Nothing Special   »   [go: up one dir, main page]

JPH10201130A - Power generation installation making use of solar energy - Google Patents

Power generation installation making use of solar energy

Info

Publication number
JPH10201130A
JPH10201130A JP8351112A JP35111296A JPH10201130A JP H10201130 A JPH10201130 A JP H10201130A JP 8351112 A JP8351112 A JP 8351112A JP 35111296 A JP35111296 A JP 35111296A JP H10201130 A JPH10201130 A JP H10201130A
Authority
JP
Japan
Prior art keywords
power
solar cell
storage battery
current
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8351112A
Other languages
Japanese (ja)
Inventor
Takayuki Ohashi
孝之 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP8351112A priority Critical patent/JPH10201130A/en
Publication of JPH10201130A publication Critical patent/JPH10201130A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation installation, making use of solar energy, in which the generated electric power of a solar cell can be utilized effectively by a method wherein the surplus generated electric power of the solar cell is linked to a power system even during the recovery charging operation of a storage battery. SOLUTION: When a power system is returned from a power failure, a storage-battery switch 9 is closed, a storage battery 10 is connected in parallel with a solar cell 7, and a recovery charging operation is performed. At this time, when an output current detected by a solar-cell-output-current detector 11 is larger than a charging current, a bidirectional inverter 8 performs an inverter operation, and the surplus generated electric power of the solar cell 7 is converted into an alternating current so as to be linked to electric power from the power system. In addition, when the output current is smaller than the charging current, the bidirectional inverter 8 performs a charging operation, and electric power supplied from the power system is converted into a direct current so as to be supplied to the storage battery 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正常時は太陽電
池を電力系統と連系させて構内の負荷に電力を供給し、
停電時には太陽電池と蓄電池からの電力を構内の負荷に
供給する太陽光エネルギー活用発電設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of connecting a solar cell to a power system to supply electric power to a load on a premises in a normal state.
The present invention relates to a solar power generation facility that supplies power from a solar cell and a storage battery to a load in a premises during a power outage.

【0002】[0002]

【従来の技術】太陽電池を電力系統と連系させて構内の
負荷に電力を供給する太陽光エネルギー活用発電設備が
近年の省エネルギー化等の要請に応えて広く利用される
ようになって来ている。太陽電池が発電した電力は、イ
ンバータによって交流に変換され、電力系統から供給さ
れる電力と連系される。このような太陽光エネルギー活
用発電設備は、十分な日射量が得られる昼間には、太陽
電池の発電電力が大きくなるので、電力系統から供給さ
れる電力を減少させることができる。また、この太陽光
エネルギー活用発電設備は、太陽電池の発電電力が十分
に大きいときに、構内で消費しきれない余剰電力を電力
系統に返すようにする場合がある。
2. Description of the Related Art Solar power generation equipment utilizing solar energy for supplying power to a load on a premises by linking a solar cell with a power system has been widely used in response to recent demands for energy saving and the like. I have. The power generated by the solar cell is converted into AC by an inverter, and is linked to the power supplied from the power system. In such a solar energy utilizing power generation facility, in the daytime when a sufficient amount of solar radiation can be obtained, the power generated by the solar cell increases, so that the power supplied from the power system can be reduced. In addition, when the power generated by the solar cell is sufficiently large, the power generation equipment utilizing solar energy may return surplus power that cannot be consumed in the premises to the power system.

