JPH10188986A - Manufacture of positive electrode active material for lithium secondary battery - Google Patents
Manufacture of positive electrode active material for lithium secondary batteryInfo
- Publication number
- JPH10188986A JPH10188986A JP8359028A JP35902896A JPH10188986A JP H10188986 A JPH10188986 A JP H10188986A JP 8359028 A JP8359028 A JP 8359028A JP 35902896 A JP35902896 A JP 35902896A JP H10188986 A JPH10188986 A JP H10188986A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- citric acid
- ions
- positive electrode
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はリチウム二次電池に
関し、さらに詳しくは、リチウム二次電池の正極に用い
られる活物質の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a method for producing an active material used for a positive electrode of a lithium secondary battery.
【0002】[0002]
【従来の技術】リチウム二次電池は、高エネルギー密度
を有し、小型・軽量化が図れるということで、パソコン
や携帯電話などの通信事務用機器、あるいは将来的には
電気自動車用の電源などとしての用途が期待されてい
る。2. Description of the Related Art Lithium secondary batteries have a high energy density and can be reduced in size and weight, so that they can be used for communication office equipment such as personal computers and mobile phones, or power supplies for electric vehicles in the future. The use as is expected.
【0003】ところでこのリチウム二次電池は、一般に
は正極にリチウム(Li)と遷移金属(M)との複合酸
化物を用い、負極に金属リチウム、あるいはリチウム原
子を炭素に含有させたものを用いている。そして非水系
の有機電解液中でのリチウムイオンの正極への移動によ
り放電が、また負極への移動により充電が行われ、この
ような充放電を繰り返すことにより二次電池としての特
性を発揮する。[0003] Incidentally, this lithium secondary battery generally uses a composite oxide of lithium (Li) and a transition metal (M) for the positive electrode, and uses metal lithium or a lithium atom contained in carbon for the negative electrode. ing. Discharge is caused by the movement of lithium ions to the positive electrode in the non-aqueous organic electrolyte, and charging is performed by movement to the negative electrode. By repeating such charge and discharge, the characteristics as a secondary battery are exhibited. .
【0004】このようなリチウム二次電池の電池特性に
おいて、電池としての高容量化を図るため正極材料は高
い放電容量をもつことが要求される。そしてこの正極材
料として、従来一貫してコバルト酸リチウム(LiCo
O2 )が用いられてきたが、コスト・資源の問題からこ
れに代わる材料としてニッケル酸リチウム(LiNiO
2 )やマンガン酸リチウム(LiMn2O4)などの材料
開発も行われてきた。In the battery characteristics of such a lithium secondary battery, a positive electrode material is required to have a high discharge capacity in order to increase the capacity of the battery. Conventionally, lithium cobalt oxide (LiCo
O 2 ) has been used, but lithium nickel oxide (LiNiO) has been used as an alternative material due to cost and resource problems.
2 ) and materials such as lithium manganate (LiMn 2 O 4 ) have also been developed.
【0005】そうした中で例えば、LiMn2O4の製造
方法としては、固相法あるいは液相法が知られてい
る。例えば、固相法に依るものとしては、特開平2−1
39860号公報に示されるように、酸化リチウム(L
i2O )と二酸化マンガン(MnO2 )の粉末原料を混
合し加熱焼成する、あるいはこの公報には示されてない
が、炭酸リチウム(Li2CO3)と炭酸マンガン(Mn
CO3 )の粉末原料を混合し加熱焼成する等が挙げられ
る。Among them, for example, a solid phase method or a liquid phase method is known as a method for producing LiMn 2 O 4 . For example, Japanese Patent Application Laid-Open No.
As shown in JP 39860B, lithium oxide (L
i 2 O) and manganese dioxide (MnO 2 ) powder materials are mixed and fired, or, although not shown in this publication, lithium carbonate (Li 2 CO 3 ) and manganese carbonate (Mn)
CO 3 ) powdered raw materials are mixed and heated and fired.
【0006】一方液相法に依るものとしては、例えば特
開平7−142065号公報に示されるように、水酸化
リチウム(LiOH)水溶液と酢酸マンガン(Mn(C
H3OO)2)水溶液及びクエン酸(C3H4(OH)(C
OOH)3)水溶液の各水溶液を混合し、脱水加熱によ
り乾燥してクエン酸錯体を得た後、これを加熱焼成して
LiMn2O4の正極活物質を作製するものが挙げられ
る。On the other hand, the method using the liquid phase method is disclosed in, for example, Japanese Patent Laid-Open No. 7-142065, in which a lithium hydroxide (LiOH) aqueous solution and manganese acetate (Mn (C
H 3 OO) 2 ) aqueous solution and citric acid (C 3 H 4 (OH) (C
After mixing each aqueous solution of OOH) 3 ) and drying by dehydrating and heating to obtain a citrate complex, this is heated and calcined to produce a LiMn 2 O 4 cathode active material.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、前者の
固相法に依る場合には、焼成温度が低い(500℃以
下)と正極活物質としての放電容量が少なくなり、また
焼成温度を高く(700℃以上)すると放電容量は若干
上がるものの、材料そのものが劣化し易くなるという問
題がある。However, in the case of using the former solid-phase method, when the firing temperature is low (500 ° C. or less), the discharge capacity as the positive electrode active material decreases, and when the firing temperature is high (700 ° C.). (° C. or more), the discharge capacity is slightly increased, but there is a problem that the material itself is easily deteriorated.
【0008】一方後者の液相法に依る場合には、例えば
前述の特開平7−142065号公報に示されるLiM
n2O4の活物質は固相法に依るものに較べて比較的高い
放電容量が得られるが、それでもこの公報に示されるL
iMn2O4の放電容量は130mAh/g程度であっ
て、理論容量(148mAh/g)の88%程度に過ぎ
ないことが本発明者等の実験で確認された。On the other hand, in the case of using the latter liquid phase method, for example, LiM is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-142065.
The n 2 O 4 active material can obtain a relatively high discharge capacity as compared with that based on the solid-phase method.
The inventors' experiments confirmed that the discharge capacity of iMn 2 O 4 was about 130 mAh / g, which was only about 88% of the theoretical capacity (148 mAh / g).
