Nothing Special   »   [go: up one dir, main page]

JPH10208777A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH10208777A
JPH10208777A JP9008362A JP836297A JPH10208777A JP H10208777 A JPH10208777 A JP H10208777A JP 9008362 A JP9008362 A JP 9008362A JP 836297 A JP836297 A JP 836297A JP H10208777 A JPH10208777 A JP H10208777A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
secondary battery
lithium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9008362A
Other languages
Japanese (ja)
Inventor
Koji Hosokawa
興二 細川
Naoyuki Kato
尚之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9008362A priority Critical patent/JPH10208777A/en
Publication of JPH10208777A publication Critical patent/JPH10208777A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery retaining the strength of a battery container and high weight energy density. SOLUTION: In a non-aqueous electrolyte secondary battery constituted of a cathode comprising a lithium-containing compound, an anode comprising a material which can be doped and dedoped with lithium, and a non-aqueous electrolyte, a plate-like member having a first layer of aluminum 2 or an aluminum alloy and a second layer of a metal which is not alloyed with lithium is produced and a battery container 1 is made of the plate-like member while setting the second layer on the inside. The second layer is made of one of material selected from steel, stainless steel 3, nickel, copper, and titanium. The thickness (a) of the first layer of the plate-like member and the thickness (b) of the second layer are controlled as to have the following relation; 0.25<=a/(a-b)<=0.9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に関し、更に詳しくは非水電解液二次電池の重量エネル
ギー密度および信頼性の向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in weight energy density and reliability of a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年の電子技術の進歩により電子機器の
小型、高性能、ポータブル化が進み、それに伴いこれら
電子機器に使用される電池の高エネルギー密度化の要求
が高まっている。従来、これらの電子機器に使用される
二次電池としてはニッケル・カドミウム電池や鉛電池等
があるが、これらの電池は放電電位が低く、エネルギー
密度の高い電池の要求には十分に応えられていないのが
実情である。
2. Description of the Related Art Recent advances in electronic technology have made electronic devices smaller, higher in performance and more portable, and accordingly, there has been an increasing demand for higher energy density of batteries used in these electronic devices. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries, but these batteries have a low discharge potential and sufficiently meet the demand for batteries with a high energy density. There is no fact.

【0003】最近、リチウム二次電池はこれらの要求を
満たす電池システムとして注目され、盛んに研究が行わ
れている。しかし、金属リチウムやリチウム合金を負極
とするリチウム二次電池はサイクル寿命、急速充電性能
等の問題点が認識されるようになり、実用化に対する大
きな障害となっている。これらの問題点は負極である金
属リチウムの溶解、析出時のデンドライト生成、微細化
に起因するものと考えられ、一部コイン型で実用化され
ているにすぎない。
[0003] Recently, lithium secondary batteries have attracted attention as a battery system that meets these requirements, and are being actively studied. However, lithium secondary batteries using metal lithium or a lithium alloy as a negative electrode have been recognized as having problems such as cycle life and rapid charging performance, and have become a major obstacle to practical use. These problems are considered to be caused by dissolution of metallic lithium as a negative electrode, generation of dendrite at the time of deposition, and miniaturization, and only some of them are practically used as coin type.

【0004】これらの問題を解決するために、炭素質材
料のようなリチウムイオンをドープ且つ脱ドープ可能な
物質を負極とする、リチウムイオン二次電池(非水電解
液二次電池)の研究開発が行われている。このリチウム
イオン二次電池はリチウムが金属状態で存在しないた
め、金属リチウム負極に起因するサイクル劣化等の問題
はなく、正極に酸化還元電位の高いリチウム化合物を用
いることにより、電池の電圧が高くなるため、高エネル
ギー密度を有する特徴を持っている。
In order to solve these problems, research and development of a lithium ion secondary battery (non-aqueous electrolyte secondary battery) using a material capable of doping and undoping lithium ions such as a carbonaceous material as a negative electrode. Has been done. In this lithium ion secondary battery, lithium does not exist in a metal state, so there is no problem such as cycle deterioration caused by the metal lithium negative electrode, and the voltage of the battery is increased by using a lithium compound having a high oxidation-reduction potential for the positive electrode. Therefore, it has the feature of having a high energy density.

【0005】更に、自己放電もニッケル・カドミウム電
池より少なく、これらの特徴を有するため、8m/mV
TR、CDプレーヤ、ラップトップ・コンピュータ、セ
ルラーテレホン等のポータブル用電子機器の電源として
商品化が始まっている。また、電子機器のスペース効率
の観点から、角形、或いは長円形の形状の電池が要求さ
れるようになってきている。
Further, self-discharge is smaller than that of nickel-cadmium batteries, and these characteristics make it possible to reduce the discharge rate to 8 m / mV.
Commercialization has started as a power source for portable electronic devices such as TRs, CD players, laptop computers, and cellular telephones. Further, from the viewpoint of space efficiency of electronic devices, batteries having a rectangular or oval shape have been required.

【0006】しかしながら、角形、或いは長円形の形状
の電池には次のような問題点があった。非水電解液二次
電池の電池容器は耐食性と強度の点からスチールにニッ
ケルメッキを施した材質のもの、或いはステンレス鋼を
一般に使用している。しかし、これらの材料は比重が大
きく、重たいことから電池の重量エネルギー密度は小さ
なものとなっていた。特に、薄い角形電池においては電
池重量の大きな割合を電池容器の重量が占めることにな
り、重量エネルギー密度を一層低減するものであった。
However, rectangular or oblong batteries have the following problems. The battery container of the non-aqueous electrolyte secondary battery is generally made of nickel-plated steel or stainless steel in terms of corrosion resistance and strength. However, these materials have a high specific gravity and are heavy, so that the weight energy density of the battery is small. In particular, in a thin rectangular battery, the weight of the battery container accounts for a large proportion of the battery weight, and the weight energy density is further reduced.