【0003】上記太陽光エネルギー活用発電設備は、電
力系統の停電時のバックアップのために蓄電池を設ける
ことがある。即ち、電力系統の正常時には、太陽電池を
電力系統と連系させて構内の負荷に電力を供給するが、
電力系統の停電時には、この蓄電池を太陽電池に並列に
接続し、これら蓄電池と太陽電池からの電力をインバー
タによって交流に変換して構内の負荷に供給する。
[0003] The above-described solar power generation equipment utilizing solar energy may be provided with a storage battery for backup in case of a power outage of a power system. That is, when the power system is normal, the solar cell is connected to the power system to supply power to the load on the premises,
When a power outage occurs in the power system, the storage batteries are connected in parallel to the solar cells, and the power from the storage batteries and the solar cells is converted into alternating current by an inverter and supplied to a load on the premises.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の太陽
光エネルギー活用発電設備は、電力系統が停電から復帰
した場合に、インバータの動作を停止させて、太陽電池
の発電電力を蓄電池に供給することにより、この蓄電池
の回復充電を行っていた。また、インバータを双方向イ
ンバータとすることにより、夜間等のように太陽電池が
発電を行わない場合には、この双方向インバータによっ
て電力系統からの電力を直流に変換し蓄電池に供給して
回復充電を行うこともあった。
However, conventional solar power generation equipment utilizing solar energy is designed to stop the operation of the inverter and supply the power generated by the solar cell to the storage battery when the power system returns from the power failure. As a result, the storage battery was recovered and charged. In addition, when the inverter is a bidirectional inverter, when the solar battery does not generate power, such as at night, the bidirectional inverter converts the power from the power system into direct current and supplies it to the storage battery to recover and charge the battery. We sometimes did.

【0005】このため、従来は、蓄電池の回復充電中に
構内の負荷が電力系統のみから電力の供給を受けるの
で、太陽電池の発電電力が十分に大きいときであって
も、この発電電力を有効に活用することができないとい
う問題があった。
Conventionally, the load in the premises is supplied with power only from the power system during the recovery and charging of the storage battery. Therefore, even when the power generated by the solar cell is sufficiently large, the generated power is effectively used. There was a problem that it could not be used for

【0006】本発明は、かかる事情に鑑みてなされたも
のであり、蓄電池の回復充電中にも太陽電池の余剰発電
電力を電力系統と連系させることにより、この太陽電池
の発電電力を有効に活用することができる太陽光エネル
ギー活用発電設備を提供することを目的としている。
[0006] The present invention has been made in view of such circumstances, and by linking surplus generated power of a solar cell to a power system during recovery charging of a storage battery, the generated power of the solar cell can be effectively used. The purpose is to provide solar power generation facilities that can be used.

【0007】[0007]

【課題を解決するための手段】即ち、本発明は、上記課
題を解決するために、電力系統の正常時には、太陽電池
で発電し双方向インバータによって交流に変換される電
力と電力系統から供給される電力とを連系させて構内の
負荷に供給し、電力系統の停電時には、蓄電池を太陽電
池に並列に接続し、この蓄電池の放電電力と太陽電池の
発電電力を双方向インバータによって交流に変換し構内
の負荷に供給する太陽光エネルギー活用発電設備におい
て、太陽電池の出力電流を検出する太陽電池出力電流検
出手段と、蓄電池に流れる電流を検出する蓄電池電流検
出手段と、電力系統が停電から復帰した場合に、この蓄
電池を太陽電池に並列に接続して回復充電を行うと共
に、太陽電池出力電流検出手段で検出された出力電流が
蓄電池電流検出手段で検出された充電電流よりも大きい
ときに、太陽電池の発電電力を交流に変換するインバー
タ動作を双方向インバータに行わせ、この出力電流が充
電電流よりも小さいときに、電力系統から供給される電
力を直流に変換して蓄電池に供給する充電動作を双方向
インバータに行わせる蓄電池充電制御手段とが設けられ
たことを特徴とする。
That is, in order to solve the above-mentioned problems, the present invention provides a method in which, when a power system is normal, power is generated from a solar cell and converted from a bidirectional inverter into alternating current and supplied from the power system. Power to the load on the premises, and in the event of a power outage, a storage battery is connected in parallel with the solar cell, and the discharge power of the storage battery and the power generated by the solar cell are converted to alternating current by a bidirectional inverter. In solar power generation equipment that uses solar energy to supply loads on the premises, a solar cell output current detecting means for detecting the output current of the solar cell, a battery current detecting means for detecting the current flowing to the storage battery, and the power system recovers from the power failure. In this case, the storage battery is connected in parallel to the solar cell to perform recovery charging, and the output current detected by the solar cell output current detection means is used for the storage battery current detection means. When the detected charging current is larger than the detected charging current, the bidirectional inverter performs an inverter operation for converting the generated power of the solar cell into AC, and when the output current is smaller than the charging current, the electric power supplied from the power system. And a storage battery charge control means for causing the bidirectional inverter to perform a charging operation of converting the DC to DC and supplying the converted DC to the storage battery.

