JPH10204511A - Operation of blast furnace for powder blowing - Google Patents
Operation of blast furnace for powder blowingInfo
- Publication number
- JPH10204511A JPH10204511A JP474597A JP474597A JPH10204511A JP H10204511 A JPH10204511 A JP H10204511A JP 474597 A JP474597 A JP 474597A JP 474597 A JP474597 A JP 474597A JP H10204511 A JPH10204511 A JP H10204511A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- pulverized coal
- blast furnace
- blowing
- raceway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、粉体吹き込み高炉
操業方法に関し、特に、微粉炭の吹き込み時に上昇する
炉内圧力を低下させ、通気性を改善した高炉操業方法の
改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a blast furnace with powder, and more particularly to an improvement of a method of operating a blast furnace in which the pressure inside the furnace, which rises when pulverized coal is injected, is reduced to improve air permeability.
【0002】[0002]
【従来の技術】近年、高炉の操業は、燃料コストの大幅
削減あるいはコークス炉の負担軽減、炉寿命の延長など
を目的として、従来のオールコークス操業(還元材のす
べてを炉頂部からコークスとして挿入する方法)から、
炉頂部からのコークス装入に加えて、高炉羽口から廉価
な微粉炭を多量に吹き込む操業に移りつつある。2. Description of the Related Art In recent years, the operation of a blast furnace has been carried out in order to greatly reduce fuel costs, reduce the burden on a coke oven, and extend the life of the furnace. How to)
In addition to charging coke from the top of the furnace, operations are beginning to blow large amounts of inexpensive pulverized coal from the blast furnace tuyeres.
【0003】微粉炭吹き込み操業は、高炉への粉体吹き
込み操業技術の1つとして確立された技術であり、50
〜100kg/t−銑鉄の微粉炭吹き込み量での安定操
業が実施されている。しかし、微粉炭の吹き込み量を上
記量よりも多くすると、レースウェイ周辺で鳥の巣と称
される現象が発生し、これが成長して高炉下部でのガス
流れを不良にする場合が往々にして起こるという問題が
ある。[0003] The pulverized coal injection operation is a technology established as one of the powder injection operation technologies for a blast furnace.
Stable operation is performed at a pulverized coal injection amount of 〜100 kg / t-pig iron. However, if the amount of pulverized coal injected is larger than the above amount, a phenomenon called a bird's nest occurs around the raceway, and this often grows and causes poor gas flow at the lower part of the blast furnace. There is a problem that happens.
【0004】より具体的には、微粉炭吹き込み操業は、
図4に示す通り、微粉炭4を、高炉炉壁9に設けられた
羽口7から、送風ガス5と共にランス1を通じて、コー
クス層8内に多量に吹き込む。このため、羽口内部で、
微粉炭燃焼に伴う送風圧力の上昇をきたす。また、レー
スウェイ2(羽口先の炉内側に存在するコークスの希薄
な燃焼空間)の周囲(奥)に、微粉炭4の吹き込みによ
り生成する高融点のスラグ壁3(通称鳥の巣)によって
通気性が低下する現象が生じる。[0004] More specifically, the pulverized coal injection operation comprises:
As shown in FIG. 4, a large amount of pulverized coal 4 is blown into the coke layer 8 from the tuyere 7 provided on the blast furnace wall 9 together with the blowing gas 5 through the lance 1. Therefore, inside the tuyere,
This causes an increase in blast pressure due to pulverized coal combustion. A high melting point slag wall 3 (commonly referred to as a bird's nest) formed by blowing pulverized coal 4 around the raceway 2 (a lean combustion space of coke existing inside the furnace at the tuyere tip). The phenomenon that the property is reduced occurs.
【0005】この高融点のスラグ壁3は、レースウェイ
2内において、高速で燃焼して生成する微粉炭の灰分1
1がその由来となっている。即ち、高炉に吹き込まれる
微粉炭4には、約8〜10%の灰分が含まれ、この灰分
は、後述する表1の通り、SiO2 50〜60%、Al
2 O3 20〜30%、その他Fe2 O3 、CaOなどか
らなり、主として酸性成分で構成されている。したがっ
て、微粉炭4の吹き込み量が多くなると、微粉炭が燃焼
して生成する灰分11からの、SiO2 、Al 2 O3 を
主体とする酸性成分スラグが増加し、レースウェイの周
囲(奥)に生成するスラグの粘性や融点が増加する。こ
のため、レースウェイの周囲に生成するスラグは、高炉
の上部から降下する滴下スラグ6と同化せず、コークス
や微粉炭の灰分のレースウェイ内での適正な滓化が遅れ
ることになる。その結果、レースウェイ周辺に、この滓
化が遅れたスラグが厚く蓄積して厚い高融点のスラグ壁
3が形成されることになる。[0005] The high melting point slag wall 3 is
Ash content of pulverized coal generated by burning at high speed within
1 is its origin. That is, it is blown into the blast furnace
Pulverized coal 4 contains about 8 to 10% of ash, and this ash
Is SiO 2 as shown in Table 1 below.Two50-60%, Al
TwoOThree20-30%, other FeTwoOThree, CaO, etc.
And is mainly composed of acidic components. Accordingly
When the amount of pulverized coal 4 blows up, pulverized coal burns
From ash 11 generated byTwo, Al TwoOThreeTo
Acid component slag, which is the main component, increased,
The viscosity and melting point of the slag generated in the enclosure (back) increase. This
The slag generated around the raceway is
Does not assimilate with the dripping slag 6 descending from the top of the
Of pulverized coal ash in the raceway is delayed
Will be. As a result, around the raceway,
Slag wall with high melting point due to thick accumulation of slag delayed in formation
3 will be formed.
【0006】一方、高炉内スラグの生成は、高炉の安定
操業にとって重要であり、焼結鉱から生成した滴下スラ
グ6は、レースウェイで発生するコークスや微粉炭の灰
分からのスラグと同化して安定な最終スラグへと変化さ
せる必要がある。On the other hand, the production of slag in the blast furnace is important for the stable operation of the blast furnace, and the dripping slag 6 generated from the sinter is assimilated with the slag from the ash of coke and pulverized coal generated in the raceway. It needs to be changed to a stable final slag.
【0007】にも係わらず、前記した通り、レースウェ
イの周囲に、安定な最終スラグへと変化せず、滴下スラ
グ6とならない、前記高融点のスラグ壁3が存在する
と、高炉の炉下部の通気性を低下させる。そしてこの通
気性の低下が、送風圧力の上昇や圧力変動の増大をきた
し、微粉炭の多量吹き込み化や、微粉炭の多量吹き込み
操業の長時間の継続を困難にしている。Nevertheless, as described above, if the high melting point slag wall 3 which does not change to a stable final slag and does not become a dripping slag 6 around the raceway exists, the lower part of the blast furnace lowers. Reduces air permeability. This decrease in air permeability causes an increase in the blowing pressure and an increase in pressure fluctuation, and makes it difficult to blow a large amount of pulverized coal and continue the operation of blowing a large amount of pulverized coal for a long time.