【0007】そこで、特開平6−163025号公報で
提案されているように、アルミニウム等の比重が小さい
材料を電池容器に用いることにより、電池の軽量化を図
ることが検討されてきた。しかしながら、電池を高温で
保存して電界液の分解によりガスが発生して電池内圧が
上昇した場合に、アルミニウムはスチールやステンレス
と比較して強度が小さいため、電池容器が膨れ変形を起
こす虞れがあった。これを防ぐためには電池容器の肉厚
を厚くし、強度を向上させる必要があるが、その結果、
電池容器内の容積が減少することになり、重量エネルギ
ー密度を低下させるという問題があった。
Therefore, as proposed in Japanese Patent Application Laid-Open No. H6-163025, it has been studied to reduce the weight of the battery by using a material having a low specific gravity, such as aluminum, for the battery container. However, when the battery is stored at a high temperature and gas is generated by decomposition of the electrolytic solution to increase the internal pressure of the battery, the battery container may swell and deform because aluminum has a lower strength than steel or stainless steel. was there. In order to prevent this, it is necessary to increase the thickness of the battery container and improve the strength, but as a result,
There is a problem that the volume in the battery container is reduced and the weight energy density is reduced.

【0008】また、特開平4−249072号公報では
アルミニウムクラッド材を、アルミニウム層を電池容器
の内側にして用いることが提案されている。アルミニウ
ムクラッド材を使用しているため、アルミニウムだけの
電池容器よりも強度が大きく、電池内圧が上昇しても電
池容器の変形を小さく抑えることが可能となるが、アル
ミニウム層を電池容器の内側にしているため、従来製造
されていた電池とは極性が逆になり、互換性がなくなる
という問題があった。
Further, Japanese Patent Application Laid-Open No. H4-249072 proposes using an aluminum clad material with an aluminum layer inside a battery container. Since aluminum clad material is used, the strength is higher than a battery container made of only aluminum, and it is possible to suppress the deformation of the battery container even if the internal pressure of the battery rises.However, the aluminum layer is placed inside the battery container. Therefore, there is a problem that the polarity is reversed with respect to a conventionally manufactured battery and compatibility is lost.

【0009】[0009]

【発明が解決しようとする課題】従って本発明の課題
は、リチウム含有化合物を用いた正極と、リチウムをド
ープし、且つ脱ドープ可能な材料を用いた負極と、非水
電解液からなる非水電解液二次電池において、従来の電
池と互換性を有し、重量エネルギー密度が高く、且つ信
頼性と生産性の高い非水電解液二次電池を提供しようと
するものである。
Accordingly, an object of the present invention is to provide a positive electrode using a lithium-containing compound, a negative electrode using a lithium-doped and undoped material, and a non-aqueous electrolyte comprising a non-aqueous electrolyte. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery having compatibility with conventional batteries, high weight energy density, and high reliability and productivity.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、リチウム含有化合物を用いた正極
と、リチウムをドープし、且つ脱ドープ可能な材料を用
いた負極と、非水電解液からなる非水電解液二次電池に
おいて、アルミニウムもしくはアルミニウム合金を第一
の層とし、リチウムと合金を形成しない金属を第二の層
とした板状部材を形成すると共に、前記板状部材の第二
の層を内側にして電池容器を構成する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in consideration of the above-mentioned problems. The present invention provides a positive electrode using a lithium-containing compound, a negative electrode using a lithium-doped and undoped material, and a non-aqueous material. In a non-aqueous electrolyte secondary battery comprising an electrolyte, a plate-like member having aluminum or an aluminum alloy as a first layer and a metal not forming an alloy with lithium as a second layer is formed, and the plate-like member is formed. The battery container is constituted with the second layer of the above as the inside.

【0011】また、前記第二の層はスチール、ステンレ
ス、ニッケル、銅、チタンからなる群の中のいずれか一
種で構成する。
The second layer is made of any one of the group consisting of steel, stainless steel, nickel, copper, and titanium.

【0012】更に、前記板状部材の第一の層の板厚をa
とし、前記第二の層の板厚をbとした場合、0.25≦
a/(a+b)≦0.9の関係を有する板状部材により
電池容器を形成し、これを用いて非水電解液二次電池を
構成して上記課題を解決する。
Further, the plate thickness of the first layer of the plate member is a
When the thickness of the second layer is b, 0.25 ≦
A battery container is formed from a plate-like member having a relationship of a / (a + b) ≦ 0.9, and a non-aqueous electrolyte secondary battery is configured using the battery container to solve the above problem.

【0013】従って、本発明に係わる電池容器は十分な
強度を有すると共に、これを用いた非水電解液二次電池
は電池容器の外側を負極に、一方、内側を正極に構成す
ることができ、したがって従来のものと互換性を保つこ
とができる。
Therefore, the battery container according to the present invention has sufficient strength, and a non-aqueous electrolyte secondary battery using the battery container can be configured such that the outside of the battery container is a negative electrode and the inside is a positive electrode. Therefore, compatibility with the conventional one can be maintained.

