再測定用の試料量vs又
は再測定用試料の希釈率に従って再測定用試料を調製す
る制御部54と、その調製された再測定用試料を用いて
再測定を行なった結果から吸光度変化量ΔAss/Δtを
算出する吸光度変化量演算部56と、その算出された吸
光度変化量ΔAss/Δtから次の(3)式により酵素活
性値CRを算出して出力する酵素活性値演算部58が設
けられている。 酵素活性値CR={(ΔAss/Δt)−(ΔARB/Δt)}K・Kf (3) ここで、Kfは再測定時のK値補正係数であり、次のよ
うに表わされる。 Kf=(v/vs)(R1+R2+vs)/(R1+R2+v)
In order to perform re-measurement using the calculated sample amount for re-measurement vs or the dilution ratio of the sample for re-measurement, FIG.
As shown in, the control unit 54 that prepares the re-measurement sample according to the calculated re-measurement sample amount vs or the dilution ratio of the re-measurement sample, and performs re-measurement using the prepared re-measurement sample. And an absorbance change calculator 56 for calculating the absorbance change ΔAss / Δt from the result of the calculation, and calculates and outputs the enzyme activity value CR from the calculated absorbance change ΔAss / Δt according to the following equation (3). An enzyme activity value calculator 58 is provided. Enzyme activity value CR = {(ΔAss / Δt) − (ΔARB / Δt)} K · Kf (3) Here, Kf is a K value correction coefficient at the time of re-measurement, and is expressed as follows. Kf = (v / vs) (R1 + R2 + vs) / (R1 + R2 + v)

【0015】再測定時の試料量vsは次のように求めら
れる。酵素活性値Cは一般には次の(4)式により算出
される。 C={(ΔAs/Δt)−(ΔARB/Δt)}(V/v・ε・L) (4) V:総反応液量(=試料量+試薬液量) v:試料量 ε:酵素反応における反応指示物質の測定波長における
モル吸光係数 L:測定セルの光路長
The sample amount vs at the time of re-measurement is obtained as follows. The enzyme activity value C is generally calculated by the following equation (4). C = {(ΔAs / Δt) − (ΔARB / Δt)} (V / v · ε · L) (4) V: total reaction solution amount (= sample amount + reagent solution amount) v: sample amount ε: enzyme reaction Molar extinction coefficient at the measurement wavelength of the reaction indicator substance in L

【0016】(4)式にV=(R1+R2+v)を代入する
と、次の(5)式のように変形でき、酵素活性値Cにお
ける再測定のための試料量(vs)を知ることができ
る。ここでは、(4)式中の試料量vをvsで表わす。
By substituting V = (R1 + R2 + v) into the equation (4), it can be modified as the following equation (5), and the amount (vs) of the sample for remeasurement at the enzyme activity value C can be known. Here, the sample amount v in the equation (4) is represented by vs.

【数1】 (Equation 1)

【0017】(5)式中の(ΔAs/Δt)は、レート反
応の定常状態(ほぼ一定の反応速度で反応が進行する状
態)における単位時間(通常は1分間)あたりの吸光度
の変化率であるが、吸光度が下降するレート反応の定常
状態は反応液の吸光度がレート測定限界吸光度AL以上
のときであり、上限値は試薬ブランク液の吸光度ARB
(反応時間tnのときの試薬ブランク液の吸光度をARBn
とする)である。このレート測定用試薬を使用するとき
のレート測定可能な吸光度範囲 (ARBn−AL)を最大
限に活用することとすると、これを(5)式中のΔAs
と置き換えて考えることができる。
(ΔAs / Δt) in the equation (5) is a rate of change in absorbance per unit time (usually 1 minute) in a steady state of the rate reaction (a state in which the reaction proceeds at a substantially constant reaction rate). However, the steady state of the rate reaction in which the absorbance decreases is when the absorbance of the reaction solution is higher than the rate measurement limit absorbance AL, and the upper limit is the absorbance ARB of the reagent blank solution.
(The absorbance of the reagent blank at the reaction time tn
). If the absorbance range (ARBn-AL) at which the rate can be measured when this rate measuring reagent is used is to be used to the utmost, this can be expressed as ΔAs in equation (5).
Can be considered as