【0008】また、微粉炭の吹き込み量を多くして、微
粉炭比を増大させると、炉芯のコークスは粉化しやすく
なる傾向があり、炉芯の空隙率は低下する。したがっ
て、羽口より吹き込まれた粉体は、炉芯の表面部に溜ま
りやすくなる。また更に、前記した通り、微粉炭の吹き
込み量の増大により、強酸性灰分(アッシュ分)がレー
スウェイ奥(鳥の巣)に蓄積しやすいことから、これら
両者の影響を同時に受けて、相乗的に高融点のスラグ壁
3(鳥の巣)が成長することになる。[0008] When the pulverized coal ratio is increased by increasing the amount of pulverized coal to be blown, coke in the furnace core tends to be easily pulverized, and the porosity of the furnace core decreases. Therefore, the powder blown from the tuyere tends to accumulate on the surface of the furnace core. Further, as described above, the strong acid ash (ash) is likely to accumulate in the back of the raceway (bird's nest) due to an increase in the amount of pulverized coal injected. Then, the slag wall 3 (bird's nest) having a high melting point grows.
【0009】通常、高炉の炉芯の空隙率εと、微粉炭吹
き込み量aは、図5に示す関係となっており、また、高
炉の炉芯の空隙率εと、前記高融点のスラグ壁厚tは、
図6に示す関係となっている。即ち、前記した通り、微
粉炭吹き込み量aが増すほど、高融点のスラグ壁厚tが
増え、高炉の炉芯の空隙率εが小さくなって、通気性が
低下することが分かる。Normally, the porosity ε of the blast furnace core and the pulverized coal injection amount a have the relationship shown in FIG. 5, and the porosity ε of the blast furnace core and the high melting point slag wall The thickness t is
The relationship is as shown in FIG. That is, as described above, as the pulverized coal injection amount a increases, the slag wall thickness t of the high melting point increases, the porosity ε of the furnace core of the blast furnace decreases, and the air permeability decreases.
【0010】更に、このスラグ壁3の存在は羽口部で生
成したガス(ボッシュガス)の流れの向きを、炉中心方
向より炉上部方向に変化させる。このガスの流れの変化
は、生成した高温のガスが高炉炉壁9に沿って流れるこ
と(周辺流化)を招き、更には、炉壁9からの熱損失増
大に伴う燃料比の増大(燃料コスト上昇)を招く。ま
た、生成した高温のガスが炉壁に沿って流れることは、
炉壁耐火物/冷却装置への損傷を引き起こすことにもつ
ながる。Further, the presence of the slag wall 3 changes the flow direction of the gas (Bosch gas) generated at the tuyere from the center of the furnace toward the upper part of the furnace. This change in the gas flow causes the generated high-temperature gas to flow along the blast furnace wall 9 (peripheral flow), and further increases the fuel ratio (fuel Cost increase). In addition, the generated hot gas flows along the furnace wall,
It can also cause damage to the furnace wall refractory / cooling system.
【0011】かかる問題を解決すべく、従来から、微粉
炭と共に、羽口から、高塩基度媒溶剤を吹き込み、この
レースウェイの周囲に存在する高融点のスラグの塩基度
を上げて粘性を下げ(流動性を上げ)、高炉の上部から
降下する滴下スラグと同化させ、微粉炭の灰分のレース
ウェイ内での適正な滓化を促進させ、もって羽口前レー
スウェイ部の微粉炭吹き込み時の通気性を改善する技術
が、種々提案されている。In order to solve such a problem, a high basicity solvent has been blown from a tuyere together with pulverized coal to increase the basicity of the high melting point slag existing around the raceway to lower the viscosity. (Increases fluidity), assimilate with the dripping slag descending from the upper part of the blast furnace, and promote appropriate slagging of pulverized coal ash in the raceway. Various techniques for improving air permeability have been proposed.
【0012】例えば、特開平3−291313号公報で
は、前記高塩基度媒溶剤として、CaO系、MgO系、
SiO系のフラックスを用いることが開示されている。
また特公平6−89382号公報では、微粉ドロマイ
ト、蛇紋岩、カンラン石、石灰石等の塩基性微粉媒溶剤
を微粉炭と同時に吹き込み、吹き込み量を、媒溶剤と微
粉炭中の灰分を混合した時の塩基度(塩基性成分量/酸
性成分量)が0.5〜1.3となるようにして、微粉炭
の灰分とドロマイト等をレースウェイ内で同化させ、低
粘性のスラグを形成して、高融点のスラグ壁(鳥の巣)
を薄くすることが開示されている。For example, in JP-A-3-291313, CaO-based, MgO-based,
It is disclosed that an SiO-based flux is used.
In Japanese Patent Publication No. 6-89382, a basic pulverizing medium solvent such as pulverized dolomite, serpentine, olivine and limestone is blown at the same time as pulverized coal, and the amount of blowing is determined by mixing the medium solvent and ash in the pulverized coal. So that the ash of pulverized coal and dolomite are assimilated in the raceway to form a low-viscosity slag. , High melting point slag wall (bird nest)
Is disclosed.
【0013】これらの技術によれば、図4と同じ構成の
図3に示す通り、高塩基度媒溶剤10を微粉炭4と同時
に、送風ガス5と共に、ランス1を通じて、コークス層
8内に吹き込むことで、微粉炭の灰分11と高塩基度媒
溶剤10とがレースウェイ内部で同化して、低い粘性の
スラグが形成され、高炉の上部から降下する滴下スラグ
と同化しやすくなり、メタル・スラグ滴となって、高炉
内を滴下する。この結果、前記図4の微粉炭吹き込みの
みの場合に比して、高融点のスラグ層3の生成が抑制さ
れ、この高融点のスラグ層3の厚みが薄くなり、安定な
レースウェイ形状を維持でき、通気性の改善を図ること
ができる。According to these techniques, as shown in FIG. 3 having the same configuration as FIG. 4, a high basicity medium solvent 10 is blown into the coke layer 8 together with the pulverized coal 4 and the blowing gas 5 through the lance 1. As a result, the ash 11 of the pulverized coal and the high basicity solvent 10 are assimilated inside the raceway to form a low-viscosity slag, which is easily assimilated with the dripping slag falling from the upper part of the blast furnace. Drops are dropped in the blast furnace. As a result, the formation of the high-melting-point slag layer 3 is suppressed as compared with the case where only the pulverized coal is blown in FIG. 4, and the thickness of the high-melting-point slag layer 3 is reduced, and a stable raceway shape is maintained. It is possible to improve the air permeability.