【0008】上記手段によれば、太陽電池の発電電力が
十分に大きく、蓄電池に充電電流を供給してもまだ太陽
電池の出力電流に余裕がある場合に、蓄電池充電制御手
段が双方向インバータにインバータ動作を行わせるの
で、この太陽電池の余剰発電電力を電力系統と連系させ
て構内の負荷に供給することができ、蓄電池の回復充電
中にも太陽電池の発電電力を有効に活用することができ
る。なお、太陽電池の発電電力が小さく蓄電池を十分に
充電することができない場合には、蓄電池充電制御手段
が従来と同様に双方向インバータに充電動作を行わせ、
電力系統からの電力を直流に変換して蓄電池に供給する
ことにより充電電流の不足分を補うことができる。
According to the above means, when the power generated by the solar cell is sufficiently large and the output current of the solar cell still has a margin even if the charging current is supplied to the storage battery, the storage battery charge control means controls the bidirectional inverter. Since the inverter is operated, the surplus generated power of the solar cell can be connected to the power system and supplied to the load on the premises, and the generated power of the solar cell can be effectively used even during the recovery charging of the storage battery. Can be. If the power generated by the solar cell is too small to sufficiently charge the storage battery, the storage battery charging control unit causes the bidirectional inverter to perform a charging operation as in the related art,
By converting the power from the power system into direct current and supplying it to the storage battery, the shortage of the charging current can be compensated.

【0009】[0009]

【発明の実施の形態】以下、この発明の具体的実施の形
態について図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

【0010】図1はこの発明の一実施形態を示すもので
あって、太陽光エネルギー活用発電設備の構成を示すブ
ロック図である。
FIG. 1 shows one embodiment of the present invention, and is a block diagram showing a configuration of a solar power generation facility.

【0011】本実施形態の太陽光エネルギー活用発電設
備の構成例を図1に示す。電力系統の電力は、受電点1
から供給されるようになっている。受電点1は、高圧遮
断器2と変圧器3を介して構内の低圧母線4に接続され
る。変圧器3は、電力系統の高電圧と低圧母線4の低電
圧との間の電圧変換を行うものである。低圧母線4に
は、構内の低圧負荷5,5が開閉器6,6を介して接続
されている。これらの低圧負荷5,5は、構内の各種の
負荷を代表して示したものである。
FIG. 1 shows an example of the configuration of the power generation equipment utilizing solar energy according to this embodiment. The power of the power system is
It is supplied from. The receiving point 1 is connected to a low-voltage bus 4 on the premises via a high-voltage circuit breaker 2 and a transformer 3. The transformer 3 performs voltage conversion between a high voltage of the power system and a low voltage of the low-voltage bus 4. The low-voltage buses 4 are connected to low-voltage loads 5 and 5 in the premises via switches 6 and 6. These low-pressure loads 5 and 5 are representative of various loads in the premises.

【0012】この構内施設の屋外や屋上等には、太陽電
池7が設置されている。太陽電池7は、日射量に応じて
直流電力を発電する半導体素子を多数配置したものであ
る。この太陽電池7の出力は双方向インバータ8の直流
入出力端子に接続され、この双方向インバータ8の交流
入出力端子が上記低圧母線4に接続されている。また、
この双方向インバータ8の直流入出力端子には、蓄電池
開閉器9を介して蓄電池10が接続されている。
A solar cell 7 is installed outdoors or on the roof of the facility. The solar cell 7 has a large number of semiconductor elements that generate DC power in accordance with the amount of solar radiation. The output of the solar cell 7 is connected to a DC input / output terminal of a bidirectional inverter 8, and the AC input / output terminal of the bidirectional inverter 8 is connected to the low-voltage bus 4. Also,
A storage battery 10 is connected to a DC input / output terminal of the bidirectional inverter 8 via a storage battery switch 9.

