JPH10188977A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JPH10188977A JPH10188977A JP8345220A JP34522096A JPH10188977A JP H10188977 A JPH10188977 A JP H10188977A JP 8345220 A JP8345220 A JP 8345220A JP 34522096 A JP34522096 A JP 34522096A JP H10188977 A JPH10188977 A JP H10188977A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- active material
- secondary battery
- crystal
- livtio4
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は改良されたリチウム
二次電池に関するものである。詳しくは本発明は改良さ
れた正極又は負極を備えていて、サイクル特性及びレー
ト特性に優れたリチウム二次電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved lithium secondary battery. More specifically, the present invention relates to a lithium secondary battery provided with an improved positive electrode or negative electrode and having excellent cycle characteristics and rate characteristics.
【0002】[0002]
【従来の技術】リチウム二次電池は公知である。このも
のは、例えばLiCoO2 やLiNi 1-x Cox O2 、
LiNiO2 、LiMn2 O4 、LiMnO2 等で表わ
される物質を正極活物質とする正極と、リチウム金属、
リチウム合金又はリチウムを吸収・放出する物質を負極
活物質とする負極を備えている。リチウム二次電池は電
圧が高く、かつ充放電容量が大きいので、大きな期待が
寄せられている。2. Description of the Related Art Lithium secondary batteries are known. This one
Is, for example, LiCoOTwoAnd LiNi 1-xCoxOTwo,
LiNiOTwo, LiMnTwoOFour, LiMnOTwoRepresented by etc.
Positive electrode with the material to be used as the positive electrode active material, lithium metal,
Lithium alloy or a substance that absorbs and releases lithium
A negative electrode as an active material is provided. Lithium rechargeable batteries are
High pressure and large charge / discharge capacity
Has been sent.
【0003】[0003]
【発明が解決しようとする課題】しかしながら従来のリ
チウム二次電池は充放電を反復するとその容量が低下し
易い、すなわちサイクル特性がよくないという問題があ
る。また、充放電容量の充放電電流密度依存性、すなわ
ちレート特性にも改良すべき点を残している。従って本
発明は、サイクル特性やレート特性に優れたリチウム二
次電池を提供しようとするものである。However, the conventional lithium secondary battery has a problem that its capacity is apt to decrease when charge and discharge are repeated, that is, the cycle characteristics are not good. In addition, there is a need to improve the charge / discharge current density dependence of the charge / discharge capacity, that is, the rate characteristics. Accordingly, an object of the present invention is to provide a lithium secondary battery having excellent cycle characteristics and rate characteristics.
【0004】[0004]
【課題を解決するための手段】本発明によれば、LiV
TiO4 で表わされる複合酸化物を活物質とする正極又
は負極を用いることにより、リチウム二次電池のサイク
ル特性やレート特性を改良できる。According to the present invention, LiV
By using a positive electrode or a negative electrode containing a composite oxide represented by TiO 4 as an active material, cycle characteristics and rate characteristics of a lithium secondary battery can be improved.
【0005】[0005]
【発明の実施の形態】本発明について更に詳細に説明す
ると、本発明で正極又は負極の活物質として用いるLi
VTiO4 で表わされるリチウムバナジウムチタン複合
酸化物は、公知のものであるが、今までリチウム二次電
池の活物質として用いることは知られていない。LiV
TiO4 はスピネル構造をした立方晶の結晶構造を有し
ており、正極活物質として用いた場合には放電によりリ
チウムが結晶中に挿入され、充電によりリチウムが結晶
から抜き取られる。逆に負極活物質として用いた場合に
は、充電によりリチウムが結晶中に挿入され、放電によ
りリチウムが結晶から抜き取られる。LiVTiO4 の
製造は公知の方法で行えばよく、例えば二酸化チタン
(TiO2 )とLiVO2 とを1:1(モル比)で混合
し、600〜800℃で10〜48時間加熱焼成するこ
とにより容易に製造することができる。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail.