【0014】[0014]
【発明が解決しようとする課題】しかし、これらの従来
技術では、微粉炭の灰分と高塩基度媒溶剤とがレースウ
ェイ内部で同化するメカニズムに関して、まだ充分解明
されておらず、この結果、高炉の微粉炭吹き込む量が極
めて大きい操業では、それに見合って、吹き込む高塩基
度媒溶剤量を多くする。この結果、吹き込まれた高塩基
度媒溶剤自体の羽口内部での溶融および滓化が遅れてし
まい、充分にレースウェイ内部で同化、溶融しないとい
う欠点があった。However, in these prior arts, the mechanism by which the ash of the pulverized coal and the high basicity solvent are assimilated inside the raceway has not yet been sufficiently elucidated. In operations where the amount of pulverized coal injected is extremely large, the amount of high basicity solvent injected is increased accordingly. As a result, melting and slagging of the injected high basicity solvent solvent inside the tuyere are delayed, and there is a drawback that assimilation and melting do not sufficiently occur inside the raceway.
【0015】特に、ドロマイト、蛇紋岩、カンラン石、
石灰石等の鉱石類の高塩基度媒溶剤は、それ自体の融点
が高く、2000℃程度の温度で、かつ微粉炭粒子灰分
との同化のための限られた時間しかないレースウェイ内
部において、充分溶融化せず、この結果固体状態のま
ま、微粉炭粒子と同化せずに、レースウェイの奥に到達
しやすい。In particular, dolomite, serpentine, olivine,
The high basicity medium solvent of ores such as limestone has a high melting point itself, and is sufficient at a temperature of about 2000 ° C. and within a raceway where there is only a limited time for assimilation with pulverized coal particle ash. It does not melt, and as a result, remains in a solid state, does not assimilate with the pulverized coal particles, and easily reaches the interior of the raceway.
【0016】仮に、高塩基度媒溶剤が、溶融しないま
ま、レースウェイの奥に到達した場合には、火炎温度を
はるかに下回る温度の奥のコークスベッド(炉芯)に取
り込まれてしまい、未溶融のまま炉心に残る。このた
め、最悪の場合、通気性改善のために投入する高塩基度
媒溶剤が、却って通気性を損なう結果となっていた。ま
た、このことは、微粉炭粒子灰分との同化のために必要
とする分以上に、高塩基度媒溶剤の吹き込み量を多くす
ることにもつながる。If the high basicity medium solvent reaches the inside of the raceway without melting, it is taken into a coke bed (furnace core) at a temperature much lower than the flame temperature, and is not melted. It remains in the core as it is melted. For this reason, in the worst case, a high basicity solvent to be introduced for improving the air permeability results in impaired air permeability. This also leads to an increase in the amount of the high basicity solvent blown in more than is required for assimilation with the pulverized coal particle ash.
【0017】また、石灰石など、吸熱反応を伴う高塩基
度媒溶剤を使う場合、石灰石は羽口前で分解する際に分
解熱を奪い、この熱補償のために余分なコークスが必要
となり、燃料比がアップする。またこれに伴って、発生
するガスも多くなり、ガス回収のコストが増大する。In the case of using a high basicity solvent having an endothermic reaction, such as limestone, limestone decomposes heat of decomposition when decomposing in front of the tuyere, and requires extra coke for heat compensation. The ratio goes up. Along with this, the amount of generated gas also increases, and the cost of gas recovery increases.
【0018】従って、これら従来技術では、高塩基度媒
溶剤を用いる場合、前記新たな弊害を生む可能性が不可
避であり、この高塩基度媒溶剤吹き込み技術により、高
微粉炭吹き込み量を保障していくには不安がある。この
ため、現状の微粉炭を吹き込む量には限界があり、現状
の微粉炭吹き込み量にしても、他の高炉操業条件の複雑
な制御により、高炉内の通気性を改善して、微粉炭吹き
込みを維持しているのが実情である。Therefore, in these prior arts, when a high basicity medium solvent is used, the possibility of producing the above-mentioned adverse effects is inevitable. This high basicity medium solvent injection technique guarantees a high pulverized coal injection amount. I am worried about going. For this reason, the current amount of pulverized coal to be blown is limited, and even with the current amount of pulverized coal to be blown, the air permeability in the blast furnace is improved by complicated control of other blast furnace operating conditions, and pulverized coal is blown. The fact is that it is maintained.
【0019】本発明はこれら従来技術の問題点に鑑み、
微粉炭を吹き込む高炉操業方法において、微粉炭吹き込
む量が極めて大きい操業でも、羽口前レースウェイ部の
微粉炭を吹き込み時の通気性を改善でき、しかもこの通
気性を改善するために吹き込む塩基性スラグ量が少な
く、塩基性スラグの過大な吹き込みにより生じる通気性
の低下を防止した高炉操業方法を提供することを目的と
する。The present invention has been made in view of these problems of the prior art,
In the blast furnace operating method in which pulverized coal is blown, even in the operation where the amount of pulverized coal blown is extremely large, the permeability at the time of blowing the pulverized coal in the tuyere in front of the tuyere can be improved. It is an object of the present invention to provide a blast furnace operating method in which the amount of slag is small and a decrease in air permeability caused by excessive blowing of basic slag is prevented.
【0020】[0020]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る高炉操業方法は、高炉羽口から送風
ガスと共に微粉炭を吹き込む際、微粉炭とともに塩基性
スラグを吹き込み、該スラグを微粉炭灰分と同化させ
て、微粉炭灰分によりレースウェイ奥に生成する高融点
のスラグ層(通称鳥の巣)の成長を抑制して、微粉炭吹
き込み時の炉内通気性を改善する(炉内圧力を低下させ
る)高炉操業方法において、前記吹き込みスラグとし
て、レースウェイの温度以下の融点を有するとともに、
リンの含有量が1.0%以下のものを用い、かつ、前記
吹き込みスラグと微粉炭中の灰分を混合した時の塩基度
(塩基性成分量/酸性成分量)が0.5〜1.3となる
ように前記吹き込みスラグの量を調整する。In order to achieve the above object, a method for operating a blast furnace according to the present invention is characterized in that, when pulverized coal is blown from a blast furnace tuyere with blowing gas, basic slag is blown together with the pulverized coal. By assimilating slag with pulverized coal ash, the growth of the high melting point slag layer (commonly called bird's nest) generated behind the raceway due to pulverized coal ash is improved, and the air permeability in the furnace when pulverized coal is injected is improved. In the blast furnace operating method (reducing furnace pressure), the blowing slag has a melting point equal to or lower than the temperature of the raceway,
The one having a phosphorus content of 1.0% or less is used, and the basicity (basic component amount / acid component amount) when the blown slag and ash in pulverized coal are mixed is 0.5 to 1. The amount of the blown slag is adjusted so as to be 3.