【0018】同様に、再測定時のレート測定時間につい
ても、(tn−tm)間を最大限に活用する場合が最も高
精度であるから、(5)式中のΔtに(tn−tm)を代
入して再測定のための試料量vsを計算することができ
る。したがって、(5)式は次(6)式のように変形す
ることができる。
Similarly, for the rate measurement time at the time of re-measurement, since the highest accuracy is obtained when the time between (tn-tm) is utilized to the maximum, Δt in equation (5) is equal to (tn-tm). Can be substituted to calculate the sample amount vs for the remeasurement. Therefore, the expression (5) can be modified as the following expression (6).

【数2】 (Equation 2)

【0019】試薬ブランク液の吸光度変化は反応液の吸
光度変化に比べるとごく僅かであり、ΔARB/Δt=0
として次の(7)式のように表わすことができる。
The change in absorbance of the reagent blank is very small compared to the change in absorbance of the reaction solution, and ΔARB / Δt = 0.
Can be expressed as in the following equation (7).

【数3】 (Equation 3)

【0020】図2の発明の動作は図4のフローチャート
図に示されたように進められる。すなわち、図1の発明
の動作を示す図3のフローチャート図と同様にして酵素
活性値Cが求められた後、(7)式に従って再測定のた
めの試料量vsが計算される。
The operation of the invention of FIG. 2 proceeds as shown in the flow chart of FIG. That is, after the enzyme activity value C is obtained in the same manner as the flowchart of FIG. 3 showing the operation of the invention of FIG. 1, the sample amount vs for the re-measurement is calculated according to the equation (7).

【0021】その算出された試料量vsが分析装置の試
料サンプリング可能な最少試料量(vmin)以上であれ
ば、その試料量で再測定が行なわれる。再測定によるレ
ート測定吸光度Assm〜Assnについて、最小自乗法によ
り吸光度変化量ΔAss/Δtが算出され、それに基づい
て(3)式により酵素活性値CRが算出される。
If the calculated sample amount vs is equal to or more than the minimum sample amount (vmin) at which the sample of the analyzer can be sampled, re-measurement is performed with the sample amount. The absorbance change ΔAss / Δt is calculated by the least squares method for the rate measurement absorbances Assm to Assn by the re-measurement, and the enzyme activity value CR is calculated by the equation (3) based on the change.

【0022】算出された試料量vsが最少試料量vminよ
り小さい場合は、原試料のままではサンプリングができ
ないので、原試料を希釈率(vs/v)で希釈し、その
希釈後の試料を試料量vだけサンプリングして再測定に
供する。このときのサンプリング量はvであるが、原試
料は[vs/v]倍に希釈されているので、原試料換算
では再測定用反応液中の試料量は、vs(=v×(vs/
v))である。
If the calculated sample volume vs is smaller than the minimum sample volume vmin, the original sample cannot be sampled, so the original sample is diluted at a dilution ratio (vs / v), and the diluted sample is sampled. The sample is sampled by the amount v and subjected to re-measurement. The sampling amount at this time is v, but since the original sample is diluted by [vs / v] times, the sample amount in the reaction solution for re-measurement is vs (= v × (vs / v
v)).

【0023】[0023]

【実施例】酵素反応の一例として次に示すLDH(乳酸
脱水素酵素)の活性測定を行なう場合を例にして説明す
る。
EXAMPLE As an example of the enzymatic reaction, a case where the activity of LDH (lactate dehydrogenase) shown below is measured will be described as an example.