【0009】本発明者等はさらに放電容量を向上させる
べく鋭意研究を行った結果、放電容量の向上には組成の
均一性をより一層高めることが重要であると考えた。そ
こで本発明者等は、上述の特開平7−142065号公
報に示されるLiMnO4 の製造過程においてクエン酸
錯体法における前駆体の形成状態が、リチウム原料の種
類によって、あるいはクエン酸の配合比を変えることに
よって変化することに着目し、本発明をするに至ったも
のである。The present inventors have conducted intensive studies to further improve the discharge capacity. As a result, they have found that it is important to further improve the uniformity of the composition in order to improve the discharge capacity. Therefore, the present inventors have proposed that the state of formation of the precursor in the citric acid complex method in the production process of LiMnO 4 shown in the above-mentioned Japanese Patent Application Laid-Open No. 7-142065 depends on the type of lithium raw material or the mixing ratio of citric acid. The present invention focuses on the fact that it is changed by changing, and has led to the present invention.
【0010】すなわち、リチウム原料の点では、様々な
リチウム塩を検討した結果、水酸化リチウムを使用する
よりも、酸性リチウム塩、特に酢酸リチウムを使用した
場合に、電子スピン共鳴ESR (Electron Spin Reson
ance)で観測される錯体中のMn2+濃度が高くなること
を見出した。That is, in terms of lithium raw materials, various lithium salts were examined. As a result, when an acidic lithium salt, particularly lithium acetate, was used rather than lithium hydroxide, electron spin resonance ESR (Electron Spin Resonance) was used.
ance) was found to increase the Mn 2+ concentration in the complex.
【0011】さらに、クエン酸の配合比の点では、クエ
ン酸錯体中の陽イオンであるリチウムイオンとマンガン
イオンの総価数に対し110%とすることで、錯体中の
Mn2+濃度がより高くなることを見出した。このことは
水溶液中のMn2+イオンが、独立したイオンの状態で錯
体中に取り込まれる割合が高いことを示している。Further, in terms of the mixing ratio of citric acid, the Mn 2+ concentration in the complex can be further increased by setting it to 110% of the total valence of lithium ions and manganese ions, which are cations in the citric acid complex. Found to be higher. This indicates that the ratio of Mn 2+ ions in the aqueous solution taken into the complex in a state of independent ions is high.
【0012】すなわち、電子スピン共鳴(ESR)の原
理上、Mn2+イオンが近接して反強磁性的な相互作用が
生じると、観測にかかるMn2+イオンが少なく見積もら
れるので、Mn2+イオンがより多く観測されるというこ
とは、Mn2+イオンが偏析する事なく錯体中に均一に分
散している事を意味している。したがって電子スピン共
鳴(ESR)でMn2+イオン濃度が高く観測されるとい
う事は、より均一な錯体が形成されている事を示してい
ると考えられ、それを焼成して得られる物質は組成の均
一な化合物となることが期待されるものである。Namely, the principle of electron spin resonance (ESR), the antiferromagnetic interaction Mn 2+ ions close occurs because Mn 2+ ions according to the observation is underestimated, Mn 2+ The fact that more ions are observed means that Mn 2+ ions are uniformly dispersed in the complex without segregation. Therefore, a high Mn 2+ ion concentration observed by electron spin resonance (ESR) is considered to indicate that a more uniform complex has been formed. Is expected to be a uniform compound.
【0013】本発明の解決しようとする課題は、リチウ
ム二次電池用の正極活物質を製造するに際し、マンガン
イオン濃度の高いクエン酸錯体を中間生成物としていわ
ゆる液相法により生成し、これにより最終的には組成が
均一で、かつ高い放電容量を持つ正極活物質を製造する
ことにある。これによりリチウム二次電池の電気容量
(電池容量)を高めんとするものである。The problem to be solved by the present invention is to produce a positive electrode active material for a lithium secondary battery by producing a citric acid complex having a high manganese ion concentration as an intermediate product by a so-called liquid phase method. Finally, it is to produce a positive electrode active material having a uniform composition and a high discharge capacity. Thus, the electric capacity (battery capacity) of the lithium secondary battery is increased.
【0014】[0014]
【課題を解決するための手段】この課題を解決するため
本発明に係るリチウム二次電池用正極活物質の製造方法
は、酸性リチウム塩と酸性マンガン塩とクエン酸とによ
りクエン酸錯体の水溶液を生成する工程と、このクエン
酸錯体を脱水して前駆体を生成する工程と、この前駆体
を焼成してLixMn2O4 (0<X<2)を生成する工
程とからなることを要旨とするものである。Means for Solving the Problems To solve this problem, a method for producing a positive electrode active material for a lithium secondary battery according to the present invention comprises a method of preparing an aqueous solution of a citric acid complex with an acidic lithium salt, an acidic manganese salt and citric acid. Forming a precursor, dehydrating the citrate complex to produce a precursor, and calcining the precursor to produce Li x Mn 2 O 4 (0 <X <2). It is an abstract.
【0015】この場合に酸性リチウム塩としては、塩
酸、希硫酸、希硝酸、リン酸などの無機酸のリチウム塩
のほか、酢酸、シュウ酸、酒石酸などの有機酸のリチウ
ム塩も挙げられる。また酸性マンガン塩も、各種の無機
酸のマンガン塩のほか、酢酸をはじめとする各種の有機
酸のマンガン塩が好適なものとして挙げられる。In this case, examples of the acidic lithium salt include lithium salts of inorganic acids such as hydrochloric acid, diluted sulfuric acid, diluted nitric acid, and phosphoric acid, and lithium salts of organic acids such as acetic acid, oxalic acid, and tartaric acid. Suitable acidic manganese salts include manganese salts of various inorganic acids and manganese salts of various organic acids such as acetic acid.