【0014】[0014]

【発明の実施の形態】本発明者等はリチウム含有化合物
を用いた正極と、リチウムをドープし、且つ脱ドープ可
能な材料を用いた負極と、非水電解液とからなる非水電
解液二次電池において、アルミニウムもしくはアルミニ
ウム合金を第一の層とし、リチウムと合金を形成しない
金属を第二の層とした板状部材(以下、これを「アルミ
ニウムクラッド材」と記す)を用い、第二の層を内側に
して電池容器を構成することにより、重量エネルギー密
度が大きく、また、従来の電池と互換性のある二次電池
が得られることを見いだした。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have proposed a non-aqueous electrolyte comprising a positive electrode using a lithium-containing compound, a negative electrode using a lithium-doped and undoped material, and a non-aqueous electrolyte. In a secondary battery, a plate-like member (hereinafter, referred to as “aluminum clad material”) having aluminum or an aluminum alloy as a first layer and a metal that does not form an alloy with lithium as a second layer is used. It has been found that by forming a battery container with the above layer inside, a secondary battery having a large weight energy density and being compatible with conventional batteries can be obtained.

【0015】つぎに、本発明の非水電解液二次電池につ
いて図1ないし図3を参照して説明する。図1は本発明
に係わるアルミニウムクラッド材を用いた電池容器の断
面図であり、図2は非水電解液二次電池の第1の実験例
の断面図であり、図3は本発明に係わる電池容器を用い
た非水電解液二次電池の第1〜4の実施例および第2〜
4の実験例の断面図である。
Next, the non-aqueous electrolyte secondary battery of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a battery container using an aluminum clad material according to the present invention, FIG. 2 is a cross-sectional view of a first experimental example of a nonaqueous electrolyte secondary battery, and FIG. Non-aqueous electrolyte secondary batteries using a battery container in the first to fourth embodiments and the second to fourth embodiments
It is sectional drawing of the experiment example of FIG.

【0016】電池容器1は図1に示すように、厚さがa
のアルミニウム2と厚さがbのステンレス3とを層状に
したアルミニウムクラッド材であって、アルミニウム2
を外側に、ステンレス3を内側にして電池容器1を構成
している。
The battery case 1 has a thickness a as shown in FIG.
An aluminum clad material in which aluminum 2 and stainless steel 3 having a thickness b are layered.
Is on the outside and the stainless steel 3 is on the inside to constitute the battery case 1.

【0017】まず、従来の電池容器のアルミニウム板厚
は0.7mmであるが、これと同じ強度を有するアルミ
ニウムクラッド材となるようにアルミニウム2とステン
レス3との板厚の関係を求めた。その結果を表1に示
す。
First, although the aluminum plate thickness of the conventional battery container was 0.7 mm, the relationship between the plate thicknesses of aluminum 2 and stainless steel 3 was determined so as to obtain an aluminum clad material having the same strength. Table 1 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】表1より、アルミニウム2の全板厚に対す
る比率が23%未満になるとステンレス3の重量に対す
る寄与が大きくなり、電池容器1が重くなって重量エネ
ルギー密度の向上は阻まれる。一方、これが92%以上
になると、電池容器1の重量は軽くなるが、全板厚が厚
くなり、電池容器1の内容積が小さくなって、蓄積され
る電気エネルギー量が減少する。
According to Table 1, when the ratio of the aluminum 2 to the total plate thickness is less than 23%, the contribution to the weight of the stainless steel 3 increases, and the battery container 1 becomes heavy, so that an improvement in the weight energy density is prevented. On the other hand, when it is 92% or more, the weight of the battery case 1 is reduced, but the total thickness is increased, the internal volume of the battery case 1 is reduced, and the amount of stored electric energy is reduced.

【0020】従って本発明者等は、これに基づき電池容
器1として用いるアルミニウムクラッド材の構成は、ア
ルミニウム2の板厚をaとし、ステンレス3の板厚をb
とすると、 0.25≦a/(a+b)≦0.90 (1) の関係を満足するものが、電池容器1の強度を確保し、
且つ重量エネルギー密度を大きくする上で効果が大きい
と認識し、その範囲を定めた。
Therefore, the inventors of the present invention have concluded that the configuration of the aluminum cladding material used as the battery container 1 is such that the thickness of the aluminum 2 is a and the thickness of the stainless steel 3 is b.
Then, those satisfying the relationship of 0.25 ≦ a / (a + b) ≦ 0.90 (1) ensure the strength of the battery container 1,
In addition, it was recognized that the effect was large in increasing the weight energy density, and the range was determined.

【0021】尚、電池容器1の内側となる材料は上述し
たステンレス3に限ることなく、リチウムと合金を作ら
ない金属であれば良く、例えばスチール、ニッケル、
銅、チタン等を用いることができる。このとき、アルミ
ニウム2とこれら金属の厚みの関係は、それぞれの材料
の強度に基づいて決定されることは当然である。また、
アルミニウム2を外側にすることにより、電池容器1の
内外において従来と同じ極性が保持され、互換性が得ら
れるものである。
The material inside the battery case 1 is not limited to the stainless steel 3 described above, but may be any metal that does not form an alloy with lithium, such as steel, nickel, or the like.
Copper, titanium, or the like can be used. At this time, the relationship between the aluminum 2 and the thickness of these metals is naturally determined based on the strength of each material. Also,
By setting the aluminum 2 to the outside, the same polarity as in the related art is maintained inside and outside of the battery case 1, and compatibility is obtained.

【0022】つぎに、上述した電池容器1を用いた角形
の非水電解液二次電池の実施例と実験例について図2お
よび図3を参照して説明する。
Next, an embodiment and an experimental example of a rectangular non-aqueous electrolyte secondary battery using the above-mentioned battery container 1 will be described with reference to FIGS. 2 and 3. FIG.