【0021】本発明においては、高塩基度のスラグとし
て、レースウェイの温度以下の融点を有するプリメルト
スラグを用いる。プリメルトスラグとは、既に一度溶解
しているスラグという意味である。例えば、転炉スラグ
や高炉スラグなどは、製銑や製鋼過程で発生し、この過
程で既に一度溶解しており、前記ドロマイトやCaO系
フラックスなどの一度溶解していない生の鉱石類に比し
て、溶解性や滓化性が非常に良い。また、転炉スラグや
高炉スラグなどは、後述する表1の通り、塩基度も高い
ので、本発明の高塩基度のスラグとして好適である。In the present invention, as the slag having a high basicity, a premelt slag having a melting point lower than the temperature of the raceway is used. Premelt slag means slag that has already been dissolved once. For example, converter slag, blast furnace slag, etc. are generated during the iron making and steel making processes, and have already been melted once in this process, compared to raw ores that have not been melted once, such as the dolomite and CaO-based flux. Very good solubility and slagging properties. Further, as shown in Table 1 below, converter slag, blast furnace slag, and the like also have a high basicity, and thus are suitable as the high basicity slag of the present invention.
【0022】レースウェイの温度以下の融点を有する高
塩基度のプリメルトスラグを用いることにより、スラグ
は充分にレースウェイ内部で溶融し、微粉炭粒子灰分と
同化する。言い換えると、従来技術のように、レースウ
ェイ内部で溶融せず、微粉炭粒子灰分と同化しないま
ま、レースウェイの奥に到達し、通気性を害することも
なく、微粉炭吹き込み量を低減することが可能である。By using a high basicity premelt slag having a melting point below the temperature of the raceway, the slag is sufficiently melted inside the raceway and assimilated with the ash of pulverized coal particles. In other words, as in the prior art, the amount of pulverized coal blown is reduced without melting inside the raceway and reaching the inner part of the raceway without assimilating with the pulverized coal particle ash, without impairing the air permeability. Is possible.
【0023】本発明者らは、吹き込まれたスラグと微粉
炭灰分とがレースウェイ内を飛翔中に邂逅および同化す
るためには、また、吹き込まれたスラグとレースウェイ
奥に既に生成している高融点のスラグ層とが同化するた
めには、吹き込まれたスラグが、微粉炭灰分との邂逅前
に、溶融ないし半溶融状態になっていることが重要であ
ることを知見した。即ち、1700〜2000℃程度の
温度で、かつスペース的にも限られたレースウェイ内部
では、吹き込まれるスラグを、レースウェイの温度以下
の融点を有するプリメルトスラグとすることにより、吹
き込み量が増大するなどの操業条件が変化しても、吹き
込まれるスラグを、確実に溶融ないし半溶融状態とする
ことができる。In order for the injected slag and fine coal ash to meet and assimilate during the flight in the raceway, the present inventors have already produced the injected slag and the back of the raceway. In order to assimilate with the high melting point slag layer, it has been found that it is important that the injected slag is in a molten or semi-molten state before encountering with fine coal ash. That is, at a temperature of about 1700 to 2000 ° C. and inside the raceway where space is limited, the blown slag is made of a pre-melt slag having a melting point equal to or lower than the temperature of the raceway, thereby increasing the blowing amount. Even if the operating conditions such as the slag are changed, the slag to be blown can be reliably melted or semi-melted.
【0024】因みに、前記従来技術における塩基性媒溶
剤である鉱石類の融点は、組成により異なるものの、ド
ロマイト:約2450℃、蛇紋岩:約1800℃、カン
ラン石:約1500〜1900℃、石灰石:約2570
℃程度であり、1700〜2000℃程度のレースウェ
イ内部温度と同等か、それよりも高い。これに対し、転
炉スラグの融点は約1450℃、高炉スラグの融点は約
1300℃であり、レースウェイ内部温度よりも充分低
い。したがって、この融点の低さとプリメルトであるこ
ととの相乗作用により、本発明では、吹き込まれたスラ
グが、レースウェイ内部で確実に溶融ないし半溶融状態
となる。Incidentally, the melting point of the ore, which is a basic medium solvent in the prior art, varies depending on the composition, but dolomite: about 2450 ° C., serpentine: about 1800 ° C., olivine: about 1500 to 1900 ° C., limestone: About 2570
° C, which is equal to or higher than the raceway internal temperature of about 1700-2000 ° C. On the other hand, the melting point of the converter slag is about 1450 ° C. and the melting point of the blast furnace slag is about 1300 ° C., which is sufficiently lower than the raceway internal temperature. Therefore, by the synergistic effect of the low melting point and the premelt, in the present invention, the blown slag is reliably melted or semi-melted inside the raceway.
【0025】したがって、本発明では、特に、微粉炭の
吹き込み量を、100kg/t−銑鉄以上、更には20
0kg/t−銑鉄以上、と大きくした操業で、しかも長
時間の微粉炭の吹き込み操業であっても、また、それに
見合って、吹き込む塩基性スラグ量を多くした場合に
も、吹き込まれたスラグが、レースウェイ内部で確実に
溶融ないし半溶融状態となる。そして、レースウェイ内
で溶融ないし半溶融状態となった塩基性スラグは、吹き
込まれた微粉炭灰分とのレースウェイ内飛翔中での邂逅
・同化、また、レースウェイ奥に既に生成している高融
点のスラグ層との同化が遅れることはなく、この結果、
低融点のスラグを生成して、炉内滴下スラグと、充分に
レースウェイ内部で同化、溶融する。Therefore, in the present invention, in particular, the amount of pulverized coal blown is set to 100 kg / t-pig iron or more,
0 kg / t-pig iron or more, even if it is a long-time pulverized coal blowing operation, and if the amount of basic slag to be blown is increased correspondingly, Thus, a molten or semi-melted state is ensured inside the raceway. The basic slag, which has been melted or semi-molten in the raceway, encounters and assimilates with the pulverized coal ash during the flight in the raceway. The assimilation of the melting point with the slag layer is not delayed, and as a result,
A low melting point slag is generated and assimilated and melted sufficiently inside the raceway with the dripping slag in the furnace.
【0026】なお、前記特公平6−89382号公報に
も、高塩基度媒溶剤として、ドロマイト以外に、転炉ス
ラグを用いることの例示がある。しかしながら、一般的
には、転炉スラグは、後述する表1のNo.4の高リン転炉
スラグの通り、P含有量がP 2 O5 で2〜3%(Pとし
て1.0〜1.3%)と高い。この高リン転炉スラグ
を、高塩基度スラグとして高炉に吹き込んだ場合、溶銑
中のリンが上昇し、高炉より下工程(溶銑予備処理処
理、製鋼工程)にて、鋼中のリン除去のための脱燐処理
が、高炉での微粉炭吹き込みによる源単位の向上分より
も、非常な割高となり、現実的な製銑方法ではなくな
る。It should be noted that Japanese Patent Publication No. 6-89382 describes the above.