【0016】酸性リチウム塩と酸性マンガン塩の配合比
は複合酸化物の組成比とする。しかしこれに加えられる
クエン酸の配合比は、そのクエン酸(3価)の電荷の総
和がクエン酸錯体溶液中の陽イオンであるリチウムイオ
ンとマンガンイオンの総価数に対して等価以上であるこ
とが好ましく、望ましくはおよそ110%とするのがよ
い。The compounding ratio of the acidic lithium salt and the acidic manganese salt is the composition ratio of the composite oxide. However, the mixing ratio of citric acid added thereto is such that the sum of the charges of the citric acid (trivalent) is equal to or more than the total valence of lithium ions and manganese ions which are cations in the citric acid complex solution. Preferably, it is preferably about 110%.
【0017】次に脱水工程は、目的物であるLixMn2
O4 (0<X<2)の前駆体としての非晶質のクエン酸
錯体を生成する工程であるが、この工程は、減圧下で、
80〜90℃で加熱脱水し、さらに150〜300℃に
加熱するのが望ましい。最初から高い温度で加熱すると
錯体が一部分解するおそれがあり、長い時間低い温度で
加熱すると結晶質が偏析して非晶質が損なわれることが
懸念されることに因る。Next, in the dehydration step, the target Li x Mn 2
This is a step of forming an amorphous citric acid complex as a precursor of O 4 (0 <X <2), and this step is performed under reduced pressure.
It is desirable to heat and dehydrate at 80 to 90 ° C and further heat to 150 to 300 ° C. If the mixture is heated at a high temperature from the beginning, the complex may be partially decomposed, and if the mixture is heated at a low temperature for a long time, there is a concern that the crystalline material is segregated and the amorphous is damaged.
【0018】最後の焼成工程は、活物質が分解しない範
囲で高い焼成温度で行うのがよい。例えば、600〜8
00℃の焼成温度で3〜8時間焼成すると、結晶がよく
成長して材料の耐劣化性がよく、放電容量も大きなもの
が得られる。The final firing step is preferably performed at a high firing temperature within a range where the active material is not decomposed. For example, 600-8
When calcination is performed at a calcination temperature of 00 ° C. for 3 to 8 hours, the crystal grows well, the material has good deterioration resistance, and a large discharge capacity is obtained.
【0019】しかしてリチウム原料として酸性リチウム
塩を用いることにより水酸化リチウムなどのアルカリ塩
を用いた場合の水溶液のpHに比べて酸性度が高くな
り、これにより酸性マンガン塩の解離が促進されるの
で、クエン酸錯体水溶液中にMn2+イオンがより多く存
在できる。特に酢酸リチウムを用いると酸性度が高くな
って、一層酸性マンガン塩の解離度が増し、クエン酸錯
体水溶液中のMn2+イオンの存在量が多くなる。However, by using an acidic lithium salt as a lithium raw material, the acidity becomes higher than the pH of an aqueous solution when an alkali salt such as lithium hydroxide is used, thereby promoting the dissociation of the acidic manganese salt. Therefore, more Mn 2+ ions can be present in the aqueous citric acid complex solution. In particular, when lithium acetate is used, the acidity increases, the degree of dissociation of the acidic manganese salt further increases, and the abundance of Mn 2+ ions in the aqueous citrate complex solution increases.
【0020】そしてクエン酸の配合比をその錯体溶液中
のクエン酸の電荷の総和が陽イオンであるリチウムイオ
ンとマンガンイオンの総価数に対して等価以上の量にな
るようにすることにより、Mn2+イオンがリチウムイオ
ンとともにクエン酸錯体を形成する段階で、過剰に加え
たクエン酸がすべてのMn2+イオンと錯体となる。した
がって、溶液中のMn2+イオンは、余すことなくクエン
酸と錯体を形成するので、錯体中には均一にMn2+イオ
ンが分散し、それから得られる焼成物は組成が均一で高
い放電容量を示すLixMn2O4 (0<X<2)が得ら
れるものである。The compounding ratio of citric acid is adjusted so that the sum of the charges of citric acid in the complex solution is equal to or greater than the total valence of lithium ions and manganese ions as cations. at the stage where Mn 2+ ions to form a citrate complex with lithium ions, excess citric acid was added are all of Mn 2+ ions and complex. Therefore, the Mn 2+ ions in the solution form a complex with citric acid without excess, so that the Mn 2+ ions are uniformly dispersed in the complex, and the fired product obtained therefrom has a uniform composition and a high discharge capacity. Li x Mn 2 O 4 (0 <X <2) is obtained.
【0021】[0021]
【発明の実施の形態】以下、本発明を実施例により具体
的に説明する。 (実施例1)酢酸リチウム・二水和物(LiCOOH・
2H2O )13.263gを50mlの水に溶かし、酢
酸リチウム水溶液を作製した。続いて、酢酸マンガン・
四水和物(Mn(CH3COO)2・4H2O )63.7
23gを200mlの水に溶かし、酢酸マンガン水溶液
を作製した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples. (Example 1) Lithium acetate dihydrate (LiCOOH
13.263 g of 2H 2 O) was dissolved in 50 ml of water to prepare a lithium acetate aqueous solution. Then, manganese acetate
Tetrahydrate (Mn (CH 3 COO) 2 .4H 2 O) 63.7
23 g was dissolved in 200 ml of water to prepare a manganese acetate aqueous solution.
【0022】次にクエン酸(C3H4(OH)(COO
H)3 )46.122gを150mlの水に溶かし、ク
エン酸水溶液を作製し、これに酢酸マンガン水溶液を加
え、さらに、酢酸リチウム水溶液を加えた。このときリ
チウムイオンとマンガンイオンとクエン酸イオンのモル
比は、1.00:2.00:1.83であった。したが
ってこの水溶液中のクエン酸の配合比は、リチウムイオ
ンとマンガンイオンのおよそ110%である。このとき
の混合溶液のpHは、3.0であった。Next, citric acid (C 3 H 4 (OH) (COO)
H) 3 ) 46.122 g was dissolved in 150 ml of water to prepare a citric acid aqueous solution, to which a manganese acetate aqueous solution was added, and further, a lithium acetate aqueous solution was added. At this time, the molar ratio of lithium ion, manganese ion, and citrate ion was 1.00: 2.00: 1.83. Therefore, the mixing ratio of citric acid in this aqueous solution is about 110% of lithium ions and manganese ions. The pH of the mixed solution at this time was 3.0.