【化1】 Embedded image

【0024】図5はレート法によるLDH活性測定の概
略を説明したものである。図5及び図1を参照して第1
の発明の実施例について説明する。酵素反応としてはL
DHの活性測定を取り上げる。試薬ブランク液が測定さ
れてその吸光度ARBf,ARBm〜ARBnと単位時間当たり
の吸光度変化量ΔARB/Δtが求められる。試料反応液
の吸光度Asm〜Asnが測定され、最小自乗法により単位
時間当たりの吸光度変化量ΔAs/Δtが求められる。
そして、測定された試料反応液の吸光度Asm〜Asnにつ
いて上記(1)式に基づいて試料ブランク値を補正した
試料反応液吸光度Asm'〜Asn'が求められる。
FIG. 5 explains the outline of the LDH activity measurement by the rate method. Referring to FIG. 5 and FIG.
An embodiment of the present invention will be described. The enzyme reaction is L
Take the activity measurement of DH. The reagent blank solution is measured, and its absorbances ARBf, ARBm to ARBn and the amount of change in absorbance per unit time ΔARB / Δt are obtained. The absorbances Asm to Asn of the sample reaction solution are measured, and the absorbance change amount ΔAs / Δt per unit time is obtained by the least square method.
Then, based on the measured absorbances Asm to Asn of the sample reaction solution, the sample reaction solution absorbances Asm 'to Asn' obtained by correcting the sample blank values based on the above equation (1) are obtained.

【0025】また、試料ブランク値を補正した試料反応
液吸光度Asm'〜Asn'に対応した修正値Fvm〜Fvnが選
択され、その平均値FvBが算出される。そして、上記の
(2)式により酵素活性値Cが算出されて出力される。
表1は試料反応液の吸光度(反応開始後36秒)と反応
開始後24〜48秒間の単位時間あたりの吸光度変化
(ΔA/Δt)の関係を示したものである。
Further, correction values Fvm to Fvn corresponding to the sample reaction solution absorbances Asm 'to Asn' corrected for the sample blank value are selected, and the average value FvB is calculated. Then, the enzyme activity value C is calculated by the above equation (2) and output.
Table 1 shows the relationship between the absorbance of the sample reaction solution (36 seconds after the start of the reaction) and the change in absorbance per unit time (ΔA / Δt) for 24 to 48 seconds after the start of the reaction.

【表1】 [Table 1]

【0026】吸光度1.2以上の試料反応液では一定の
反応速度が得られたので、これを至適条件と考え、試薬
メーカ指定のレート測定の限界吸光度0.6以上を定常
反応条件、吸光度0.6未満を非定常反応条件とした。
また、これらの相対反応速度、すなわち至適条件での酵
素活性値に対する補正係数Fvを求めた。この補正係数
Fvは吸光度1.2以上の測定値に対しては1.00、吸
光度1.2未満の試料反応液ではFv>1.00となる。
Since a constant reaction rate was obtained with a sample reaction solution having an absorbance of 1.2 or more, this was considered to be the optimum condition. Less than 0.6 was defined as unsteady reaction conditions.
In addition, a correction coefficient Fv for the relative reaction rate, that is, the enzyme activity value under the optimum condition was determined. The correction coefficient Fv is 1.00 for a measured value having an absorbance of 1.2 or more, and Fv> 1.00 for a sample reaction solution having an absorbance of less than 1.2.

【0027】図6はLDH試料反応液の吸光度とLDH
反応速度の関係を示したものであり、表1の結果をプロ
ットしたものである。
FIG. 6 shows the absorbance of the LDH sample reaction solution and the LDH.
It shows the relationship between the reaction rates and plots the results in Table 1.

【0028】表2は図6で作成した関係曲線から表1で
は測定できなかった試料反応液の吸光度についてLDH
反応速度を詳細に読み取って補正係数Fvを求めたもの
である。
Table 2 shows the absorbance of the sample reaction solution which could not be measured in Table 1 from the relation curve prepared in FIG.
The reaction rate is read in detail to determine the correction coefficient Fv.

【表2】 [Table 2]

【0029】表3はLDH高活性(高濃度)試料をNA
DHの濃度の異なるLDH活性測定用試薬(a)〜
(c)を用いて測定した活性値と、そのレート測定時間
内の試料反応液の各吸光度でのFvについての平均修正
値FvBによる補正活性値を示したものである。
Table 3 shows that the LDH high activity (high concentration) samples
LDH activity measuring reagents with different DH concentrations (a)-
FIG. 6 shows the activity value measured using (c) and the corrected activity value based on the average corrected value FvB for Fv at each absorbance of the sample reaction solution within the rate measurement time.