In addition to dolomite, as a high basicity solvent,
There is an example of using a lug. However, in general
The converter slag is the No. 4 high phosphorus converter in Table 1 described below.
As slag, P content is P TwoOFiveWith 2-3% (P
1.0 to 1.3%). This high phosphorus converter slag
Is injected into the blast furnace as high basicity slag,
Phosphorus in the furnace rises and the process below the blast furnace (hot metal pretreatment
Dephosphorization treatment to remove phosphorus in steel
However, the improvement of the source unit by pulverized coal injection in the blast furnace
Is also very expensive and not a realistic ironmaking method.
You.
【0027】この下工程における鋼中の脱リン作業がコ
ストアップとならないための、転炉スラグ等の本発明の
塩基性スラグのりん量の上限値は、1.0%である。し
たがって、本発明では、例えば転炉スラグを用いる場合
には、脱リンされた溶銑を吹練した後に生成する低リン
転炉スラグ、それもリンの含有量を1.0%以下とした
転炉スラグを分取したものを粉砕して用いる。The upper limit of the phosphorus content of the basic slag of the present invention, such as converter slag, is 1.0% so that the dephosphorization operation in steel in the lower step does not increase the cost. Therefore, in the present invention, for example, when a converter slag is used, a low-phosphorus converter slag generated after blowing dephosphorized hot metal, which also has a phosphorus content of 1.0% or less. The fractionated slag is crushed and used.
【0028】また、転炉スラグを用いる場合において、
低いリンの転炉スラグを分取することが、転炉の設備上
不可能であれば、CaOを比較的多量に含み(約40
%)塩基性である高炉スラグを粉砕して、転炉スラグと
共に、混合して吹き込むことが好ましい。When using converter slag,
If it is not possible for the converter equipment to separate low phosphorus converter slag, it contains a relatively large amount of CaO (about 40%).
%) It is preferable to pulverize a basic blast furnace slag, mix it with the converter slag, and blow it in.
【0029】更に高炉スラグを用いる場合にも、高炉ス
ラグの塩基度が転炉スラグより低いので、必要な塩基度
を確保するために、吹き込みに必要な量は、転炉スラグ
単体のものより増大する。したがって、スラグの吹き込
み量を低減しようとすれば、転炉スラグと混合して用い
ることが効率上好ましい。Further, even when blast furnace slag is used, since the basicity of the blast furnace slag is lower than that of the converter slag, the amount required for blowing is larger than that of the converter slag alone in order to secure the required basicity. I do. Therefore, in order to reduce the amount of slag to be blown, it is preferable in terms of efficiency to use the slag mixed with the converter slag.
【0030】本発明の塩基性スラグは、微粉炭並に微粉
状で、200メッシュ以下の粒度であることが好まし
い。これより大きい塊状では、作用が遅く、また、レー
スウェイ内部で溶融ないし半溶融状態にならなくなる可
能性が生じる。The basic slag of the present invention is preferably in the form of fine powder similar to pulverized coal and has a particle size of 200 mesh or less. Larger lumps have a slower action and may not be molten or semi-molten inside the raceway.
【0031】前記微粉状とするための、塩基性スラグの
粉砕手段としては、高炉吹き込み前に、高炉微粉炭製造
用ミルに原料スラグを所定量投入して、石炭と混合粉砕
することも可能であり、別途専用ミルで転炉スラグを粉
砕した後に微粉炭と混合して吹き込むことも可能であ
る。As a means for pulverizing the basic slag for pulverization, a predetermined amount of raw material slag may be charged into a blast furnace pulverized coal production mill before blowing into the blast furnace, and mixed and pulverized with coal. Yes, it is also possible to pulverize the converter slag separately with a special mill and then mix it with pulverized coal and blow it.
【0032】また、本発明の塩基性スラグの吹き込み量
について、微粉炭中の灰分の酸性成分量を考慮して、前
記吹き込みスラグと微粉炭中の灰分を混合した時の塩基
度(塩基性成分量/酸性成分量)が0.5〜1.3とな
るようにする。塩基度が0.5未満では、本発明の塩基
性スラグの吹き込み効果が期待できず、また、塩基度が
1.3を越えても、殆ど塩基度の低下効果はない。The amount of basic slag to be blown into the basic slag of the present invention is also considered in consideration of the amount of ash in pulverized coal, and the basicity (basic component) when the slag is mixed with the ash in pulverized coal. (Amount / acid component amount) of 0.5 to 1.3. If the basicity is less than 0.5, the effect of blowing the basic slag of the present invention cannot be expected, and if the basicity exceeds 1.3, there is almost no effect of lowering the basicity.
【0033】塩基性スラグの羽口からの吹き込み方は、
微粉炭と混合乃至別の配管にて吹き込んでも良いが、タ
イミングとしては、最も反応の効率が良い、微粉炭と同
時に高炉に吹き込むのが好ましい。The way of blowing the basic slag from the tuyere
Although it may be mixed with pulverized coal or blown into it with another pipe, it is preferable to blow into the blast furnace at the same time as pulverized coal with the best reaction efficiency.
【0034】[0034]
【発明の実施の形態】次に、本発明の実施例を説明す
る。図1(a)〜(c)は、内容積4550m 3 の高炉
において、表1に示す灰分を有するNo.1の微粉炭を一定
量(200kg/t−溶銑)吹き込み時に、各々違う塩
基性スラグを同時に吹き込んだ場合の、送風圧力の時間
的な変化を示している。なお、図1(a)〜(c)にお
いて、縦軸は送風圧力、横軸は時刻を示している。ま
た、操業条件は、送風量:6000Nm3 /hr、送風
温度:1100℃、羽口前風速:230m/s、羽口
径:135mmφとした。Next, an embodiment of the present invention will be described.
You. FIGS. 1A to 1C show an inner volume of 4550 m. ThreeBlast furnace
In Table 1, the No. 1 pulverized coal with ash shown in Table 1 was fixed
When the amount (200 kg / t-hot metal) is injected, different salt
Time of blast pressure when basic slag is blown simultaneously
Changes. 1 (a) to 1 (c).
The vertical axis indicates the blowing pressure, and the horizontal axis indicates the time. Ma
The operating conditions were as follows: air flow: 6000 NmThree/ Hr, blast
Temperature: 1100 ° C, wind speed in front of tuyere: 230m / s, tuyere
Diameter: 135 mmφ.