【0023】次にこの混合溶液を、ロータリーエバポレ
ータ中で、減圧雰囲気下で、80〜90℃に加熱して脱
水し、固形物を得た。この固形物を、さらに250℃ま
で加熱し、目的物であるLixMn2O4 (0<X<2
0)の前駆体としてのクエン酸錯体を得た。Next, this mixed solution was heated to 80 to 90 ° C. in a rotary evaporator under a reduced pressure atmosphere to be dehydrated to obtain a solid. The solid is further heated to 250 ° C., and Li x Mn 2 O 4 (0 <X <2
A citric acid complex as a precursor of 0) was obtained.
【0024】この前駆体中のMn2+イオン数を電子スピ
ン共鳴(ESR)装置で定量したところ、単位質量当た
り1.63×1021個のMn2+イオンが検出された。前
駆体の総重量は63.1gであったので、10.3×1
022個のMn2+イオンが存在する事がわかった。When the number of Mn 2+ ions in this precursor was quantified by an electron spin resonance (ESR) apparatus, 1.63 × 10 21 Mn 2+ ions per unit mass were detected. Since the total weight of the precursor was 63.1 g, 10.3 × 1
It was found that there were 0 22 Mn 2+ ions.
【0025】この前駆体10gを、アルミナるつぼに入
れ、大気雰囲気中、400℃で4時間仮焼した。昇温速
度は毎時100℃、降温速度は毎時100℃であった。
これを解砕後、プレス成形して、酸素雰囲気下で700
℃で8時間焼成し、正極活物質を得た。そしてこの正極
活物質と導電材(カーボン)と結着材(フッ素ゴム)
を、90:5:5の重量比でn−メチルピロリドンに分
散させ、A1板に塗布した。これを200℃でホットプ
レス後、φ15mmに打ち抜いて正極とした。10 g of this precursor was placed in an alumina crucible and calcined at 400 ° C. for 4 hours in an air atmosphere. The rate of temperature rise was 100 ° C./hour and the rate of temperature drop was 100 ° C./hour.
After crushing, press-molding is performed under an oxygen atmosphere.
Calcination was performed at 8 ° C. for 8 hours to obtain a positive electrode active material. And this positive electrode active material, conductive material (carbon) and binder (fluoro rubber)
Was dispersed in n-methylpyrrolidone at a weight ratio of 90: 5: 5 and applied to an A1 plate. This was hot-pressed at 200 ° C., and then punched out into φ15 mm to obtain a positive electrode.
【0026】一方負極には金属リチウム板を用い、電解
液としてポリカーボネート(PC)とジメトキシエタン
(DME)を等量混合した有機溶媒に支持電解質として
リンフッ化リチウム(LiPF6 )を1モル配合した1
M−LiPF6 /PC+DMEを用いてリチウム二次電
池を作製した。なお、このリチウムイオン電池のセパレ
ータにはポリオレフィン系の材料としてポリエチレン多
孔質膜を用いている。On the other hand, a lithium metal plate was used for the negative electrode. One mole of lithium phosphide (LiPF 6 ) was mixed as a supporting electrolyte in an organic solvent in which polycarbonate (PC) and dimethoxyethane (DME) were mixed in equal amounts as an electrolyte.
To prepare a lithium secondary battery using the M-LiPF 6 / PC + DME . The separator of this lithium ion battery uses a polyethylene porous membrane as a polyolefin-based material.
【0027】次にこのようにして作製されたリチウム二
次電池について充放電電流密度を1mA/cm2 とし、
充電上限電圧4.3V、放電下限電圧3.0Vの条件で
充放電をおこなった結果、正極における放電容量は、1
36mAh/gを得た。Next, the charge / discharge current density of the lithium secondary battery thus manufactured was set to 1 mA / cm 2 ,
As a result of charging and discharging under the conditions of a charge upper limit voltage of 4.3 V and a discharge lower limit voltage of 3.0 V, the discharge capacity of the positive electrode was 1
36 mAh / g was obtained.
【0028】(実施例2)実施例1の場合と同様に酢酸
リチウム水溶液と酢酸マンガン水溶液、及びクエン酸水
溶液を作製し、これらの水溶液をリチウムイオンとマン
ガンイオンとクエン酸イオンのモル比が1.00:2.
00:1.67となるように混合した。この場合混合水
溶液中のリチウムイオンとマンガンイオンに対するクエ
ン酸の配合比はほぼ等量である。また混合溶液のpH
は、3.0であった。(Example 2) An aqueous solution of lithium acetate, an aqueous solution of manganese acetate, and an aqueous solution of citric acid were prepared in the same manner as in Example 1, and these aqueous solutions were mixed at a molar ratio of lithium ion, manganese ion and citrate ion of 1 .00: 2.
00: 1.67. In this case, the mixing ratio of citric acid to lithium ions and manganese ions in the mixed aqueous solution is substantially equal. PH of mixed solution
Was 3.0.
【0029】この混合溶液は実施例1と同じ条件で脱水
加熱し、それにより生成されたLixMn2O4 (0<X
<2)の前駆体中のMn2+イオン数を同じくESRによ
り定量したところ、その全前駆体中のMn2+イオン数
は、9.5×1022個であった。 そして実施例1の場
合と同じ条件でその前駆体を焼成し、さらに同様にリチ
ウム二次電池を作製して充放電の試験を行ったところ、
その正極の放電容量は、132mAh/gであった。This mixed solution was dehydrated and heated under the same conditions as in Example 1, and Li x Mn 2 O 4 (0 <X
<2) at which the Mn 2+ ion number in the precursor was also quantified by ESR, Mn 2+ ion count of the total precursor was 9.5 × 10 22 pieces. Then, the precursor was baked under the same conditions as in Example 1, and a lithium secondary battery was similarly manufactured and subjected to a charge / discharge test.
The discharge capacity of the positive electrode was 132 mAh / g.