【0013】双方向インバータ8は、太陽電池7が発電
した直流電力や蓄電池10が放電した直流電力を交流電
力に変換して、低圧母線4を介し低圧負荷5,5に供給
したり、受電点1を介し電力系統に供給するインバータ
動作を行うと共に、受電点1を介し電力系統から供給さ
れる交流電力を直流電力に変換して蓄電池10を充電す
る充電動作を行うものである。また、太陽電池7の出力
配電線には、この太陽電池7の出力電流を検出する太陽
電池出力電流検出器11が取り付けられ、蓄電池10と
蓄電池開閉器9との間の配電線には、蓄電池電流検出器
12が取り付けられている。そして、この双方向インバ
ータ8は、これら太陽電池出力電流検出器11が検出し
た出力電流と蓄電池電流検出器12が検出した充電電流
をモニタして、インバータ動作と充電動作の制御を行う
ようになっている。
The bidirectional inverter 8 converts the DC power generated by the solar cell 7 or the DC power discharged by the storage battery 10 into AC power and supplies the AC power to the low-voltage loads 5 and 5 via the low-voltage bus 4, In addition to performing an inverter operation for supplying power to the power system via the power receiving point 1, a charging operation for converting the AC power supplied from the power system via the power receiving point 1 to DC power and charging the storage battery 10 is performed. A solar cell output current detector 11 for detecting an output current of the solar cell 7 is attached to an output distribution line of the solar cell 7, and a distribution line between the storage battery 10 and the storage battery switch 9 includes a storage battery. A current detector 12 is attached. The bidirectional inverter 8 monitors the output current detected by the solar cell output current detector 11 and the charging current detected by the storage battery current detector 12, and controls the inverter operation and the charging operation. ing.

【0014】上記太陽光エネルギー活用発電設備の動作
を説明する。電力系統の正常時には、通常は蓄電池開閉
器9を開いて蓄電池10を切り離す。そして、双方向イ
ンバータ8がインバータ動作を行って太陽電池7の発電
電力を交流に変換し、この発電電力を電力系統から受電
点1を介して供給される電力と連系させて、構内の低圧
負荷5,5に供給する。従って、日射量が多い昼間に
は、太陽電池7の発電電力が十分に大きくなるので、電
力系統から供給される電力の消費量を抑制して省エネル
ギー化に貢献すると共に、このように昼間の電力消費量
を抑制することによりこの電力消費量の平準化を図るこ
とができる。しかも、太陽電池7の発電電力が低圧負荷
5,5の消費電力よりも大きい場合には、この余剰電力
を受電点1を介して逆に電力系統に供給することもでき
る。
The operation of the above-described solar power generation equipment will be described. When the power system is normal, the storage battery switch 9 is normally opened to disconnect the storage battery 10. Then, the bidirectional inverter 8 performs an inverter operation to convert the generated power of the solar cell 7 into an alternating current, and connects the generated power to the power supplied from the power system via the power receiving point 1 to reduce the low voltage in the premises. Supply to loads 5,5. Therefore, during the daytime when the amount of solar radiation is large, the power generated by the solar cell 7 becomes sufficiently large, so that the amount of power supplied from the power system is suppressed, thereby contributing to energy saving. By suppressing the power consumption, the power consumption can be leveled. Moreover, when the generated power of the solar cell 7 is larger than the power consumption of the low-voltage loads 5 and 5, the surplus power can be supplied to the power system via the power receiving point 1 in reverse.