【0023】まず、正極活物質としてリチウムを含有し
た複合酸化物LiX MO2 (Mは一種類以上の遷移金
属)が用いられるが、特にLiCoO2 、LiNi
2 、LiNiY Co1-Y 2 、LiMn2 4 等のリ
チウム複合酸化物が好ましい。これらリチウム複合酸化
物は、例えばリチウム、コバルト、ニッケル、マンガン
の炭酸塩、硝酸塩、酸化物、水酸化物を出発原料として
合成することが可能である。上記出発原料を所定の組成
に応じて計量、混合し、酸素存在雰囲気下600〜10
00℃で焼成してこれを得る。
First, a lithium-containing composite oxide Li X MO 2 (M is one or more kinds of transition metals) is used as a positive electrode active material. In particular, LiCoO 2 , LiNi
Lithium composite oxides such as O 2 , LiNi Y Co 1 -Y O 2 and LiMn 2 O 4 are preferred. These lithium composite oxides can be synthesized using, for example, lithium, cobalt, nickel, and manganese carbonates, nitrates, oxides, and hydroxides as starting materials. The starting materials are weighed and mixed according to a predetermined composition, and the starting materials are mixed in an oxygen-containing atmosphere at 600 to 10%.
This is obtained by firing at 00 ° C.

【0024】一方、負極活物質としては充放電反応に伴
いリチウムをドープ且つ脱ドープ可能な炭素材料を用い
ることができるが、リチウムをドープ且つ脱ドープ可能
なものであれば何れの材料でも良く、2000℃以下の
比較的低い温度で焼成して得られる低結晶性炭素材料
や、結晶化しやすい原料を3000℃近くの高温で処理
した人造黒鉛や、天然黒鉛等の高結晶性炭素材料を用い
る。
On the other hand, as the negative electrode active material, a carbon material capable of doping and undoping lithium with the charge / discharge reaction can be used, and any material capable of doping and undoping lithium can be used. A low-crystalline carbon material obtained by firing at a relatively low temperature of 2000 ° C. or lower, a high-crystalline carbon material such as artificial graphite obtained by treating a material that is easily crystallized at a high temperature of about 3000 ° C., or natural graphite is used.

【0025】例えば、熱分解炭素類、コークス類(ピッ
チコークス、ニードルコークス、石油コークス等)、黒
鉛類、ガラス状炭素類、有機高分子化合物焼成体(フラ
ン樹脂等を適当な温度で焼成し炭素化したもの)、炭素
繊維、活性炭等が使用可能である。
For example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, and organic polymer compound fired products (furan resin, etc.) ), Carbon fiber, activated carbon and the like can be used.

【0026】また、本発明に用いる炭素材料としては、
(002)面の面間隔が0.370nm以上、真比重が
1.70未満であり、且つ空気気流中における示差熱分
析で700℃以上に発熱ピークを有しない低結晶性炭素
材料や、高い負極合剤充填性を得るために、真比重が
2.10以上である高結晶性の黒鉛材料を用いることが
好ましい。
The carbon material used in the present invention includes:
A low-crystalline carbon material having a (002) plane spacing of at least 0.370 nm, a true specific gravity of less than 1.70, and having no exothermic peak at 700 ° C. or more in differential thermal analysis in an air stream; In order to obtain the mixture filling property, it is preferable to use a highly crystalline graphite material having a true specific gravity of 2.10.

【0027】更に、低結晶性炭素材料や高結晶性黒鉛材
料を単独で用いるだけでなく、黒鉛材料と結晶性の低い
炭素質材料との共存体とすることも可能である。共存体
における低結晶性炭素材料の割合は、負極炭素共存体全
重量に対して10%から90%に限定され、20%から
80%であることがより好ましい。
Furthermore, not only a low-crystalline carbon material and a high-crystalline graphite material can be used alone, but also a coexistence of a graphite material and a low-crystalline carbonaceous material can be used. The proportion of the low crystalline carbon material in the coexisting body is limited to 10% to 90%, more preferably 20% to 80%, based on the total weight of the negative electrode carbon coexisting body.

【0028】電解液としてはリチウム塩を支持電解質と
し、これを有機溶媒に溶解させた電解液が用いられる。
ここで有機溶媒としては環状炭酸エステル類と鎖状炭酸
エステル類の混合溶媒が用いられる。環状炭酸エステル
類としては、プロピレンカーボネート、エチレンカーボ
ネート、ブチレンカーボネート等が使用可能である。ま
た、鎖状炭酸エステル類としては対称鎖状炭酸エステル
であるジメチルカーボネート、ジエチルカーボネート、
ジプロピルカーボネートや、非対称鎖状炭酸エステルで
あるメチルエチルカーボネート、メチルプロピルカーボ
ネート、エチルプロピルカーボネート等が使用可能であ
る。
As the electrolytic solution, an electrolytic solution in which a lithium salt is used as a supporting electrolyte and this is dissolved in an organic solvent is used.
Here, a mixed solvent of a cyclic carbonate and a chain carbonate is used as the organic solvent. As the cyclic carbonate, propylene carbonate, ethylene carbonate, butylene carbonate and the like can be used. In addition, as the chain carbonates, dimethyl carbonate, diethyl carbonate, which are symmetric chain carbonates,
Dipropyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, etc. which are asymmetric chain carbonates can be used.

【0029】支持電解質としては、一般にリチウム電池
用として使用されるLiCl、LiBr、LiCF3
3 、LiClO4 、LiAsF6 、LiPF6 、Li
BF4 等の単独、もしくは2種類以上の混合使用が可能
である。尚、前記非水電解液は液体状に限定されるもの
ではなく、従来より公知の固体電解質を用いることも可
能である。
As the supporting electrolyte, LiCl, LiBr, LiCF 3 S generally used for lithium batteries are used.
O 3 , LiClO 4 , LiAsF 6 , LiPF 6 , Li
BF 4 or the like can be used alone or in combination of two or more. The non-aqueous electrolyte is not limited to a liquid, and a conventionally known solid electrolyte can be used.