The lithium-vanadium-titanium composite oxide represented by VTiO 4 is known, but has not been known to be used as an active material of a lithium secondary battery. LiV
TiO 4 has a cubic crystal structure having a spinel structure. When used as a positive electrode active material, lithium is inserted into the crystal by discharging, and lithium is extracted from the crystal by charging. Conversely, when used as a negative electrode active material, lithium is inserted into the crystal by charging, and lithium is extracted from the crystal by discharging. The production of LiVTiO 4 may be carried out by a known method. For example, titanium dioxide (TiO 2 ) and LiVO 2 are mixed at a ratio of 1: 1 (molar ratio), and calcined at 600 to 800 ° C. for 10 to 48 hours. It can be easily manufactured.
【0006】LiVTiO4 を活物質とする電極を作成
するには、LiVTiO4 に常法により導電剤と結合剤
とを混合して加圧成形すればよい。導電剤としては電気
化学的に安定で電解液に侵されず導電率の高いものが好
ましく、通常は炭素材料が用いられる。好ましくは黒鉛
やアセチレンブラックなどのカーボンブラックが用いら
れる。結合剤も同様に電気化学的に安定で電解液に侵さ
れないものが好ましく、通常はフッ素樹脂が用いられ
る。好ましくはポリテトラフルオロエチレンやポリビニ
リデンフロライドが用いられる。電極を作成するに際し
てのLiVTiO 4 、導電剤及び結合剤の混合比率(重
量比)は、合計を100として、通常は導電剤が10〜
30、結合剤が3〜10、残部をLiVTiO4 とする
のが適当である。[0006] LiVTiOFourAn electrode using the active material
To do, LiVTiOFourConductive agent and binder in the usual way
And pressure molding. Electricity as conductive agent
Those that are chemically stable and have high conductivity without being attacked by the electrolyte are preferred.
Preferably, a carbon material is usually used. Preferably graphite
And carbon black such as acetylene black
It is. The binder is also electrochemically stable and eroded by the electrolyte
Is not preferred, usually a fluororesin is used
You. Preferably polytetrafluoroethylene or polyvinyl alcohol
Redenfluoride is used. When creating electrodes
LiVTiO Four, Conductive agent and binder mixing ratio (weight
The amount of the conductive agent is usually 10 to 10
30, the binder is 3 to 10, the balance is LiVTiOFourTo be
Is appropriate.
【0007】本発明に係るリチウム二次電池は、正極又
は負極に上記のLiVTiO4 を活物質とする電極を用
いる以外は、常法により製造することができる。例えば
LiVTiO4 を活物質とする電極の対極としては、リ
チウム二次電池の正極又は負極として知られている種々
のものを用いることができる。正極と負極とを隔てるセ
パレーターも公知の種々のものを用いることができる
が、通常は多孔質ポリオレフィンフィルム、特に多孔質
ポリプロピレンフィルムを用いるのが好ましい。電解液
も非水溶媒にリチウム塩を溶解した公知のものを用いる
ことができる。The lithium secondary battery according to the present invention can be manufactured by a conventional method except that the above-mentioned electrode using LiVTiO 4 as an active material is used for a positive electrode or a negative electrode. For example, as a counter electrode of an electrode using LiVTiO 4 as an active material, various types known as a positive electrode or a negative electrode of a lithium secondary battery can be used. Although various known separators can be used for the separator separating the positive electrode and the negative electrode, it is usually preferable to use a porous polyolefin film, particularly a porous polypropylene film. A known electrolyte in which a lithium salt is dissolved in a non-aqueous solvent can be used as the electrolyte.