【0015】電力系統の停電時には、蓄電池開閉器9を
閉じて蓄電池10を太陽電池7に並列に接続し、この蓄
電池10を放電させる。そして、双方向インバータ8が
インバータ動作を行ってこの蓄電池10の放電電力と太
陽電池7の発電電力を交流に変換し、構内の低圧負荷
5,5に供給する。従って、停電時には、太陽電池7だ
けでなく蓄電池10によるバックアップも行われるの
で、太陽電池7の発電電力が不足する場合にも、蓄電池
10から低圧負荷5,5に電力を供給することができ
る。
When a power failure occurs in the power system, the storage battery switch 9 is closed, the storage battery 10 is connected in parallel with the solar battery 7, and the storage battery 10 is discharged. Then, the bidirectional inverter 8 performs an inverter operation to convert the discharged power of the storage battery 10 and the generated power of the solar cell 7 into AC, and supplies them to the low-voltage loads 5 and 5 in the premises. Therefore, at the time of a power failure, backup is performed not only by the solar cell 7 but also by the storage battery 10, so that power can be supplied from the storage battery 10 to the low-voltage loads 5 and 5 even when the power generated by the solar cell 7 is insufficient.

【0016】電力系統が停電から復帰した場合には、蓄
電池開閉器9を閉じて蓄電池10を太陽電池7に並列に
接続した状態で、この蓄電池10の回復充電を行う。こ
の際、太陽電池出力電流検出器11で検出された出力電
流が蓄電池電流検出器12で検出された充電電流よりも
大きい場合には、双方向インバータ8がインバータ動作
を行う。このため、太陽電池7の発電電力は、一部が蓄
電池10に供給されて回復充電が行われると共に、その
余剰電力が双方向インバータ8で交流に変換されて、電
力系統の正常時と同様に、この電力系統との連系運転が
行われる。また、太陽電池出力電流検出器11で検出さ
れた出力電流が蓄電池電流検出器12で検出された充電
電流よりも小さい場合には、双方向インバータ8が充電
動作を行う。このため、蓄電池10には、太陽電池7の
発電電力が供給されると共に、その不足分が双方向イン
バータ8を介して電力系統から供給され、これらの電力
によって回復充電が行われる。そして、この回復充電に
より太陽電池7が満充電になると、蓄電池開閉器9を開
いて蓄電池10を切り離し、通常の電力系統の正常時の
動作に移行する。
When the power system returns from the power failure, the storage battery switch 9 is closed and the storage battery 10 is connected in parallel with the solar cell 7 to perform recovery charging of the storage battery 10. At this time, if the output current detected by the solar cell output current detector 11 is larger than the charging current detected by the storage battery current detector 12, the bidirectional inverter 8 performs an inverter operation. For this reason, a part of the power generated by the solar cell 7 is supplied to the storage battery 10 to perform recovery charging, and the surplus power is converted into AC by the bidirectional inverter 8, as in the normal state of the power system. The interconnection operation with the power system is performed. When the output current detected by the solar cell output current detector 11 is smaller than the charging current detected by the storage battery current detector 12, the bidirectional inverter 8 performs a charging operation. For this reason, the storage battery 10 is supplied with the power generated by the solar cell 7 and the shortage is supplied from the power system via the bidirectional inverter 8, and the recovery charging is performed by the power. Then, when the solar battery 7 is fully charged by this recovery charging, the storage battery switch 9 is opened to disconnect the storage battery 10, and the operation shifts to a normal operation of the normal power system.