【0035】図1(a)は、前記特公平6−89382
号公報に記載された従来の方法であって、高炉中に、表
1に示すNo.2の組成のドロマイト5%(10kg/t−
溶銑)を、微粉炭と混合させて吹き込んだ場合を示す。
図1(b)は、本発明方法で、高炉中に、表1に示すN
o.5の組成の粉砕した低リン転炉スラグ5%(10kg
/t−溶銑)を、微粉炭と混合させて吹き込んだ場合を
示す。図1(c)は、本発明の比較法であって、表1に
示すNo.6の組成の粉砕した高炉スラグ5%(10kg/
t−溶銑)を、微粉炭と混合させて吹き込んだ場合を示
す。なお、塩基度(塩基性成分量/酸性成分量)は、図
1(a)で0.4、図1(b)で0.5、図1(c)で
0.4である。FIG. 1 (a) shows the above-mentioned Japanese Patent Publication No. 6-89382.
No. 2 dolomite having a composition of No. 2 shown in Table 1 (10 kg / t-
(Hot metal) is mixed with pulverized coal and blown.
FIG. 1 (b) shows the method of the present invention, in which the N
5% pulverized low phosphorus converter slag with a composition of o.5 (10kg
/ T-hot metal) is mixed with pulverized coal and blown. FIG. 1 (c) shows a comparative method of the present invention, in which 5% of crushed blast furnace slag having a composition of No. 6 shown in Table 1 (10 kg /
(t-hot metal) is mixed with pulverized coal and blown. The basicity (basic component amount / acid component amount) is 0.4 in FIG. 1 (a), 0.5 in FIG. 1 (b), and 0.4 in FIG. 1 (c).
【0036】図1(a)では、矢印Sで示すドロマイト
吹き込みを開始した0時過ぎ以降は、吹き込み前に比し
て、風圧レベルの変動が減少している。これは、ドロマ
イトによる通気性改善効果と言える。但し、その効果は
送風圧の2%程度であり、全微粉炭量に対する吹き込み
ドロマイトの添加割合の多さ(5%)からすると、その
効果の効率は低い。これは、前記特公平6−89382
号公報技術の問題として記載した通り、ドロマイトが溶
融しないまま、コークスベッド(炉芯)に取り込まれて
しまい、未溶融のまま炉心に残るため、通気性を損なっ
ているものと推察される。In FIG. 1A, the fluctuation of the wind pressure level after 0:00 after the start of the dolomite blowing indicated by the arrow S is smaller than before the blowing. This can be said to be the air permeability improvement effect of dolomite. However, the effect is about 2% of the blowing pressure, and the efficiency of the effect is low in view of the large addition ratio (5%) of the blown dolomite to the total pulverized coal amount. This is the above-mentioned Japanese Patent Publication No. 6-89382.
As described as a problem of the technology disclosed in Japanese Unexamined Patent Application Publication No. 10-209, it is presumed that the dolomite is taken into the coke bed (core) without being melted, and remains in the core unmelted, thereby impairing air permeability.
【0037】一方、微粉炭と粉砕した転炉スラグ5%を
上乗せして吹き込んだ、本発明の図1(b)では、矢印
Sで示す転炉スラグ吹き込みを開始した2時過ぎ以降
は、吹き込み前に比して、風圧レベルの変動は減少して
おり、転炉スラグが通気性の改善に効果があるのが分か
る。また、その効果は送風圧の6%程度であり、全微粉
炭の5%の吹き込みを行った効果としては効率が高く満
足できる。On the other hand, in FIG. 1 (b) of the present invention, pulverized coal and pulverized converter slag 5% are added and blown, and after 2 o.m. The fluctuation of the wind pressure level is smaller than before, and it can be seen that the converter slag is effective in improving the air permeability. The effect is about 6% of the blowing pressure, and the effect of blowing 5% of the whole pulverized coal is highly efficient and satisfactory.
【0038】また、図1(c)は、本発明の方法で、同
じくプリメルト品のスラグ(フラックス)である粉砕し
た高炉スラグ5%を上乗せして吹き込んだ場合の送風圧
力の変化を示すが、矢印Sで示す高炉スラグ吹き込みを
開始した3時過ぎ以降は、風圧レベルの変動は、減少し
ているのが分かる。また、その効果は送風圧の3%程度
の減少であった。したがって、高炉スラグでも、羽口前
の高融点スラグ層を溶融および滓化する効果はあるが、
組成的に転炉スラグよりも塩基度が低いゆえ、転炉スラ
グ並の効果を得るには、より多くのスラグを吹き込む必
要がある。FIG. 1 (c) shows the change in the blowing pressure when 5% of crushed blast furnace slag, which is also a slag (flux) of a pre-melt product, is blown in with the method of the present invention. It can be seen that the fluctuation of the wind pressure level is decreasing after 3:00 after the start of the blast furnace slag blowing indicated by the arrow S. Also, the effect was a decrease of about 3% of the blowing pressure. Therefore, blast furnace slag also has the effect of melting and slagging the high melting point slag layer in front of the tuyere,
Since the composition is lower in basicity than converter slag, more slag must be blown in to obtain the same effect as converter slag.
【0039】但し、吹き込んだ高炉スラグが、炉芯に残
存することはないので長期間の安定した吹き込みは可能
である。したがって、低リンの転炉スラグ量が十分確保
できない場合に、転炉スラグと併用して用いると有効で
ある。However, since the blown blast furnace slag does not remain in the furnace core, long-term stable blow is possible. Therefore, it is effective to use the converter slag together with the converter slag when a sufficient amount of low phosphorus converter slag cannot be secured.
【0040】図2(a)、(b)に、図1(a)の微粉
炭とドロマイトの吹き込み(従来技術)と、図1(b)
の微粉炭と転炉スラグの吹き込み(本発明)とを、各々
一週間継続した後、予定休風時に炉内のコークスやスラ
グ類をサンプリングし、スラグ組成を調査した結果を示
す。FIGS. 2A and 2B show the pulverized coal and dolomite injection shown in FIG. 1A (prior art) and FIG.
After the pulverized coal and converter slag blowing (the present invention) were continued for one week each, the coke and slag in the furnace were sampled during scheduled outage, and the results of investigation of the slag composition are shown.
【0041】図2(a)の炉内無次元半径におけるMg
O量の分布から、従来技術(△印)では、本発明例(□
印)や、微粉炭操業を行わぬベース操業(◇印)に比し
て、特に炉芯部分(炉内無次元半径0.5の付近)で、
スラグ中のMgO量が急増しており、ドロマイトの主成
分であるMgOが、未溶融のまま羽口より奥に蓄積して
いることが分かる。The Mg in the non-dimensional radius in the furnace shown in FIG.
From the distribution of the amount of O, the prior art (△) shows the present invention example (□
Mark) and the base operation without pulverized coal operation (marked with で), especially in the core part (around the dimensionless radius 0.5 in the furnace)
It can be seen that the amount of MgO in the slag has increased sharply, and that MgO, the main component of dolomite, has accumulated in the back of the tuyere unmelted.