【0008】[0008]
【実施例】以下に実施例により本発明を更に具体的に説
明するが、本発明は以下の実施例に限定されるものでは
ない。LiVTiO4 の製造;炭酸リチウムと五酸化バ
ナジウムとを等モルの割合でよく混合した。この混合物
を水素気流中、500℃で6時間加熱し、さらに同じく
水素気流中、700℃で10時間加熱してLiVO2 を
合成した。このLiVO2 と二酸化チタンとを等モルの
割合でよく混合したのち、混合物をプレス成型し、白金
箔に包んだ。これを石英ガラス管中に真空封入し、70
0℃で24時間加熱したのち、400℃で48時間アニ
ーリングしてLiVTiO4 を製造した。このLiVT
iO4 は粉末X線回折の結果、立方晶の単相であった。EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the following examples. Production of LiVTiO 4 : Lithium carbonate and vanadium pentoxide were mixed well in an equimolar ratio. This mixture was heated at 500 ° C. for 6 hours in a hydrogen stream, and further heated at 700 ° C. for 10 hours in a hydrogen stream to synthesize LiVO 2 . After mixing LiVO 2 and titanium dioxide in an equimolar ratio, the mixture was press-molded and wrapped in platinum foil. This is vacuum-sealed in a quartz glass tube,
After heating at 0 ° C. for 24 hours, annealing at 400 ° C. for 48 hours produced LiVTiO 4 . This LiVT
As a result of powder X-ray diffraction, iO 4 was a cubic single phase.
【0009】実施例1 上記で得たLiVTiO4 を粉砕し、これにアセチレン
ブラック及びポリテトラフルオロエチレンを重量比で7
5:20:5となるように混合した。この混合物0.1
gを1ton/cm2 の圧力で直径16mmにプレス成
型し、正極とした。多孔性ポリプロピレンフィルムのセ
パレーターを挟んで、上記の正極と負極としての直径1
6mm、厚さ0.4mmのリチウム金属板とを配置し、
これに電解液を加えて密封し、リチウム二次電池を製造
した。電解液としては、プロピレンカーボネートと1,
2−ジメトキシエタンとの等容量混合物に、過塩素酸リ
チウムを1モル/リットルとなるように溶解したものを
用いた。Example 1 LiVTiO 4 obtained above was pulverized, and acetylene black and polytetrafluoroethylene were added in a weight ratio of 7 to the pulverized LiVTiO 4.
The mixture was mixed to give a ratio of 5: 20: 5. This mixture 0.1
g was press-molded at a pressure of 1 ton / cm 2 to a diameter of 16 mm to obtain a positive electrode. With a porous polypropylene film separator in between, the above positive electrode and negative electrode having a diameter of 1
6mm, 0.4mm thick lithium metal plate is arranged,
An electrolyte was added thereto and sealed, to produce a lithium secondary battery. As the electrolyte, propylene carbonate and 1,
A solution obtained by dissolving lithium perchlorate in an equal volume mixture with 2-dimethoxyethane so as to be 1 mol / liter was used.
【0010】このリチウム二次電池を用いて、充放電電
流2mA、電圧範囲1.0V〜3.0Vの間で定電流充
放電のサイクル試験を行った。その結果、初期放電容量
は146mAh/g−LiVTiO4 であり、初期放電
容量に対する200サイクル目の放電容量の比は89.
0%であった。このリチウム二次電池の充放電電圧曲線
を図1に示す。この図から、この電池は約1.7Vの平
坦な電圧を示すことがわかる。また、この電池のレート
特性を図2に示す。Using this lithium secondary battery, a constant current charge / discharge cycle test was performed at a charge / discharge current of 2 mA and a voltage range of 1.0 V to 3.0 V. As a result, the initial discharge capacity was 146 mAh / g-LiVTiO 4 , and the ratio of the discharge capacity at the 200th cycle to the initial discharge capacity was 89.
It was 0%. FIG. 1 shows a charge / discharge voltage curve of this lithium secondary battery. From this figure, it can be seen that this battery exhibits a flat voltage of about 1.7V. FIG. 2 shows the rate characteristics of this battery.
【0011】実施例2 上記で得たLiVTiO4 を粉砕し、これにアセチレン
ブラック及びポリテトラフルオロエチレンを重量比で7
5:20:5となるように混合した。この混合物0.1
gを1ton/cm2 の圧力で直径16mmにプレス成
型し、負極とした。またLiCoO2 とアセチレンブラ
ック及びポリテトラフルオロエチレンを重量比で75:
20:5となるように混合したもの0.125gを1t
on/cm 2 の圧力で直径16mmにプレス成型し、正
極とした。多孔性ポリプロピレンフィルムのセパレータ
ーを挟んで上記の正極と負極を配置し、これに実施例1
で用いたのと同じ電解液を加えて密封し、リチウム二次
電池を製造した。Example 2 LiVTiO obtained aboveFourCrush the acetylene
Black and polytetrafluoroethylene in a weight ratio of 7
The mixture was mixed to give a ratio of 5: 20: 5. This mixture 0.1
g is 1 ton / cmTwoPress to 16mm in diameter
It was molded and used as a negative electrode. LiCoOTwoAnd acetylene bra
And polytetrafluoroethylene in a weight ratio of 75:
0.125 g mixed to give 20: 5 is 1 t
on / cm TwoPress molding to a diameter of 16mm with pressure of
Pole. Porous polypropylene film separator
The positive electrode and the negative electrode are arranged with the electrode interposed therebetween.