【0030】(実施例3)実施例1、2の場合と同様に
酢酸リチウム水溶液と酢酸マンガン水溶液、及びクエン
酸水溶液を作製し、これらの水溶液を混合するものであ
るが、そのときのリチウムイオンとマンガンイオンとク
エン酸イオンのモル比が今度は、1.00:2.00:
2.00となるように混合した。この場合混合水溶液中
のリチウムイオンとマンガンイオンに対するクエン酸の
配合比はほぼ120%である。尚、混合溶液のpHは、
3.0であった。Example 3 An aqueous solution of lithium acetate, an aqueous solution of manganese acetate, and an aqueous solution of citric acid were prepared in the same manner as in Examples 1 and 2, and these aqueous solutions were mixed. The molar ratio of manganese ions to citrate ions is now 1.00: 2.00:
It mixed so that it might be set to 2.00. In this case, the mixing ratio of citric acid to lithium ions and manganese ions in the mixed aqueous solution is approximately 120%. The pH of the mixed solution is
3.0.
【0031】そしてこの混合溶液を実施例1、2と同じ
条件で脱水加熱し、ESRによる全前駆体中のMn2+イ
オン数を定量したところ、10.2×1022個であっ
た。さらにこの前駆体を実施例1、2の場合と同じ条件
で焼成し、リチウム二次電池を作製して充放電の試験を
行ったところ、その正極の放電容量は、134mAh/
gであった。The mixed solution was dehydrated and heated under the same conditions as in Examples 1 and 2, and the number of Mn 2+ ions in all the precursors determined by ESR was 10.2 × 10 22 . Further, the precursor was fired under the same conditions as in Examples 1 and 2 to prepare a lithium secondary battery and a charge / discharge test was performed. As a result, the discharge capacity of the positive electrode was 134 mAh /
g.
【0032】次に比較例として、炭酸リチウム(Li2
CO3)と炭酸マンガン(MnCO3)を用いて固相反応
法により正極活物質を作製した場合と、リチウム原料と
してアルカリ性の水酸化リチウム(LiOH)を用い、
これに酢酸マンガンとクエン酸の水溶液を混合して正極
活物質を作製した場合を比較例として以下に示す。Next, as a comparative example, lithium carbonate (Li 2
CO 3 ) and manganese carbonate (MnCO 3 ) to produce a positive electrode active material by a solid phase reaction method, and alkaline lithium hydroxide (LiOH) as a lithium raw material,
A case where a positive electrode active material is prepared by mixing an aqueous solution of manganese acetate and citric acid is shown below as a comparative example.
【0033】(比較例1)炭酸リチウムと炭酸マンガン
を原料とし、通常の固相反応法により、正極活物質を得
た。焼成条件は、800℃で8時間、昇温速度は毎時1
50℃、降温速度は毎時100℃であった。このときの
リチウム二次電池試作品の正極における放電容量は、1
20mAh/gであった。Comparative Example 1 A positive electrode active material was obtained from lithium carbonate and manganese carbonate as raw materials by a usual solid-phase reaction method. The firing conditions are 800 ° C. for 8 hours, and the rate of temperature rise is 1 hour / hour.
The temperature was 50 ° C. and the cooling rate was 100 ° C./hour. At this time, the discharge capacity at the positive electrode of the lithium secondary battery prototype was 1
It was 20 mAh / g.
【0034】(比較例2)リチウム原料としてアルカリ
性の水酸化リチウムを使用し、これを酢酸マンガン水溶
液とクエン酸水溶液の混合溶液に加えてそのときの陽イ
オンに対するクエン酸の配合比が等量となるように、リ
チウムイオンとマンガンイオンとクエン酸イオンのモル
比は、1.00:2.00:1.67とした。このとき
の混合溶液中の陽イオンに対するクエン酸の配合比は、
およそ100%である。またそのときの混合溶液のpH
は、4.0であった。(Comparative Example 2) Alkaline lithium hydroxide was used as a lithium raw material, and this was added to a mixed solution of a manganese acetate aqueous solution and a citric acid aqueous solution. Thus, the molar ratio of lithium ion, manganese ion and citrate ion was 1.00: 2.00: 1.67. The mixing ratio of citric acid to cations in the mixed solution at this time is
It is about 100%. The pH of the mixed solution at that time
Was 4.0.
【0035】そしてこの混合溶液の脱水加熱により得ら
れる前駆体のESRによる定量測定では、全前駆体中の
Mn2+イオン数は8.5×1022個であった。さらにリ
チウム二次電池での充放電試験では、その正極の放電容
量は、130mAh/gであった。In a quantitative measurement by ESR of a precursor obtained by heating the mixed solution by dehydration, the number of Mn 2+ ions in all the precursors was 8.5 × 10 22 . Further, in a charge / discharge test using a lithium secondary battery, the discharge capacity of the positive electrode was 130 mAh / g.
【0036】(比較例3)比較例2の場合と同様に水酸
化リチウムと、酢酸リチウムとクエン酸とを使用するも
のであるが、そのときのリチウムイオンとマンガンイオ
ンとクエン酸イオンのモル比が、1.00:2.00:
1.83となるように配合した。このときの混合溶液中
の陽イオンに対するクエン酸の配合比は、およそ110
%である。尚、混合溶液のpHは、4.0であった。(Comparative Example 3) As in Comparative Example 2, lithium hydroxide, lithium acetate and citric acid were used. At this time, the molar ratio of lithium ion, manganese ion and citrate ion was used. But 1.00: 2.00:
It was blended to give 1.83. At this time, the mixing ratio of citric acid to cation in the mixed solution was about 110
%. The pH of the mixed solution was 4.0.
【0037】この場合もこの混合溶液の脱水加熱により
得られる前駆体のESRによる定量測定では、全前駆体
中のMn2+イオン数は、9.1×1022個であった。さ
らにリチウム二次電池での充放電試験では、その正極の
放電容量は、130mAh/gであった。Also in this case, the number of Mn 2+ ions in all the precursors was 9.1 × 10 22 by quantitative measurement by ESR of the precursor obtained by dehydration heating of the mixed solution. Further, in a charge / discharge test using a lithium secondary battery, the discharge capacity of the positive electrode was 130 mAh / g.