【0030】実験例1 負極4はつぎのように作製した。負極活物質は出発原料
に石油ピッチを用い、これを酸素を含む官能基を10〜
20%導入(酸素架橋)した後、不活性ガス中1000
℃で焼成して得られたガラス状炭素材料に近い性質の難
黒鉛化炭素材料を用いた。このようにして得られた炭素
材料を90重量%、結着剤としてポリフッ化ビニリデン
を10重量%の割合で混合して負極合剤を作成し、N−
メチル−2−ピロリドンに分散させてスラリー状にし
た。更に、このスラリーを負極集電体5である厚さ10
μmの銅箔の両面に塗布し、乾燥後ローラープレス機で
圧縮成形して負極4とした。
Experimental Example 1 The negative electrode 4 was manufactured as follows. The negative electrode active material uses petroleum pitch as a starting material, and this is converted to a functional group containing oxygen of 10 to 10.
After introducing 20% (oxygen crosslinking), 1000% in an inert gas
A non-graphitizable carbon material having properties close to those of a glassy carbon material obtained by firing at ℃ was used. 90% by weight of the carbon material thus obtained and 10% by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture.
It was dispersed in methyl-2-pyrrolidone to form a slurry. Further, the slurry is mixed with a negative electrode current collector 5 having a thickness of 10%.
It was applied on both sides of a copper foil having a thickness of μm, dried and then compression-molded with a roller press to obtain a negative electrode 4.

【0031】正極6はつぎのように作製した。まず、正
極活物質は炭酸リチウムと酸化コバルトとをLi/Co
の比が1/1となるように混合し、空気中で900℃、
5時間焼成することにより得た。この材料についてX線
回折測定を行った結果、JCPDSカードと良く一致し
た。その後粉砕することにより、所望の粒子径を有する
LiCoO2 を得るものである。つぎにこのLiCoO
2 を正極活物質とし、LiCoO2 を91重量%、導電
材としてグラファイトを6重量%、ポリフッ化ビニリデ
ンを3重量%を混合して正極合剤を作成し、N−メチル
−2−ピロリドンに分散させてスラリー状にした。更
に、このスラリーを正極集電体7である厚さ20μmの
アルミニウム箔の両面に塗布し、乾燥後ローラープレス
機で圧縮成形して正極6とした。
The positive electrode 6 was manufactured as follows. First, the positive electrode active material is Li / Co with lithium carbonate and cobalt oxide.
Is mixed so that the ratio becomes 1/1, 900 ° C. in air,
It was obtained by firing for 5 hours. X-ray diffraction measurement of this material showed a good match with the JCPDS card. Thereafter, by pulverizing, LiCoO 2 having a desired particle size is obtained. Next, this LiCoO
2 as a positive electrode active material, 91% by weight of LiCoO 2 , 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride to prepare a positive electrode mixture, which is dispersed in N-methyl-2-pyrrolidone. To form a slurry. Further, this slurry was applied to both surfaces of a 20 μm-thick aluminum foil serving as a positive electrode current collector 7, dried, and then compression-molded with a roller press to obtain a positive electrode 6.

【0032】以上のように作成した負極4と正極6をそ
れぞれ所定の寸法に裁断し、それらを厚さが30μmの
微多孔性ポリエチレンフィルムからなるセパレータ8を
挟んで交互に積層し、電極体9を作成した。
The negative electrode 4 and the positive electrode 6 produced as described above are cut into predetermined dimensions, respectively, and they are alternately laminated with a separator 8 made of a microporous polyethylene film having a thickness of 30 μm interposed therebetween. It was created.

【0033】図2に示すように上述した電極体9を、a
/(a+b)の値が1.0である、即ち厚さが0.7m
mのアルミニウム(3003合金)だけの単層からなる
電池容器1に、電極体9の下に絶縁板10を配置して収
納した。つぎに、正極リード11を正極集電体7から導
出して電池容器1の内側に溶接し、一方、負極リード1
2を負極集電体5から導出して電池蓋13にガスケット
14を介して設けられている負極端子15に溶接する。
電解液はプロピレンカーボネートとジエチルカーボネー
トを1:1の比率で混合した有機溶媒中に、支持電解質
LiPF6 を1モル/lの割合で溶解したものを用い
た。電解液注入後、厚さ9mm、幅34mm、高さ48
mmの非水電解液二次電池20を作製した。尚、より安
全性の高い密閉型非水電解液二次電池を得るためには、
過充電時の異常時に電池内圧上昇に応じて電流を遮断さ
せる手段を備えることが望ましい。
As shown in FIG. 2, the above-mentioned electrode body 9 is
The value of / (a + b) is 1.0, that is, the thickness is 0.7 m
Insulating plate 10 was placed under electrode body 9 and housed in battery case 1 consisting of a single layer of m (3003 alloy) alone. Next, the positive electrode lead 11 is led out of the positive electrode current collector 7 and welded to the inside of the battery case 1.
2 is drawn out from the negative electrode current collector 5 and welded to the negative electrode terminal 15 provided on the battery lid 13 via the gasket 14.
The electrolyte used was a solution in which the supporting electrolyte LiPF 6 was dissolved at a ratio of 1 mol / l in an organic solvent in which propylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1. After electrolyte injection, thickness 9mm, width 34mm, height 48
mm non-aqueous electrolyte secondary battery 20 was produced. In order to obtain a safer sealed non-aqueous electrolyte secondary battery,
It is desirable to have a means for interrupting the current in response to a rise in battery internal pressure when an abnormality occurs during overcharging.