Add the same electrolyte solution as used in Step 2 and seal it.
A battery was manufactured.
【0012】このリチウム二次電池を用いて、充放電電
流2mA、電圧範囲1.0V〜3.3Vの間で定電流充
放電のサイクル試験を行った。その結果、初期放電容量
は140mAh/g−LiVTiO4 であり、初期放電
容量に対する200サイクル目の放電容量の比は87.
2%であった。このリチウム二次電池の充放電電圧曲線
を図3に示す。この図から、この電池は約2.3Vの平
坦な電圧を示すことがわかる。Using this lithium secondary battery, a constant current charge / discharge cycle test was performed at a charge / discharge current of 2 mA and a voltage range of 1.0 V to 3.3 V. As a result, the initial discharge capacity was 140 mAh / g-LiVTiO 4 , and the ratio of the discharge capacity at the 200th cycle to the initial discharge capacity was 87.
2%. FIG. 3 shows a charge / discharge voltage curve of this lithium secondary battery. From this figure, it can be seen that this battery shows a flat voltage of about 2.3V.
【図1】LiVTiO4 を正極活物質とする正極とリチ
ウム金属の負極を備えたリチウム二次電池の充放電電圧
曲線である。FIG. 1 is a charge / discharge voltage curve of a lithium secondary battery including a positive electrode using LiVTiO 4 as a positive electrode active material and a negative electrode of lithium metal.
【図2】図1の電池のレート特性を示す図である。FIG. 2 is a diagram showing rate characteristics of the battery of FIG.
【図3】LiVTiO4 を負極活物質とする負極と、L
iCoO2 を正極活物質とする正極とを備えたリチウム
二次電池の充放電電圧曲線である。FIG. 3 shows a negative electrode using LiVTiO 4 as a negative electrode active material;
9 is a charge / discharge voltage curve of a lithium secondary battery including a positive electrode using iCoO 2 as a positive electrode active material.
Claims (2)
を正極活物質とする正極を備えていることを特徴とする
リチウム二次電池。1. A lithium secondary battery comprising a positive electrode using a composite oxide represented by LiVTiO 4 as a positive electrode active material.
を負極活物質とする負極を備えていることを特徴とする
リチウム二次電池。2. A lithium secondary battery comprising a negative electrode using a composite oxide represented by LiVTiO 4 as a negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8345220A JPH10188977A (en) | 1996-12-25 | 1996-12-25 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8345220A JPH10188977A (en) | 1996-12-25 | 1996-12-25 | Lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10188977A true JPH10188977A (en) | 1998-07-21 |
Family
ID=18375118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8345220A Pending JPH10188977A (en) | 1996-12-25 | 1996-12-25 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10188977A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006128115A (en) * | 2004-10-27 | 2006-05-18 | Samsung Sdi Co Ltd | Negative electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery having this |
JP2007115507A (en) * | 2005-10-20 | 2007-05-10 | Toyota Central Res & Dev Lab Inc | Anode activator and aqueous lithium secondary cell |
JP2011129366A (en) * | 2009-12-17 | 2011-06-30 | Toyota Central R&D Labs Inc | Nonaqueous lithium secondary battery |
US8026003B2 (en) | 2003-08-21 | 2011-09-27 | Samsung Sdi Co., Ltd. | Negative active material for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery comprising the same |
US8110305B2 (en) | 2007-02-15 | 2012-02-07 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
JP2012084358A (en) * | 2010-10-08 | 2012-04-26 | Nippon Telegr & Teleph Corp <Ntt> | Lithium secondary battery anode material and manufacturing method thereof and lithium secondary battery using the same |
US8367248B2 (en) | 2006-11-22 | 2013-02-05 | Samsung Sdi Co., Ltd. | Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same |
US8623552B2 (en) | 2007-06-07 | 2014-01-07 | Samsung Sdi Co., Ltd. | Negative active material for lithium secondary battery, and lithium secondary battery including same |