【0038】図1は、以上の結果をまとめたもので、全
前駆体中のMn2+イオン数と正極の放電容量との関係を
示している。横軸に全前駆体中のMn2+イオン数を採
り、縦軸に正極の放電容量を採っている。FIG. 1 summarizes the above results and shows the relationship between the number of Mn 2+ ions in all the precursors and the discharge capacity of the positive electrode. The horizontal axis shows the number of Mn 2+ ions in all the precursors, and the vertical axis shows the discharge capacity of the positive electrode.
【0039】この図1から、本発明に係る製法で作製さ
れた正極(実施例1〜3)は、いずれも高い放電容量
(>130mAh/g)を示すことがわかる。比較例1
のものは120mAh/g、比較例2及び3のもので1
30mAh/g程度であった。比較例1のものが極端に
低い値を示したのは、固相法に依り作製されたものであ
るからリチウム及びマンガン組成の分散性(均一性)に
問題があったことに依るものと思われる。FIG. 1 shows that all of the positive electrodes (Examples 1 to 3) produced by the production method according to the present invention have a high discharge capacity (> 130 mAh / g). Comparative Example 1
Is 120 mAh / g, that of Comparative Examples 2 and 3 is 1
It was about 30 mAh / g. The extremely low value of Comparative Example 1 is considered to be due to a problem in the dispersibility (uniformity) of the lithium and manganese compositions because it was produced by the solid phase method. It is.
【0040】そして何よりこの図1より前駆体中Mn2+
数と正極の放電容量とは相関性があり、前駆体中のMn
2+数が増すにつれて放電容量が増すことが裏付けられ
た。本発明による製法(実施例1〜3)の場合前駆体中
のMn2+イオン濃度が比較例2及び3よりも高くなる理
由としては、本発明の場合リチウム原料として酸性の酢
酸リチウムを用いているため酢酸マンガンとクエン酸と
の混合水溶液中の酸性度が高くなり、これにより酢酸マ
ンガンの解離が促進されて溶液中にMn2+イオンがより
多く存在できたのではないかと考えられる。これに対し
比較例2及び3のものは、リチウム原料としてアルカリ
性の水酸化リチウムを用いているため酢酸マンガンの解
離が抑制されてMn2+イオンが多く存在できなかったも
のと思われる。More specifically, FIG. 1 shows that Mn 2+
There is a correlation between the number and the discharge capacity of the positive electrode, and Mn in the precursor
It was confirmed that the discharge capacity increased as the 2+ number increased. The reason that the Mn 2+ ion concentration in the precursor in the case of the production method according to the present invention (Examples 1 to 3) is higher than that in Comparative Examples 2 and 3 is that in the present invention, an acidic lithium acetate is used as a lithium raw material. Therefore, it is considered that the acidity in the mixed aqueous solution of manganese acetate and citric acid was increased, and this promoted the dissociation of manganese acetate, so that more Mn 2+ ions could be present in the solution. On the other hand, in Comparative Examples 2 and 3, the dissociation of manganese acetate was suppressed because alkaline lithium hydroxide was used as the lithium raw material, and it is considered that a large amount of Mn 2+ ions could not be present.
【0041】さらに本発明品(実施例1〜3)の中でも
実施例1のものが最も放電容量の値が高く、次いで実施
例3、実施例2の順であったが、このような結果が得ら
れたことから、酢酸リチウムと酢酸マンガンとクエン酸
との混合水溶液を調製するときにクエン酸の配合比をリ
チウムイオンとマンガンイオンの総価数より多くすると
よいと言える。Further, among the products of the present invention (Examples 1 to 3), the value of the discharge capacity was highest in Example 1 and then in Examples 3 and 2 in this order. From the results, it can be said that when preparing a mixed aqueous solution of lithium acetate, manganese acetate, and citric acid, the mixing ratio of citric acid should be larger than the total valency of lithium ions and manganese ions.
【0042】ちなみに図2は、本発明品(実施例1〜
3)と比較品(比較例2、3)との比較において、陽イ
オン価数に対するクエン酸イオン価数の割合とESRに
よる前駆体中のMn2+数との関係を示した。この図2か
らもわかるように、比較品どうし(比較例2、3)を較
べても陽イオンに対するクエン酸の配合比が増せば前駆
体中のMn2+数は増すが、本発明品の場合には比較品と
同じクエン酸イオン価数の割合であっても前駆体中のM
n2+数はさらに増しており、このことが図1でも説明し
たように高い放電容量の値を示したものと思われる。FIG. 2 shows the products of the present invention (Examples 1 to 3).
In comparison between 3) and the comparative product (Comparative Examples 2 and 3), the relationship between the ratio of the citrate valence to the cation valence and the Mn 2+ number in the precursor by ESR was shown. As can be seen from FIG. 2, even when comparing the comparative products (Comparative Examples 2 and 3), if the mixing ratio of citric acid to cation increases, the number of Mn 2+ in the precursor increases. In this case, even if the ratio of the citrate ion valence is the same as that of the comparative product, M
The number of n 2+ was further increased, which seems to indicate a high value of the discharge capacity as explained in FIG.
【0043】また本発明品どうし(実施例1〜3)を較
べたときに特にクエン酸の配合比を、リチウムイオンと
マンガンイオンの総価数に対しておよそ110%となる
ように配合した実施例1のものにピーク的な効果が見ら
れ、次いで実施例2(配合比120%)が高い値を示
し、最も配合比の低い実施例3(配合比100%)が最
も低い値を示した。Also, when comparing the products of the present invention (Examples 1 to 3), the mixing ratio of citric acid was particularly so set as to be about 110% with respect to the total valency of lithium ions and manganese ions. A peak effect was observed in the case of Example 1, then Example 2 (mixing ratio 120%) showed a high value, and Example 3 (mixing ratio 100%) with the lowest mixing ratio showed the lowest value. .
【0044】そしてこのようにクエン酸の配合量をリチ
ウムイオンとマンガンイオンの総価数に対して多くする
ことにより、Mn2+イオンがリチウムイオンとともにク
エン酸錯体を形成する段階で過剰に加えたクエン酸がよ
り多くのMn2+イオンと錯体を形成し、液相法に依るこ
ととも相まって錯体中には均一にMn2+イオンが分散
し、それから得られる焼成物は組成が均一であることか
ら高い放電容量を示したものと考えられる。By increasing the amount of citric acid with respect to the total valency of lithium ions and manganese ions, Mn 2+ ions were added excessively at the stage of forming a citric acid complex with lithium ions. citric acid to form a more Mn 2+ ions complexed be uniformly Mn 2+ ions dispersed in together in the complex and that according to the liquid phase method, the calcined product obtained therefrom is uniform in composition It is considered that the sample showed a high discharge capacity.