【表3】 [Table 3]

【0030】表4は表3と同じようにして試料〜に
ついて、種々のNADH濃度のLDH活性測定用試薬を
使用した測定活性値と補正活性値を示したものである。
Table 4 shows the measured activity values and the corrected activity values of the samples 1 to 3 in the same manner as in Table 3, using the reagents for measuring the LDH activity at various NADH concentrations.

【表4】 [Table 4]

【0031】図5において、測定ポイントmの吸光度A
sHmは定常反応条件下の値であるが、次の測定ポイント
(m+1)以降の吸光度(x印)は非定常反応液の値と
なっており、これらの値はLDHの活性値を正確には反
映しないので、吸光度変化(ΔAs/Δt)の計算を行
なっても意味がないものとされていた。したがって、従
来はこのような高活性試料については「測定不可」と判
断されて、新たに希釈試料による再測定が実施されてい
た。しかし、本発明ではこのような非定常状態となった
高活性値試料の反応液についても至適反応条件下でのレ
ート測定結果と同等の値を得ることがが可能になる。
In FIG. 5, the absorbance A at the measurement point m is shown.
Although sHm is a value under the steady-state reaction condition, the absorbance (marked by x) after the next measurement point (m + 1) is a value of the non-steady-state reaction solution, and these values accurately determine the activity value of LDH. Since it is not reflected, it has been considered meaningless to calculate the change in absorbance (ΔAs / Δt). Therefore, conventionally, such a highly active sample was determined to be “measurement impossible”, and a re-measurement was newly performed using a diluted sample. However, in the present invention, it is possible to obtain a value equivalent to the rate measurement result under the optimal reaction condition even for the reaction solution of the high activity value sample in the non-steady state.

【0032】図7は第2の発明により、高活性試料の試
料量を少なくして再測定を行なった様子を表わしたもの
である。原高活性試料では測定ポイント(m+1)以降
の吸光度は非定常反応液の吸光度であるが、再測定では
反応液中での試料量を少なくしたことにより定常反応条
件下の吸光度を示す反応時間が長くなり、より正確な酵
素活性値を求めることができるようになる。ここでは、
再測定時の試料量が高活性試料の酵素活性値測定値に基
づいて自動的に算出される点に特徴がある。
FIG. 7 shows a state in which re-measurement is performed with a small amount of a highly active sample according to the second invention. The absorbance after the measurement point (m + 1) in the original high-activity sample is the absorbance of the unsteady reaction solution. However, in the remeasurement, the reaction time showing the absorbance under the steady-state reaction condition is reduced by reducing the sample volume in the reaction solution. It becomes longer, and a more accurate enzyme activity value can be obtained. here,
It is characterized in that the sample amount at the time of re-measurement is automatically calculated based on the measured value of the enzyme activity value of the highly active sample.

【0033】[0033]

【発明の効果】本発明では、多少は劣化した試薬も使用
可能になるため、試薬を有効に利用することができる。
本発明の第1の局面では、酵素活性測定用試料反応液の
吸光度に基づいて酵素活性測定用試料反応液の単位時間
あたりの吸光度変化量を補正するようにしたので、レー
ト測定時間内に定常反応条件から外れるような高活性酵
素試料についてもレート測定値を得ることが可能になる
ため、再検査の頻度を減らすことができ、試薬や試料を
無駄にしない。本発明の第2の局面では、測定した結果
が高濃度試料であるとわかり、より正確な酵素活性値を
求めるための再測定を行なう場合に、再測定時の試料サ
ンプリング量又は希釈率が自動的に算出されるので、再
測定を容易に、かつ適正な試料量で実行できるようにな
る。
According to the present invention, a somewhat deteriorated reagent can be used, so that the reagent can be used effectively.
In the first aspect of the present invention, the amount of change in absorbance per unit time of the sample reaction solution for enzyme activity measurement is corrected based on the absorbance of the sample reaction solution for enzyme activity measurement. Since a rate measurement value can be obtained even for a highly active enzyme sample that deviates from the reaction conditions, the frequency of retests can be reduced, and reagents and samples are not wasted. In the second aspect of the present invention, when the measurement result is found to be a high-concentration sample, and the re-measurement for obtaining a more accurate enzyme activity value is performed, the sample sampling amount or dilution rate at the time of the re-measurement is automatically adjusted. The re-measurement can be performed easily and with an appropriate sample amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明を示すブロック図である。FIG. 1 is a block diagram showing a first invention.