US8685567B2 (en) | 2007-09-12 | 2014-04-01 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
CN103730647A (en) * | 2012-10-10 | 2014-04-16 | 中国科学院物理研究所 | Rhombic manganese ore material and preparation method, cathode and lithium battery |
US8835049B2 (en) | 2006-11-22 | 2014-09-16 | Samsung Sdi Co., Ltd. | Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same |
-
1996
- 1996-12-25 JP JP8345220A patent/JPH10188977A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8026003B2 (en) | 2003-08-21 | 2011-09-27 | Samsung Sdi Co., Ltd. | Negative active material for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery comprising the same |
JP2006128115A (en) * | 2004-10-27 | 2006-05-18 | Samsung Sdi Co Ltd | Negative electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery having this |
JP2007115507A (en) * | 2005-10-20 | 2007-05-10 | Toyota Central Res & Dev Lab Inc | Anode activator and aqueous lithium secondary cell |
US8367248B2 (en) | 2006-11-22 | 2013-02-05 | Samsung Sdi Co., Ltd. | Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same |
US8835049B2 (en) | 2006-11-22 | 2014-09-16 | Samsung Sdi Co., Ltd. | Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same |
US8110305B2 (en) | 2007-02-15 | 2012-02-07 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US8623552B2 (en) | 2007-06-07 | 2014-01-07 | Samsung Sdi Co., Ltd. | Negative active material for lithium secondary battery, and lithium secondary battery including same |
US8685567B2 (en) | 2007-09-12 | 2014-04-01 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
JP2011129366A (en) * | 2009-12-17 | 2011-06-30 | Toyota Central R&D Labs Inc | Nonaqueous lithium secondary battery |
JP2012084358A (en) * | 2010-10-08 | 2012-04-26 | Nippon Telegr & Teleph Corp <Ntt> | Lithium secondary battery anode material and manufacturing method thereof and lithium secondary battery using the same |
CN103730647A (en) * | 2012-10-10 | 2014-04-16 | 中国科学院物理研究所 | Rhombic manganese ore material and preparation method, cathode and lithium battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5514490A (en) | Secondary lithium battery using a new layered anode material | |
JP2000195516A (en) | Lithium secondary battery | |
JP2964732B2 (en) | Rechargeable battery | |
JPH11312518A (en) | Negative electrode for lithium secondary battery and lithium secondary battery using the same | |
JPH10188977A (en) | Lithium secondary battery | |
JP2003017056A (en) | Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same | |
JP2002042812A (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery using the same | |
JP2940015B2 (en) | Organic electrolyte secondary battery | |
JP3219352B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH09120837A (en) | Nonaqueous electrolyte secondary battery | |
JPH06243870A (en) | Nonaqeous secondary battery | |
JPH07134986A (en) | Nonaqueous electrolyte battery | |
JPH08180875A (en) | Lithium secondary battery | |
JP3451602B2 (en) | Non-aqueous electrolyte battery | |
JP3615416B2 (en) | Lithium secondary battery | |
JPH05325961A (en) | Lithium battery | |
JP2730641B2 (en) | Lithium secondary battery | |
JPH07296795A (en) | Negative electrode for lithium secondary battery, and lithium secondary battery using it | |
JP2007173150A (en) | Nonaqueous electrolyte battery | |
JP2000327340A (en) | Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery | |
JPH1064542A (en) | Nonaqueous electrolyte secondary battery | |
JPH06243869A (en) | Nonaqueous secondary battery | |
JP3148905B2 (en) | Manufacturing method of thin non-aqueous electrolyte secondary battery | |
JPH10188976A (en) | Lithium secondary battery | |
JP3273569B2 (en) | Lithium battery |