【0034】実験例2 図3に示すようにa/(a+b)の値が0.92であ
る、厚さが0.6mmのアルミニウム(3003合金)
とSUS304からなるアルミニウムクラッド材で構成
された電池容器1に前述した電極体9を収納し、電極体
の下に絶縁板10を配置した。つぎに、正極リード11
を正極集電体7から導出して電池蓋13にガスケット1
4を介して設けられている正極端子16に溶接する。一
方、負極リード12を負極集電体5から導出して電池容
器1の内側であるステンレス3に溶接した。それ以外は
実験例1と同様にして非水電解液二次電池21を作製し
た。
EXPERIMENTAL EXAMPLE 2 As shown in FIG. 3, aluminum (3003 alloy) having a value of a / (a + b) of 0.92 and a thickness of 0.6 mm.
The above-described electrode body 9 was housed in a battery case 1 made of an aluminum clad material made of SUS304 and SUS304, and an insulating plate 10 was arranged below the electrode body. Next, the positive electrode lead 11
From the positive electrode current collector 7 and the gasket 1
4 is welded to the positive electrode terminal 16 provided. On the other hand, the negative electrode lead 12 was led out of the negative electrode current collector 5 and was welded to the stainless steel 3 inside the battery container 1. Otherwise in the same manner as in Experimental Example 1, a non-aqueous electrolyte secondary battery 21 was produced.

【0035】尚、電池容器1の構造から電池容器1は実
験例1では正極端子となり、一方、実験例2では負極端
子となる。また、以下に説明する実施例1〜4、実験例
3〜4も電池容器1が負極端子となる。
In the structure of the battery case 1, the battery case 1 serves as a positive terminal in the experimental example 1, and serves as a negative terminal in the experimental example 2. In Examples 1 to 4 and Experimental Examples 3 to 4 described below, the battery container 1 also serves as a negative electrode terminal.

【0036】実施例1 a/(a+b)の値が0.82である、厚さが0.5m
mのアルミニウム(3003合金)とSUS304から
なるアルミニウムクラッド材で構成された電池容器1を
用いること以外は実験例2と同様にして非水電解液二次
電池21を作製した。
Example 1 The value of a / (a + b) is 0.82 and the thickness is 0.5 m
A nonaqueous electrolyte secondary battery 21 was produced in the same manner as in Experimental Example 2, except that the battery case 1 made of an aluminum clad material made of m (3003 alloy) and SUS304 was used.

【0037】実施例2 a/(a+b)の値が0.71である、厚さが0.4m
mのアルミニウム(3003合金)とSUS304から
なるアルミニウムクラッド材で構成された電池容器1を
用いること以外は実験例2と同様にして非水電解液二次
電池21を作製した。
Example 2 The value of a / (a + b) is 0.71 and the thickness is 0.4 m
A nonaqueous electrolyte secondary battery 21 was produced in the same manner as in Experimental Example 2, except that the battery case 1 made of an aluminum clad material made of m (3003 alloy) and SUS304 was used.

【0038】実施例3 a/(a+b)の値が0.58である、厚さが0.3m
mのアルミニウム(3003合金)とSUS304から
なるアルミニウムクラッド材で構成された電池容器1を
用いること以外は実験例2と同様にして非水電解液二次
電池21を作製した。
Example 3 The value of a / (a + b) is 0.58 and the thickness is 0.3 m
A nonaqueous electrolyte secondary battery 21 was produced in the same manner as in Experimental Example 2, except that the battery case 1 made of an aluminum clad material made of m (3003 alloy) and SUS304 was used.

【0039】実施例4 a/(a+b)の値が0.42である、厚さが0.2m
mのアルミニウム(3003合金)とSUS304から
なるアルミニウムクラッド材で構成された電池容器1を
用いること以外は実験例2と同様にして非水電解液二次
電池21を作製した。
Example 4 The value of a / (a + b) is 0.42 and the thickness is 0.2 m
A nonaqueous electrolyte secondary battery 21 was produced in the same manner as in Experimental Example 2, except that the battery case 1 made of an aluminum clad material made of m (3003 alloy) and SUS304 was used.

【0040】実験例3 a/(a+b)の値が0.23である、厚さが0.1m
mのアルミニウム(3003合金)とSUS304から
なるアルミニウムクラッド材で構成された電池容器1を
用いること以外は実験例2と同様にして非水電解液二次
電池21を作製した。
Experimental Example 3 The value of a / (a + b) was 0.23 and the thickness was 0.1 m.
A nonaqueous electrolyte secondary battery 21 was produced in the same manner as in Experimental Example 2, except that the battery case 1 made of an aluminum clad material made of m (3003 alloy) and SUS304 was used.

【0041】実験例4 a/(a+b)の値が0、即ち、厚さが0.38mmの
SUS304材だけから構成された電池容器1を用いる
こと以外は実験例2と同様にして非水電解液二次電池2
1を作製した。
EXPERIMENTAL EXAMPLE 4 Non-aqueous electrolysis was performed in the same manner as in Experimental Example 2 except that the value of a / (a + b) was 0, that is, the battery container 1 was made of only SUS304 material having a thickness of 0.38 mm. Liquid secondary battery 2
1 was produced.