【0045】本発明は上記した実施例に何ら限定される
ものではなく、本発明の趣旨を逸脱しない範囲で種々の
改変が可能である。例えば、酸性リチウム塩や酸性マン
ガン塩として酢酸リチウムや酢酸マンガンを示したが、
そのほかの有機酸塩あるいは無機酸塩を用いても同様の
効果が得られるものである。また酸性マンガン塩につい
ては、このリチウム二次電池の開発経緯からして酸性コ
バルト塩や酸性ニッケル塩等、他の遷移金属の酸性塩も
適用し得るものである。The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, although lithium acetate and manganese acetate were shown as acidic lithium salts and acidic manganese salts,
Similar effects can be obtained by using other organic acid salts or inorganic acid salts. As for the acid manganese salt, other transition metal acid salts such as an acid cobalt salt and an acid nickel salt can also be applied based on the development history of this lithium secondary battery.
【0046】[0046]
【発明の効果】本発明によれば、酸性リチウム塩と酸性
マンガン塩とクエン酸との混合水溶液からMn2+イオン
濃度の高いクエン酸錯体を生成し、これを脱水加熱した
後焼成することにより、組成の均一な、かつ高い放電容
量を持つ正極活物質が得られる。 またそのときのクエ
ン酸錯体溶液中のクエン酸の配合比を陽イオンであるリ
チウムイオンとマンガンイオンの総価数に対して等価以
上の、望ましくはおよそ110%とすることによりより
高い放電容量が得られる。According to the present invention, a citric acid complex having a high Mn 2+ ion concentration is produced from a mixed aqueous solution of an acidic lithium salt, an acidic manganese salt, and citric acid, which is dehydrated, heated, and calcined. Thus, a positive electrode active material having a uniform composition and a high discharge capacity can be obtained. Further, by setting the mixing ratio of citric acid in the citric acid complex solution to be equal to or more than the total valence of lithium ions and manganese ions as cations, preferably about 110%, higher discharge capacity can be obtained. can get.
【0047】したがって本発明によって得られるリチウ
ム二次電池用の正極活物質は、今後の普及が期待される
パソコンや携帯電話などの通信事務用機器用の電源電池
としての、あるいは電気自動車用電源としての高性能化
のニーズに十分応え得るものである。Therefore, the positive electrode active material for a lithium secondary battery obtained by the present invention can be used as a power supply battery for communication office equipment such as personal computers and mobile phones, which are expected to spread in the future, or as a power supply for electric vehicles. It can sufficiently meet the needs for higher performance.
【図1】本発明品(実施例1〜3)と比較品(比較例1
〜3)との比較において全前駆体中にMn2+イオン数と
正極の放電容量との関係を示した図である。FIG. 1 shows a product of the present invention (Examples 1 to 3) and a comparative product (Comparative Example 1)
FIG. 3 is a diagram showing the relationship between the number of Mn 2+ ions in all precursors and the discharge capacity of the positive electrode in comparison with the above (3).
【図2】本発明品(実施例1〜3)と比較品(比較例
2、3)との比較において陽イオン価数に対するクエン
酸イオン価数の割合とESRによる前駆体中のMn2+数
との関係を示した図である。FIG. 2 shows the ratio of citrate valence to cation valence and Mn 2+ in the precursor by ESR in comparison between the product of the present invention (Examples 1 to 3) and the comparative product (Comparative Examples 2 and 3). It is a figure showing the relation with number.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑中 美穂 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 佐々木 厳 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 杉山 純 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 日置 辰視 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 小島 久尚 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Miho Hatanaka 41 Toyoda Central Research Institute, Inc. 41, Yokomichi, Toyota Central Research Laboratory Co., Ltd. (72) Inventor Jun Sugiyama, 41, Chuchu Yokomichi, Oji, Nagakute-cho, Aichi-gun, Aichi Prefecture, Japan Toyota Central Research Laboratory Co., Ltd. (72) Inventor Tatsumi Hioki Aichi 41 Toyota Chuo R & D Co., Ltd., 41, Nagakute-cho, Nagakute-cho, Aichi-gun, Japan (72) Inventor Hisao Kojima 1-1-1, Showa-cho, Kariya-shi, Aichi, Japan Denso Corporation
Claims (1)
ン酸とによりクエン酸錯体の水溶液を生成する工程と、 このクエン酸錯体を脱水して前駆体を生成する工程と、 この前駆体を焼成してLixMn2O4 (0<X<2)を
生成する工程と、 からなることを特徴とするリチウム二次電池用正極活物
質の製造方法。1. A step of producing an aqueous solution of a citric acid complex with an acidic lithium salt, an acidic manganese salt and citric acid, a step of dehydrating the citric acid complex to produce a precursor, and calcining the precursor. A method of producing Li x Mn 2 O 4 (0 <X <2) by using the following method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8359028A JPH10188986A (en) | 1996-12-27 | 1996-12-27 | Manufacture of positive electrode active material for lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8359028A JPH10188986A (en) | 1996-12-27 | 1996-12-27 | Manufacture of positive electrode active material for lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10188986A true JPH10188986A (en) | 1998-07-21 |
Family
ID=18462375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8359028A Pending JPH10188986A (en) | 1996-12-27 | 1996-12-27 | Manufacture of positive electrode active material for lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10188986A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007165026A (en) * | 2005-12-09 | 2007-06-28 | Daiken Kagaku Kogyo Kk | Manufacturing method of positive active material for lithium ion secondary battery |
WO2011077932A1 (en) * | 2009-12-22 | 2011-06-30 | Jx日鉱日石金属株式会社 | Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery |
US8623551B2 (en) | 2010-03-05 | 2014-01-07 | Jx Nippon Mining & Metals Corporation | Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US8748041B2 (en) | 2009-03-31 | 2014-06-10 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery |
US8993160B2 (en) | 2009-12-18 | 2015-03-31 | Jx Nippon Mining & Metals Corporation | Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery |
US9090481B2 (en) | 2010-03-04 | 2015-07-28 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery |
US9118076B2 (en) | 2010-02-05 | 2015-08-25 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery |
US9214676B2 (en) | 2011-03-31 | 2015-12-15 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9216913B2 (en) | 2010-03-04 | 2015-12-22 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9224514B2 (en) | 2012-01-26 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery |
US9221693B2 (en) | 2011-03-29 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries |
US9225020B2 (en) | 2010-03-04 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9224515B2 (en) | 2012-01-26 | 2015-12-29 | Jx Nippon Mining & Metals Coporation | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery |
US9231249B2 (en) | 2010-02-05 | 2016-01-05 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US9240594B2 (en) | 2010-03-04 | 2016-01-19 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9327996B2 (en) | 2011-01-21 | 2016-05-03 | Jx Nippon Mining & Metals Corporation | Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery |
US9911518B2 (en) | 2012-09-28 | 2018-03-06 | Jx Nippon Mining & Metals Corporation | Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery |
US10122012B2 (en) | 2010-12-03 | 2018-11-06 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery |
JPWO2019168160A1 (en) * | 2018-03-02 | 2021-02-25 | 戸田工業株式会社 | Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery |
-
1996
- 1996-12-27 JP JP8359028A patent/JPH10188986A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007165026A (en) * | 2005-12-09 | 2007-06-28 | Daiken Kagaku Kogyo Kk | Manufacturing method of positive active material for lithium ion secondary battery |
US8748041B2 (en) | 2009-03-31 | 2014-06-10 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery |
US8993160B2 (en) | 2009-12-18 | 2015-03-31 | Jx Nippon Mining & Metals Corporation | Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery |
WO2011077932A1 (en) * | 2009-12-22 | 2011-06-30 | Jx日鉱日石金属株式会社 | Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery |
JPWO2011077932A1 (en) * | 2009-12-22 | 2013-05-02 | Jx日鉱日石金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery using the same, and positive electrode active material precursor for lithium ion battery |
US9263732B2 (en) | 2009-12-22 | 2016-02-16 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery |
US9231249B2 (en) | 2010-02-05 | 2016-01-05 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US9118076B2 (en) | 2010-02-05 | 2015-08-25 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery |
US9240594B2 (en) | 2010-03-04 | 2016-01-19 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9216913B2 (en) | 2010-03-04 | 2015-12-22 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9225020B2 (en) | 2010-03-04 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9090481B2 (en) | 2010-03-04 | 2015-07-28 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery |
US8623551B2 (en) | 2010-03-05 | 2014-01-07 | Jx Nippon Mining & Metals Corporation | Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US10122012B2 (en) | 2010-12-03 | 2018-11-06 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery |
US9327996B2 (en) | 2011-01-21 | 2016-05-03 | Jx Nippon Mining & Metals Corporation | Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery |
US9221693B2 (en) | 2011-03-29 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries |
US9214676B2 (en) | 2011-03-31 | 2015-12-15 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9224514B2 (en) | 2012-01-26 | 2015-12-29 | Jx Nippon Mining & Metals Corporation | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery |
US9224515B2 (en) | 2012-01-26 | 2015-12-29 | Jx Nippon Mining & Metals Coporation | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery |
US9911518B2 (en) | 2012-09-28 | 2018-03-06 | Jx Nippon Mining & Metals Corporation | Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery |
JPWO2019168160A1 (en) * | 2018-03-02 | 2021-02-25 | 戸田工業株式会社 | Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101378580B1 (en) | Cathod active material, lithium rechargeble battery including the same, and method of activiting the same | |
JPH10188986A (en) | Manufacture of positive electrode active material for lithium secondary battery | |
JP2000077071A (en) | Nonaqueous electrolyte secondary battery | |
US7008608B2 (en) | Li-Co-Mn oxide as cathode material for lithium batteries and method of synthesis of the same | |
JP2004178835A (en) | Nonaqueous electrolyte secondary battery | |
JP4190912B2 (en) | Positive electrode active material for lithium ion battery and lithium ion battery having the same | |
KR20140070259A (en) | Anode active material for lithium secondary battery, preparation method of thereof, and lithium secondary battery comprising the same | |
KR100874539B1 (en) | Spinel-type composite solid oxide, a manufacturing method thereof, and a lithium secondary battery comprising the same as an anode | |
JP4900888B2 (en) | Lithium transition metal oxides for lithium batteries | |
KR101401770B1 (en) | SYNTHESIS METHOD OF Mn OXIDES AS CATHODE MATERIAL FOR LITHIUM BATTERIES AND METHOD OF MAKING THE LITHIUM BATTERIES | |
WO2007007581A1 (en) | Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same | |
JP2005322550A (en) | Non-aqueous electrolyte secondary battery | |
JP2019212365A (en) | Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same | |
JP2003086180A (en) | Positive electrode active material of nonaqueous electrolyte secondary battery and secondary battery using it | |
KR101598186B1 (en) | Synthesizing method of complex metal oxides for cathode active materials and electrode, lithium secondary battery, capacitor thereof | |
JP3487941B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte battery | |
JPH11317225A (en) | Positive active material for lithium secondary battery and its manufacture | |
JPH0817471A (en) | Non-aqueous electrolytic secondary battery | |
JPH10302795A (en) | Non-aqueous electrolytic secondary battery | |
JPH0822826A (en) | Synthesizing method for positive active material of nonaqueous secondary battery | |
JP2002321919A (en) | Lithium manganese compound oxide and lithium secondary battery | |
KR102618005B1 (en) | Method for manufacturing positive electrode active material | |
KR101657265B1 (en) | Porous manganese-based cathode active material, a method of making the same and lithium secondary battery comprising the same | |
KR100346546B1 (en) | A positive electrode plate for a lithium secondary battery | |
WO2011024353A1 (en) | Electrode active material, method for producing same, and nonaqueous electrolyte secondary battery comprising same |