【0042】このように、融点の高いドロマイト等の媒
溶剤を羽口より吹き込んだ場合、溶融および滓化が進ま
ず、炉芯に蓄積することが明らかである。この炉芯蓄積
は長期に微粉炭とフラックスの混合吹き込みを継続した
場合、炉芯の通気性不良を起こす結果となる。そのため
炉芯の未滓化スラグを溶解させるような操業、例えば、
一時的に、微粉炭や媒溶剤の吹き込みを中止する等のア
クションが必要となり、再び風圧の上昇という結果を招
くことになる。As described above, when a medium solvent such as dolomite having a high melting point is blown from the tuyere, it is clear that melting and slagging do not proceed and accumulate in the furnace core. This core accumulation results in poor air permeability of the core when the mixing and blowing of pulverized coal and flux is continued for a long time. Therefore, operations such as melting the unslag slag of the furnace core, for example,
An action such as temporarily stopping the blowing of pulverized coal or a solvent is required, which results in an increase in wind pressure again.
【0043】また、図2(b)に示す、炉内無次元半径
におけるCaO量の分布の場合にも、転炉スラグを用い
た本発明例(□印)では、微粉炭操業を行わぬベース操
業(◇印)に比しても、炉内半径方向のスラグ中のCa
O量の変化はあまり無く、転炉スラグの主成分であるC
aOが羽口より奥に蓄積していないことが分かる。この
ように、転炉スラグを羽口より吹き込んだ場合、溶融お
よび滓化が速やかに進行し、レースウェイ前方では微粉
炭由来のスラグと同化してしまい、炉芯に蓄積しないこ
とが明らかである。Also, in the case of the CaO distribution at the non-dimensional radius in the furnace shown in FIG. 2B, in the present invention example using the converter slag (indicated by □), the base without pulverized coal operation is used. Compared to the operation (marked with 内), Ca
The amount of O does not change much, and C, the main component of converter slag,
It can be seen that aO is not accumulated deeper than the tuyere. As described above, when the converter slag is blown from the tuyere, melting and slagging progress rapidly, and assimilate with the slag derived from pulverized coal in front of the raceway, and it is apparent that the slag does not accumulate in the furnace core. .
【0044】これは長期に微粉炭とフラックスの混合吹
き込みを継続しても、炉芯の通気性不良を起こさない結
果となる。そのためフラックスの混合吹き込みのよう
に、炉芯の未滓化フラックスを溶解させるような操業、
即ち一時的にフラックスの混合を中止するアクションが
不要となり、風圧のレベルを下げた安定した操業を継続
できる。As a result, even if the mixing and blowing of the pulverized coal and the flux are continued for a long period of time, poor air permeability of the core does not occur. For this reason, such operations as dissolving the unslag flux in the furnace core, such as mixing and blowing of flux,
In other words, there is no need to temporarily stop the mixing of the flux, and stable operation with a reduced wind pressure level can be continued.
【0045】また、送風圧力の低下による送風電力の低
減や、ボッシュガス(炉内ガス)の周辺流化の抑制、お
よび送風圧の低下分を利用した微粉炭吹き込み量の増大
が可能になる。そして、炉頂から挿入する副原料を羽口
からのリサイクル原料であるスラグに置き換えること
で、副原料コストを削減することができる。Further, it is possible to reduce the blowing power by reducing the blowing pressure, to suppress the peripheral flow of Bosch gas (furnace gas), and to increase the amount of pulverized coal injected by using the reduced blowing pressure. Then, by replacing the auxiliary raw material inserted from the furnace top with slag, which is a recycled raw material from the tuyere, the auxiliary raw material cost can be reduced.
【0046】更に、炉頂からの石灰石やドロマイトの挿
入を抑制することで、これらが分解してCO2 を発生す
る時に消費する熱エネルギーを節減することができる。Further, by suppressing the insertion of limestone and dolomite from the furnace top, the heat energy consumed when these decompose and generate CO 2 can be reduced.
【0047】[0047]
【表1】 [Table 1]
【0048】[0048]
【発明の効果】以上説明したように、本発明の高炉操業
方法は、微粉炭の吹き込み量が極めて大きく、それに伴
い吹き込む高塩基度媒溶剤の量が増大した操業の場合で
も、高塩基度媒溶剤の溶融・滓化が遅れ、未溶融のまま
炉心に残ることが無い。また高塩基度媒溶剤が分解する
際に分解熱を奪い、この熱補償のために燃料比や、ガス
回収のコストががアップするなどの悪影響をもたらすこ
とも無く、羽口前レースウェイ部の微粉炭を吹き込み時
の通気性を改善し、微粉炭吹き込みの長時間操業を可能
にすることができる。しかも、その効果が、従来の方法
を大幅に変更することなく達成できる点で工業的な意義
は大きい。As described above, the method for operating a blast furnace according to the present invention can provide a high basicity medium even in an operation in which the amount of pulverized coal injected is extremely large and the amount of the high basicity medium solvent blown is increased accordingly. The melting and slagging of the solvent is delayed and does not remain in the core unmelted. In addition, when the high basicity solvent decomposes, it takes away the heat of decomposition, and this heat compensation does not cause adverse effects such as an increase in the fuel ratio or gas recovery cost. It is possible to improve the air permeability when pulverized coal is blown and to enable long-time operation of pulverized coal blown. In addition, the effect is industrially significant in that the effect can be achieved without greatly changing the conventional method.
【図1】微粉炭と種々の塩基性スラグを同時に吹き込ん
だ場合の、高炉内の送風圧力の経時変化を示し、図1
(a)は従来技術、図1(b)、(c)は本発明例の説
明図である。FIG. 1 shows the time-dependent change of the blowing pressure in a blast furnace when pulverized coal and various basic slags are blown simultaneously.
1A is an explanatory diagram of a conventional technique, and FIGS. 1B and 1C are explanatory diagrams of an example of the present invention.
【図2】微粉炭と種々の塩基性スラグの同時吹き込みを
一週間継続した後の、従来技術と本発明例の炉内のスラ
グ組成を示し、図2(a)はMgO、図2(b)はCa
Oに関する説明図である。FIG. 2 shows the slag composition in the furnace of the prior art and the example of the present invention after the simultaneous injection of pulverized coal and various basic slags for one week, FIG. 2 (a) shows MgO, FIG. ) Is Ca
It is explanatory drawing regarding O.
【図3】従来法による、微粉炭と高塩基度媒溶剤の同時
吹き込み時のレースウエイ状況を示す、説明図である。FIG. 3 is an explanatory view showing a raceway situation when pulverized coal and a high basicity solvent are simultaneously injected according to a conventional method.
【図4】従来法による、微粉炭のみの吹き込み時のレー
スウエイ状況を示す、説明図である。FIG. 4 is an explanatory view showing a raceway situation when only pulverized coal is blown according to a conventional method.