【0017】以上説明したように、本実施形態の太陽光
エネルギー活用発電設備によれば、電力系統が停電から
復帰した場合に、太陽電池7の発電電力の大きさに応じ
て、この発電電力と電力系統からの電力により、蓄電池
10の回復充電を効率的に行うことができる。しかも、
太陽電池7の発電電力が十分に大きい場合には、余剰発
電電力を電力系統と連系させて構内の低圧負荷5,5に
供給することができるので、蓄電池10の回復充電中に
も電力系統から供給される電力消費量を抑制して、太陽
電池7の発電電力を有効に活用することができるように
なる。
As described above, according to the solar power generation equipment of the present embodiment, when the power system returns from the power failure, the generated power and the power generated by the solar cell 7 are changed according to the magnitude of the generated power. With the electric power from the power system, the recovery charging of the storage battery 10 can be performed efficiently. Moreover,
When the generated power of the solar cell 7 is sufficiently large, the surplus generated power can be connected to the power system and supplied to the low-voltage loads 5 and 5 on the premises. The power consumption supplied from the solar cell 7 can be suppressed, and the power generated by the solar cell 7 can be used effectively.

【0018】[0018]

【発明の効果】以上の説明から明らかなように、本発明
の太陽光エネルギー活用発電設備によれば、電力系統が
停電から復帰した場合に、太陽電池の発電電力と電力系
統からの電力を利用して、蓄電池の回復充電を効率的に
行うことができる。しかも、太陽電池の発電電力に余裕
がある場合には、この余剰発電電力により電力系統との
連系運転を行うことができるので、蓄電池の回復充電中
にも太陽電池の発電電力を有効に活用することができ
る。
As is apparent from the above description, according to the solar power generation equipment of the present invention, when the power system recovers from a power failure, the power generated by the solar cell and the power from the power system are used. Thus, the recovery charging of the storage battery can be performed efficiently. In addition, when there is enough power generated by the solar cells, the surplus generated power can be used to operate the power system, so that the power generated by the solar cells can be used effectively even during recovery charging of the storage battery. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態を示すものであって、太
陽光エネルギー活用発電設備の構成を示すブロック図で
ある。
FIG. 1, showing an embodiment of the present invention, is a block diagram illustrating a configuration of a power generation facility utilizing solar energy.

【符号の説明】 1 電力系統の受電点 5 低圧負荷 7 太陽電池 8 双方向インバータ 9 蓄電池開閉器 10 蓄電池 11 太陽電池出力電流検出器 12 蓄電池電流検出器[Description of Signs] 1 Power receiving point of power system 5 Low voltage load 7 Solar cell 8 Bidirectional inverter 9 Battery switch 10 Battery 11 Solar cell output current detector 12 Battery current detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の正常時には、太陽電池で発電
し双方向インバータによって交流に変換される電力と電
力系統から供給される電力とを連系させて構内の負荷に
供給し、電力系統の停電時には、蓄電池を太陽電池に並
列に接続し、この蓄電池の放電電力と太陽電池の発電電
力を双方向インバータによって交流に変換し構内の負荷
に供給する太陽光エネルギー活用発電設備において、 太陽電池の出力電流を検出する太陽電池出力電流検出手
段と、 蓄電池に流れる電流を検出する蓄電池電流検出手段と、 電力系統が停電から復帰した場合に、この蓄電池を太陽
電池に並列に接続して回復充電を行うと共に、太陽電池
出力電流検出手段で検出された出力電流が蓄電池電流検
出手段で検出された充電電流よりも大きいときに、太陽
電池の発電電力を交流に変換するインバータ動作を双方
向インバータに行わせ、この出力電流が充電電流よりも
小さいときに、電力系統から供給される電力を直流に変
換して蓄電池に供給する充電動作を双方向インバータに
行わせる蓄電池充電制御手段とが設けられたことを特徴
とする太陽光エネルギー活用発電設備。
When the power system is normal, power generated by a solar cell and converted into AC by a bidirectional inverter and power supplied from the power system are interconnected and supplied to a load in the premises, and In the event of a power outage, a storage battery is connected in parallel with the solar cell, and the solar cell power generation equipment that uses the bidirectional inverter to convert the discharge power of the storage battery and the power generated by the solar cell into AC and supplies it to the load on the premises. A solar cell output current detecting means for detecting an output current, a battery current detecting means for detecting a current flowing in the storage battery, and when the power system returns from a power failure, the storage battery is connected in parallel to the solar battery to perform recovery charging. When the output current detected by the solar cell output current detecting means is larger than the charging current detected by the storage battery current detecting means, When the output current is smaller than the charging current, the bidirectional inverter performs the inverter operation to convert the power into AC, and when the output current is smaller than the charging current, performs bidirectional charging operation to convert the power supplied from the power system to DC and supply it to the storage battery. A power generation facility utilizing solar energy, comprising: a storage battery charging control means for causing an inverter to perform the operation.
JP8351112A 1996-12-27 1996-12-27 Power generation installation making use of solar energy Pending JPH10201130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8351112A JPH10201130A (en) 1996-12-27 1996-12-27 Power generation installation making use of solar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8351112A JPH10201130A (en) 1996-12-27 1996-12-27 Power generation installation making use of solar energy