【図2】第2の発明を示すブロック図である。FIG. 2 is a block diagram showing a second invention.

【図3】第1の発明の動作を示すフローチャート図であ
る。
FIG. 3 is a flowchart showing the operation of the first invention.

【図4】第2の発明の動作を示すフローチャート図であ
る。
FIG. 4 is a flowchart showing the operation of the second invention.

【図5】レート法によるLDH活性測定における反応タ
イムコースを示す図である。
FIG. 5 is a diagram showing a reaction time course in LDH activity measurement by a rate method.

【図6】LDH試料反応液の吸光度とLDH反応速度の
関係を示す図である。
FIG. 6 is a diagram showing the relationship between the absorbance of an LDH sample reaction solution and the LDH reaction rate.

【図7】本発明による再測定の反応タイムコースを示す
図である。
FIG. 7 is a diagram showing a reaction time course of remeasurement according to the present invention.

【図8】LDH試薬調製後の測定波長340nmにおけ
る吸光度の経時変化を示す図である。
FIG. 8 is a graph showing a change over time in absorbance at a measurement wavelength of 340 nm after preparation of an LDH reagent.

【符号の説明】[Explanation of symbols]

2,30 修正値記憶部 4,32 修正値選択部 6,36 酵素活性値演算部 18,44 吸光度変化量演算部 34 平均修正値演算部 38 試薬ブランク測定値記憶部 50 レート測定条件記憶部 52 再測定用試料量/希釈率演算部 2,30 Correction value storage unit 4,32 Correction value selection unit 6,36 Enzyme activity value calculation unit 18,44 Absorbance change amount calculation unit 34 Average correction value calculation unit 38 Reagent blank measurement value storage unit 50 Rate measurement condition storage unit 52 Re-measurement sample volume / dilution ratio calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料中の酵素量を恒温条件下で単位時間
あたりの吸光度変化値から求めるレート測定用自動分析
装置において、 試薬ブランク液吸光度を記憶する試薬ブランク測定値記
憶部と、 試料量、試薬量、限界吸光度、終点吸光度及び測定時間
を含むレート測定条件を記憶するレート測定条件記憶部
と、 酵素活性測定用試料反応液のレート測定時間内の吸光度
測定値から単位時間あたりの吸光度変化量を算出する吸
光度変化量演算部と、 酵素活性測定用試料反応液の吸光度から至適反応条件下
での単位時間あたりの吸光度変化量を求めるための修正
値を記憶している修正値記憶部と、 測定した試料反応液の吸光度に対応する修正値を選択す
る修正値選択部と、 その選択された修正値の平均値を算出する平均修正値演
算部と、 吸光度変化量演算部により算出された単位時間あたりの
吸光度変化量測定値を平均修正値演算部により算出され
た平均修正値により補正して酵素活性値を算出する酵素
活性値演算部と、 その算出された酵素活性値、前記試薬ブランク測定値記
憶部に記憶されている試薬ブランク測定値、及び前記レ
ート測定条件記憶部に記憶されているレート測定条件を
用いて再測定用の試料量又は再測定用試料の希釈率を算
出する再測定用試料量/希釈率演算部と、を備えたこと
を特徴とする自動分析装置。
1. An automatic analyzer for rate measurement for determining an amount of an enzyme in a sample from a change in absorbance per unit time under a constant temperature condition, comprising: a reagent blank measured value storage section for storing a reagent blank solution absorbance; A rate measurement condition storage unit that stores the rate measurement conditions including the reagent amount, the limit absorbance, the end point absorbance, and the measurement time, and the absorbance change per unit time from the absorbance measurement value within the rate measurement time of the sample reaction solution for enzyme activity measurement And a correction value storage unit that stores a correction value for obtaining an amount of change in absorbance per unit time under optimal reaction conditions from the absorbance of the sample reaction solution for enzyme activity measurement. A correction value selection unit that selects a correction value corresponding to the measured absorbance of the sample reaction solution; an average correction value calculation unit that calculates an average value of the selected correction values; An enzyme activity value calculation unit that calculates an enzyme activity value by correcting the measured absorbance change amount per unit time calculated by the amount calculation unit with the average correction value calculated by the average correction value calculation unit; Using the enzyme activity value, the reagent blank measurement value stored in the reagent blank measurement value storage unit, and the rate measurement condition stored in the rate measurement condition storage unit, the sample amount for remeasurement or the sample for remeasurement An automatic analyzer comprising: a remeasurement sample amount / dilution ratio calculation unit for calculating a dilution ratio of the sample.
JP9028495A 1997-01-27 1997-01-27 Automatic analyzer for enzyme activation measuring Pending JPH10213546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9028495A JPH10213546A (en) 1997-01-27 1997-01-27 Automatic analyzer for enzyme activation measuring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9028495A JPH10213546A (en) 1997-01-27 1997-01-27 Automatic analyzer for enzyme activation measuring