【0042】上記実施例1〜4および実施例1〜4の非
水電解液二次電池20、21について、充電電圧4.2
0V、充電電流950mA、充電時間2.5hの条件で
充電を行い、放電電流190mA、終止電圧2.75V
の条件で放電を行い、電池の初期容量および平均電圧を
測定し、重量エネルギー密度を求めた。その結果を表2
に示す。
With respect to the nonaqueous electrolyte secondary batteries 20 and 21 of Examples 1 to 4 and Examples 1 to 4, the charging voltage was 4.2.
The battery was charged under the conditions of 0 V, a charging current of 950 mA, and a charging time of 2.5 h, a discharging current of 190 mA, and a final voltage of 2.75 V.
The battery was discharged under the following conditions, and the initial capacity and average voltage of the battery were measured to determine the weight energy density. Table 2 shows the results.
Shown in

【0043】[0043]

【表2】 [Table 2]

【0044】表2よりアルミニウム2の板厚がアルミニ
ウムクラッド材の板厚に対する比率a/(a+b)の値
を25%以上90%以下に設定し、アルミニウム2を外
側にして電池容器1を形成することで、従来の電池と互
換性があり、且つ重量エネルギー密度が高まることが分
かる。
According to Table 2, the ratio of the thickness of the aluminum 2 to the thickness of the aluminum clad material, a / (a + b), is set to 25% or more and 90% or less, and the battery container 1 is formed with the aluminum 2 outside. This indicates that the battery is compatible with the conventional battery and the weight energy density is increased.

【0045】尚、アルミニウム2の材質は3003を用
いたが、これ以外のアルミ合金を用いてもよい。また、
一方の層の金属としてSUS304を使用したが、リチ
ウムと合金を作らない金属であれば用いてもよいことは
前述した通りである。また、実施例として角形の電池を
用いて説明したが、円筒形、コイン型、ボタン型電池に
も本発明を適用することができ、同様の効果が得られる
ことは言うまでもない。更に、電極体を渦巻き状に形成
しても良いことは当然である。
Although the material of aluminum 2 is 3003, other aluminum alloys may be used. Also,
Although SUS304 was used as the metal of one layer, any metal that does not form an alloy with lithium may be used as described above. In addition, although the description has been given using a rectangular battery as an example, the present invention can be applied to a cylindrical, coin-type, or button-type battery, and it goes without saying that the same effect can be obtained. Furthermore, it is natural that the electrode body may be formed in a spiral shape.

【0046】[0046]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池によれば、電池容器に十分な強
度を持たせることができると共に、電池容器の外側を負
極に、一方、内側を正極に構成することができ、従って
従来のものと互換性を保つことができる重量エネルギー
密度の大きな非水電解液二次電池が提供できる。
As is apparent from the above description, according to the nonaqueous electrolyte secondary battery of the present invention, the battery container can have sufficient strength and the outside of the battery container can be used as the negative electrode. On the other hand, it is possible to provide a nonaqueous electrolyte secondary battery having a large weight energy density that can be configured with a positive electrode on the inner side and that can maintain compatibility with a conventional battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わるアルミニウムクラッド材を用
いた電池容器の断面図である。
FIG. 1 is a cross-sectional view of a battery container using an aluminum clad material according to the present invention.

【図2】 非水電解液二次電池の第1の実験例の断面図
である。
FIG. 2 is a sectional view of a first experimental example of a non-aqueous electrolyte secondary battery.

【図3】 本発明に係わる電池容器を用いた非水電解液
二次電池の第1〜4の実施例および第2〜4の実験例の
断面図である。
FIG. 3 is a cross-sectional view of first to fourth embodiments and second to fourth experimental examples of a nonaqueous electrolyte secondary battery using the battery container according to the present invention.

【符号の説明】[Explanation of symbols]

1…電池容器、2…アルミニウム、3…ステンレス、4
…負極、5…負極集電体、6…正極、7…正極集電体、
8…セパレータ、9…電極体、10…絶縁板、11…正
極リード、12…負極リード、13…電池蓋、14…ガ
スケット、15…負極端子、16…正極端子、20,2
1…非水電解液二次電池
1 ... battery container, 2 ... aluminum, 3 ... stainless steel, 4
... a negative electrode, 5 ... a negative electrode current collector, 6 ... a positive electrode, 7 ... a positive electrode current collector,
8 separator, 9 electrode body, 10 insulating plate, 11 positive electrode lead, 12 negative electrode lead, 13 battery cover, 14 gasket, 15 negative electrode terminal, 16 positive electrode terminal, 20, 2
1: Non-aqueous electrolyte secondary battery

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有化合物を用いた正極と、リ
チウムをドープし、且つ脱ドープ可能な材料を用いた負
極と、非水電解液からなる非水電解液二次電池におい
て、 アルミニウムもしくはアルミニウム合金を第一の層と
し、リチウムと合金を形成しない金属を第二の層とした
板状部材を形成すると共に、 前記板状部材の第二の層を内側にして電池容器を構成す
ることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode using a lithium-containing compound, a negative electrode using a lithium-doped and undoped material, and a non-aqueous electrolyte, wherein aluminum or aluminum alloy is used. As a first layer, a plate-like member having a second layer of a metal that does not form an alloy with lithium is formed, and a battery container is configured with the second layer of the plate-like member inside. Non-aqueous electrolyte secondary battery.
【請求項2】 前記第二の層はスチール、ステンレス、
ニッケル、銅、チタンからなる群の中のいずれか一種で
構成することを特徴とする、請求項1に記載の非水電解
液二次電池。
2. The second layer is of steel, stainless steel,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is formed of any one of a group consisting of nickel, copper, and titanium.
【請求項3】 前記第一の層の板厚をaとし、前記第二
の層の板厚をbとした場合、 0.25≦a/(a+b)≦0.9 の関係にあることを特徴とする、請求項1に記載の非水
電解液二次電池。
3. When the thickness of the first layer is a and the thickness of the second layer is b, the relationship of 0.25 ≦ a / (a + b) ≦ 0.9 is satisfied. The non-aqueous electrolyte secondary battery according to claim 1, wherein:
JP9008362A 1997-01-21 1997-01-21 Non-aqueous electrolyte secondary battery Pending JPH10208777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9008362A JPH10208777A (en) 1997-01-21 1997-01-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9008362A JPH10208777A (en) 1997-01-21 1997-01-21 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10208777A true JPH10208777A (en) 1998-08-07