Publications (1)

Publication Number Publication Date
JPH10201130A true JPH10201130A (en) 1998-07-31

Family

ID=18415136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8351112A Pending JPH10201130A (en) 1996-12-27 1996-12-27 Power generation installation making use of solar energy

Country Status (1)

Country Link
JP (1) JPH10201130A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078240A (en) * 2000-08-31 2002-03-15 Tokyo Gas Co Ltd Power supply
JP2011135763A (en) * 2009-12-23 2011-07-07 Samsung Sdi Co Ltd Energy storage system and method of controlling the same
JP2012222973A (en) * 2011-04-11 2012-11-12 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply system
CN103607034A (en) * 2013-11-13 2014-02-26 中国能源建设集团广东省电力设计研究院 Intensive light-storage thermal-cold system
WO2014179360A1 (en) * 2013-04-29 2014-11-06 Ideal Power, Inc. Systems and methods for uninterruptible power supplies with generators

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078240A (en) * 2000-08-31 2002-03-15 Tokyo Gas Co Ltd Power supply
JP2011135763A (en) * 2009-12-23 2011-07-07 Samsung Sdi Co Ltd Energy storage system and method of controlling the same
EP2339714A3 (en) * 2009-12-23 2013-08-07 Samsung SDI Co., Ltd. Energy storage system and method of controlling the same
JP2012222973A (en) * 2011-04-11 2012-11-12 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply system
WO2014179360A1 (en) * 2013-04-29 2014-11-06 Ideal Power, Inc. Systems and methods for uninterruptible power supplies with generators
CN103607034A (en) * 2013-11-13 2014-02-26 中国能源建设集团广东省电力设计研究院 Intensive light-storage thermal-cold system

Similar Documents

Publication Publication Date Title
JP3147257B2 (en) Grid-connected power system
CN100349356C (en) Independent electric power supply
EP3087655B1 (en) Power supply system
JP2001008383A (en) Photovoltaic power generating set
JP2002315197A (en) Hybrid power supply system and its operation method
GB2502190A (en) Photovoltaic panels and batteries providing multiple redundancies for uninterruptible power
JP3469678B2 (en) DC power supply system
JPH10201129A (en) Power generation installation making use of solar energy
JP2000102196A (en) Uninterruptible power supply
CN113285518A (en) DC power supply system
JP2004104851A (en) Linkage system provided with generator-linkage function
JP3820757B2 (en) Distributed power equipment
JP6599700B2 (en) Grid interconnection device
JP2002354679A (en) Power conversion device, and power supply system using it
JPH09163626A (en) Sunlight generator
JP2005027430A (en) Power conversion system
JPH10201130A (en) Power generation installation making use of solar energy
JPH0965582A (en) Power supply system utilizing solar cell
JPH11332125A (en) Residential home power supply system
JPH0946912A (en) Distributed power unit
JP2002315231A (en) Uninterruptible power source equipment
JP2003116224A (en) Photovoltaic generation system, power converter thereof, and control method therefor
CN212323743U (en) Organic Rankine cycle power generation, charging and discharging energy storage integrated system
JPH0946926A (en) Distributed power unit
CN211405501U (en) Hybrid power supply system for grid connection and off-grid