Publications (1)

Publication Number Publication Date
JPH10213546A true JPH10213546A (en) 1998-08-11

Family

ID=12250263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9028495A Pending JPH10213546A (en) 1997-01-27 1997-01-27 Automatic analyzer for enzyme activation measuring

Country Status (1)

Country Link
JP (1) JPH10213546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312924A1 (en) * 2000-07-24 2003-05-21 ARKRAY, Inc. Measurement instrument, reagent carrier used for the same, information recorded medium, measurement data correcting method, and program recorded medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312924A1 (en) * 2000-07-24 2003-05-21 ARKRAY, Inc. Measurement instrument, reagent carrier used for the same, information recorded medium, measurement data correcting method, and program recorded medium
EP1312924A4 (en) * 2000-07-24 2007-04-11 Arkray Inc Measurement instrument, reagent carrier used for the same, information recorded medium, measurement data correcting method, and program recorded medium
US7267802B2 (en) 2000-07-24 2007-09-11 Arkray, Inc. Measurement instrument, reagent carrier used for the same, information recorded medium, measurement data correcting method, and program recorded medium

Similar Documents

Publication Publication Date Title
US20050107956A1 (en) Concentration measuring method
EP2431731B1 (en) Automatic analysis device
Kristiansen Description of a generally applicable model for the evaluation of uncertainty of measurement in clinical chemistry
EP2936155A1 (en) Method for analyzing a sample of a body fluid
Varela et al. Comprehensive evaluation of the internal and external quality control to redefine analytical quality goals
Peng et al. Practical application of Westgard Sigma rules with run size in analytical biochemistry processes in clinical settings
Aloisio et al. Random uncertainty of photometric determination of hemolysis index on the Abbott Architect c16000 platform
JPH10213546A (en) Automatic analyzer for enzyme activation measuring
Kristiansen et al. Uncertainty of atomic absorption spectrometry: application to the determination of lead in blood
US8725427B2 (en) Method and apparatus for estimating features of target materials by using kinetic change information
JP3206999B2 (en) Method for detecting sample dilution error and apparatus for detecting sample dilution error using the same
Almeida et al. Optimized conditions and analytical performance for the determination of Cu in serum and urine samples using a single GFAAS procedure
JPH09184845A (en) Automatic analyzing apparatus for measurement of enzyme activity
JPH10104162A (en) Measurement of enzyme activity
JP2732448B2 (en) Automatic rate analysis
Patke et al. A comparative analytical quality evaluation study between two methods for blood urea nitrogen estimation
JPH09292387A (en) Method and apparatus for measuring amount of component to be measured
JPS6073465A (en) Automatic analysis device
JPH06249856A (en) Measurement of automatic biochemical analyzing device
JPS62167446A (en) Rate analytical method
Han et al. Sigma Metrics used to Evaluate the Performance of Internal Quality Control in a Clinical Biochemistry Laboratory.
JPH08220049A (en) Method and device for measuring electrolyte
JPH04249744A (en) Automatic apparatus for biochemical analysis
JP2646731B2 (en) Biochemical analysis method
CN117309976A (en) Method for measuring fluorine content by using fluorine ion selective electrode method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601