Family

ID=11691130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9008362A Pending JPH10208777A (en) 1997-01-21 1997-01-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10208777A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135079A (en) * 1997-08-29 1999-05-21 Sumitomo Electric Ind Ltd Battery jar for secondary battery
US6554178B1 (en) 1999-04-08 2003-04-29 Quallion Llc Battery case feedthrough
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough
KR100659852B1 (en) * 2005-04-25 2006-12-19 삼성에스디아이 주식회사 Can type rechargeable battery
JP2010129349A (en) * 2008-11-27 2010-06-10 Kojima Press Industry Co Ltd Battery case with heat insulation, sound insulation, and soundproof function
US20100151282A1 (en) * 2008-12-11 2010-06-17 Samsung Sdi Co., Ltd. Secondary battery
WO2010113549A1 (en) * 2009-03-31 2010-10-07 日立ビークルエナジー株式会社 Nonaqueous-electrolyte secondary battery and lithium secondary battery
US8632900B2 (en) 2008-09-22 2014-01-21 Samsung Sdi Co., Ltd. Secondary battery
WO2017119033A1 (en) * 2016-01-06 2017-07-13 パナソニックIpマネジメント株式会社 Coin-shaped battery
US20180315964A1 (en) * 2017-04-27 2018-11-01 Lg Chem, Ltd. Cylindrical battery cell including can made of different kinds of metals
WO2019168284A1 (en) * 2018-03-02 2019-09-06 주식회사 엘지화학 Cylindrical secondary battery having structure for shielding laser beam for welding, and battery pack comprising same
WO2023272437A1 (en) * 2021-06-28 2023-01-05 Hefei Gotion High-Tech Power Energy Co., Ltd. Cylindrical battery cell and battery
EP4300668A1 (en) * 2022-06-28 2024-01-03 CALB Co., Ltd. Battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135079A (en) * 1997-08-29 1999-05-21 Sumitomo Electric Ind Ltd Battery jar for secondary battery
US6554178B1 (en) 1999-04-08 2003-04-29 Quallion Llc Battery case feedthrough
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough
US7108166B2 (en) 1999-04-08 2006-09-19 Quallion Llc Method for sealing a battery case
KR100659852B1 (en) * 2005-04-25 2006-12-19 삼성에스디아이 주식회사 Can type rechargeable battery
US8632900B2 (en) 2008-09-22 2014-01-21 Samsung Sdi Co., Ltd. Secondary battery
JP2010129349A (en) * 2008-11-27 2010-06-10 Kojima Press Industry Co Ltd Battery case with heat insulation, sound insulation, and soundproof function
US20100151282A1 (en) * 2008-12-11 2010-06-17 Samsung Sdi Co., Ltd. Secondary battery
US9564627B2 (en) 2008-12-11 2017-02-07 Samsung Sdi Co., Ltd. Secondary battery
US8455120B2 (en) * 2008-12-11 2013-06-04 Samsung Sdi Co., Ltd. Secondary battery
JP2010238462A (en) * 2009-03-31 2010-10-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery, and lithium secondary battery
WO2010113549A1 (en) * 2009-03-31 2010-10-07 日立ビークルエナジー株式会社 Nonaqueous-electrolyte secondary battery and lithium secondary battery
WO2017119033A1 (en) * 2016-01-06 2017-07-13 パナソニックIpマネジメント株式会社 Coin-shaped battery
US20180315964A1 (en) * 2017-04-27 2018-11-01 Lg Chem, Ltd. Cylindrical battery cell including can made of different kinds of metals
WO2019168284A1 (en) * 2018-03-02 2019-09-06 주식회사 엘지화학 Cylindrical secondary battery having structure for shielding laser beam for welding, and battery pack comprising same
US11171371B2 (en) 2018-03-02 2021-11-09 Lg Chem, Ltd. Cylindrical secondary battery including structure configured to block laser beam for welding and battery pack including the same
WO2023272437A1 (en) * 2021-06-28 2023-01-05 Hefei Gotion High-Tech Power Energy Co., Ltd. Cylindrical battery cell and battery
EP4300668A1 (en) * 2022-06-28 2024-01-03 CALB Co., Ltd. Battery

Similar Documents

Publication Publication Date Title
US9711826B2 (en) Nonaqueous electrolyte secondary battery
EP2141759B1 (en) Secondary battery
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4245532B2 (en) Nonaqueous electrolyte secondary battery
JP3866740B2 (en) Non-aqueous electrolyte secondary battery, assembled battery and battery pack
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
US7261976B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
TW200301022A (en) Lithium ion secondary battery
JPH0982361A (en) Square nonaqueous electrolyte secondary battery
JP3282189B2 (en) Non-aqueous electrolyte secondary battery
US20230361292A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JPH0973885A (en) Nonaqueous electrolyte secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JP3211259B2 (en) Non-aqueous electrolyte secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JPH0963562A (en) Nonaqueous-electrolyte secondary battery