【図5】図5(a)は微粉炭吹き込み量と高炉空隙率と
の関係を示し、図5(b)は高融点スラグ壁厚と高炉空
隙率との関係を示す説明図である。FIG. 5 (a) shows the relationship between the amount of pulverized coal injected and the blast furnace porosity, and FIG. 5 (b) is an explanatory diagram showing the relationship between the high melting point slag wall thickness and the blast furnace porosity.
1:ランス 2:レースウエ
イ 3:高融点スラグ壁 4:微粉炭 5:送風ガス 6:メタル・ス
ラグ滴 7:羽口 8:コークス層 9:高炉壁 10:塩基性媒溶
剤 11:微粉炭灰分1: Lance 2: Raceway 3: High melting point slag wall 4: Pulverized coal 5: Blast gas 6: Metal slag drop 7: Tuyere 8: Coke layer 9: Blast furnace wall 10: Basic solvent 11: Pulverized coal ash
Claims (3)
き込む際、微粉炭とともに塩基性スラグを吹き込み、該
スラグを微粉炭灰分と同化させて、微粉炭灰分によりレ
ースウェイ奥に生成する高融点のスラグ層(通称鳥の
巣)の成長を抑制し、微粉炭吹き込み時の炉内通気性を
改善する高炉操業方法において、前記吹き込みスラグと
して、レースウェイの温度以下の融点を有するプリメル
トスラグであって、リンの含有量が1.0%以下のもの
を用い、かつ、前記吹き込みスラグと微粉炭中の灰分を
混合した時の塩基度(塩基性成分量/酸性成分量)が
0.5〜1.3となるように前記吹き込みスラグの量を
調整することを特徴とする粉体吹き込み高炉操業方法。When a pulverized coal is blown together with a blowing gas from a blast furnace tuyere, a basic slag is blown together with the pulverized coal, the slag is assimilated with the pulverized coal ash, and a high melting point formed in the back of the raceway by the pulverized coal ash. In the blast furnace operating method for suppressing the growth of a slag layer (commonly known as a bird's nest) and improving the air permeability in the furnace when pulverized coal is injected, the blown slag may be a premelt slag having a melting point equal to or lower than a raceway temperature. The basicity (the amount of basic component / the amount of acidic component) when the slag in the blown slag and the ash in the pulverized coal are mixed is 0.5% or less. The method of operating a powder-blasting blast furnace, comprising adjusting the amount of the blowing slag so as to be 1.3.
/t−銑鉄以上である請求項1に記載の粉体吹き込み高
炉操業方法。2. The blowing amount of the pulverized coal is 100 kg.
2. The method for operating a powder-blasted blast furnace according to claim 1, wherein the blast furnace is not less than / t-pig iron.
グおよび/または高炉スラグを用いる請求項1または2
に記載の粉体吹き込み高炉操業方法。3. A converter slag and / or a blast furnace slag as the premelt slag.
2. The method for operating a powder-blasted blast furnace according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00474597A JP3533062B2 (en) | 1997-01-14 | 1997-01-14 | Powder blowing blast furnace operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00474597A JP3533062B2 (en) | 1997-01-14 | 1997-01-14 | Powder blowing blast furnace operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10204511A true JPH10204511A (en) | 1998-08-04 |
JP3533062B2 JP3533062B2 (en) | 2004-05-31 |
Family
ID=11592461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00474597A Expired - Lifetime JP3533062B2 (en) | 1997-01-14 | 1997-01-14 | Powder blowing blast furnace operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3533062B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002235105A (en) * | 2001-02-07 | 2002-08-23 | Kobe Steel Ltd | METHOD FOR OPERATING LOW Si MOLTEN IRON BY INJECTION OF PULVERIZED FINE COAL AT HIGH RATIO IN BLAST FURNACE |
JP2005307303A (en) * | 2004-04-23 | 2005-11-04 | Jfe Steel Kk | Method for operating blast furnace |
JP2014162938A (en) * | 2013-02-22 | 2014-09-08 | Kobe Steel Ltd | Blast furnace operation method |
-
1997
- 1997-01-14 JP JP00474597A patent/JP3533062B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002235105A (en) * | 2001-02-07 | 2002-08-23 | Kobe Steel Ltd | METHOD FOR OPERATING LOW Si MOLTEN IRON BY INJECTION OF PULVERIZED FINE COAL AT HIGH RATIO IN BLAST FURNACE |
JP2005307303A (en) * | 2004-04-23 | 2005-11-04 | Jfe Steel Kk | Method for operating blast furnace |
JP2014162938A (en) * | 2013-02-22 | 2014-09-08 | Kobe Steel Ltd | Blast furnace operation method |
Also Published As
Publication number | Publication date |
---|---|
JP3533062B2 (en) | 2004-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4988079A (en) | Apparatus for smelting and reducing iron ores | |
KR20120023057A (en) | Blast furnace operation method | |
AU2008301651B2 (en) | Process for producing molten iron | |
KR100635420B1 (en) | Coal Combustion Enhancer and Method of Using in Blast Furnace | |
AU2008301652B2 (en) | Process for producing molten iron | |
JP4326581B2 (en) | How to operate a vertical furnace | |
JP3533062B2 (en) | Powder blowing blast furnace operation method | |
JP4061135B2 (en) | Blast furnace operation method with pulverized coal injection | |
JP2002121609A (en) | Method for operating blast furnace by injecting large quantity of pulverized coal | |
JPS62199706A (en) | Blast furnace operating method by powder blowing | |
JP6740779B2 (en) | Method of melting ferrous material | |
JPH06108126A (en) | Operation of blast furnace | |
JP4768921B2 (en) | High pulverized coal injection low Si blast furnace operation method | |
JP3590543B2 (en) | How to inject iron-containing powder into the blast furnace | |
JP3617464B2 (en) | Blast furnace operation method | |
CN114717382A (en) | Electric arc furnace steelmaking method | |
JP3294466B2 (en) | Operation method of high blown Mn in converter | |
JP2666397B2 (en) | Hot metal production method | |
JP2002060809A (en) | Low furnace heat blast furnace operation method using sintered ore having controlled chemical composition | |
JP2002060814A (en) | Low-silicon blast furnace operation method in the case of blowing pulverized coal in high ratio | |
JPH08176631A (en) | Operation of vertical type metal smelting reduction furnace | |
JP2002060808A (en) | Blast furnace operation method using sintered ore having controlled chemical composition | |
JPH11152508A (en) | Operation of injecting pulverized fine coal in blast furnace | |
JP2000096113A (en) | Method for blowing powdery iron source into blast furnace | |
JPH068446B2 (en) | Method for melting and refining iron-based scrap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040305 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080312 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110312 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110312 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120312 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120312 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140312 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |