JPH10172563A - Manufacture of paste type nickel electrode and manufacture of alkaline storage battery - Google Patents
Manufacture of paste type nickel electrode and manufacture of alkaline storage batteryInfo
- Publication number
- JPH10172563A JPH10172563A JP10018738A JP1873898A JPH10172563A JP H10172563 A JPH10172563 A JP H10172563A JP 10018738 A JP10018738 A JP 10018738A JP 1873898 A JP1873898 A JP 1873898A JP H10172563 A JPH10172563 A JP H10172563A
- Authority
- JP
- Japan
- Prior art keywords
- paste
- nickel
- nickel hydroxide
- manufacture
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ペースト式ニッケ
ル極の製造方法及びペースト式ニッケル極とカドミウ
ム、亜鉛または水素吸蔵合金等を含む負極とを備えたア
ルカリ蓄電池の製造方法に関するものである。The present invention relates to a method for producing a paste-type nickel electrode and a method for producing an alkaline storage battery including a paste-type nickel electrode and a negative electrode containing cadmium, zinc, a hydrogen storage alloy, or the like.
【0002】[0002]
【従来の技術】従来、アルカリ蓄電池用ニッケル極とし
ては、例えばカーボニルニッケルをパンチドメタル上に
焼結成形した基板に硝酸ニッケル等のニッケル塩を水溶
液の形で充填後、アルカリ液中で水酸化ニッケルに転化
した、いわゆる焼結式が主流であった。焼結式の利点と
して、基板であるカーボニルニッケルの焼結体が孔径数
〜10μmの非常に微細な細孔構造であるため、元来不
導体である水酸化ニッケルの集電能力に優れていること
が挙げられる。反面ニッケル極全体に占める基板体積の
比率が20%程度必要であり、その分活物質の充填量が
制限されてしまい、ニッケル極としての容量密度が45
0mAh/cc程度しか得られないという欠点があっ
た。2. Description of the Related Art Conventionally, as a nickel electrode for an alkaline storage battery, for example, a nickel salt such as nickel nitrate is filled into a substrate obtained by sintering carbonyl nickel on a punched metal in the form of an aqueous solution, and then the hydroxide is hydrated in an alkaline solution. The so-called sintering method converted to nickel was the mainstream. As an advantage of the sintering method, since the sintered body of carbonyl nickel as the substrate has a very fine pore structure with a pore diameter of 10 to 10 μm, the current collecting ability of nickel hydroxide, which is originally a non-conductor, is excellent. It is mentioned. On the other hand, the ratio of the substrate volume to the entire nickel electrode is required to be about 20%, and the amount of the active material to be charged is limited.
There is a drawback that only about 0 mAh / cc can be obtained.
【0003】これらの欠点を改良する試みとして、ペー
スト式ニッケル極が提案されている。ペースト式ニッケ
ル極は孔径100〜500μmのスポンジ状あるいはフ
ェル卜状金属多孔体を基板とし、この基板の孔に粉末状
水酸化ニッケルを適当な溶媒やバインダーでペースト状
に調製したものを充填し、乾燥、加圧して得られるもの
である。また、ニッケル極全体に占める基板の体積比率
を10%未満に低下させることができるため、活物質の
充填量を増加することが可能となり、同容量密度に換算
すると600mAh/cc程度まで向上することができ
る。このペースト式ニッケル極に使用される前記粉末状
水酸化ニッケルは原理的には焼結式と同様に硝酸ニッケ
ル、硫酸ニッケル等のニッケル塩の水溶液を過剰の苛性
ソーダや苛性カリ等のアルカリ水溶液と、直径1〜数1
0ミクロンの粒子を生成させるように反応させ、沈澱物
を水洗、乾燥して得られるものが一般的である。[0003] As an attempt to improve these disadvantages, a paste-type nickel electrode has been proposed. The paste-type nickel electrode has a sponge-like or felt-like metal porous body having a pore diameter of 100 to 500 μm as a substrate, and the pores of the substrate are filled with powdered nickel hydroxide prepared in a paste form with an appropriate solvent or binder, It is obtained by drying and pressing. In addition, since the volume ratio of the substrate to the entire nickel electrode can be reduced to less than 10%, the amount of the active material to be filled can be increased, and the equivalent capacity density can be improved to about 600 mAh / cc. Can be. The powdered nickel hydroxide used for this paste-type nickel electrode is, in principle, an aqueous solution of a nickel salt such as nickel nitrate or nickel sulfate and an aqueous solution of an alkali such as caustic soda or caustic potash in the same manner as in the sintering method. 1 to number 1
The reaction is generally carried out so as to form 0-micron particles, and the precipitate is generally washed with water and dried to obtain a precipitate.
【0004】しかしながら、前記方法にて作製したペー
スト式ニッケル極には数々の問題点が存在する。とりわ
け、充放電を行った際の水酸化ニッケルの利用率が小さ
いという問題、充放電サイクルによる活物質の膨潤が著
しく顕著なものである問題が挙げられる。[0004] However, the paste-type nickel electrode produced by the above-mentioned method has a number of problems. In particular, there is a problem that the utilization rate of nickel hydroxide during charge / discharge is small, and a problem that the swelling of the active material due to the charge / discharge cycle is remarkable.
【0005】このような問題を生ずる原因として基板の
集電性能の差が挙げられる。前記の通り焼結式基板の孔
径が数〜10μmであるのに対し、ペースト式の基板で
あるスポンジ状及びフェルト状金属多孔体は100〜5
00μmと数十倍も大きい。すなわち反応の際の活物質
中の電荷移動距離が長くなってしまい、抵抗による分極
が大きくなる傾向にある。分極の大きい電極における欠
点として放電電圧の低下ならびに充電中に不可逆な充電
生成物を生ずることが挙げられる。この不可逆な充電生
成物は一般にγ−NiOOHとして知られており、正常
なニッケル極の充電生成物であるβ−NiOOHと比較
して放電されにくく、また結晶がC軸方向に伸びた形態
のため活物質の膨潤を生じ易いことが知られている。す
なわち焼結方式とペースト方式を比較すると水酸化ニッ
ケルとして同じものを使用した場合、基板の集電能力の
違いに起因してペースト方式は利用率低下や活物質の膨
潤をおこし易い欠点があり、その原因は不可逆な充電生
成物であるγ−NiOOHの生成が大きく関与している
と言うことができる。A cause of such a problem is a difference in current collecting performance of the substrate. As described above, the pore diameter of the sintered substrate is several to 10 μm, whereas the sponge-like and felt-like porous metal bodies, which are paste-type substrates, have a pore size of 100 to 5 μm.
00 μm, which is several tens of times larger. That is, the charge transfer distance in the active material at the time of the reaction becomes long, and polarization due to resistance tends to increase. Disadvantages of highly polarized electrodes include reduced discharge voltage and the formation of irreversible charge products during charging. This irreversible charge product is generally known as γ-NiOOH, is less likely to be discharged compared to β-NiOOH which is a normal nickel electrode charge product, and has a form in which the crystal extends in the C-axis direction. It is known that swelling of an active material is likely to occur. That is, comparing the sintering method and the paste method, when the same nickel hydroxide is used, the paste method has a drawback that the utilization rate decreases and the swelling of the active material is liable to occur due to the difference in current collecting ability of the substrate, It can be said that the cause is largely related to the production of γ-NiOOH which is an irreversible charge product.
【0006】この問題に対する対策として、焼結式にお
いても広く知られていたコバルト化合物の添加をペース
ト方式に、例えば特公昭57−5344、特公昭60−
60449に示される様に金属コバルト、特開昭61−
138458に示される様にー酸化コバルトといった導
電性に優れた形態のコバルトを配合することで、分極を
抑制する試みが広く行われている。また特開平1−26
0762、特開平2一30061に示される様に水酸化
ニッケルの結晶中にカドミウムまたは亜鉛等を共晶状態
にして添加する試みも同様に行われている。しかしなが
ら何れの方法も上記問題に対して充分な対策とは言え
ず、例えば利用率に関しても焼結式が95%以上である
のに対しペースト式では90%前後が限界であり、サイ
クル寿命に関しても焼結式が500サイクル以上である
のに対しペースト式が300サイクル前後と劣っている
のが現状で、これらの問題がペースト式ニッケル極の普
及を妨げる大きな障害となっていた。As a countermeasure against this problem, the addition of a cobalt compound, which is widely known in the sintering method, is applied to the paste method, for example, in Japanese Patent Publication Nos. 57-5344 and 60-160.
No. 60449, metallic cobalt,
As shown in 138458, attempts to suppress polarization by blending cobalt having excellent conductivity, such as cobalt oxide, have been widely made. Also, Japanese Patent Application Laid-Open No. 1-26
0762 and JP-A-2-30061, attempts to add cadmium, zinc, or the like to a crystal of nickel hydroxide in a eutectic state have also been made. However, none of these methods can be said to be a sufficient measure against the above problems. For example, the sintering method has a utilization factor of 95% or more, while the paste method has a limit of about 90%. At present, the sintering method is inferior to about 300 cycles while the sintering method is 500 cycles or more, and these problems have been a major obstacle to the spread of the paste-type nickel electrode.
【0007】一方、特開昭63−152866号公報に
は、比表面積が60m2 /g以上で、かつ結晶度が14
以下で、主成分が水酸化ニッケルの粒子にβ型水酸化コ
バルトの薄層を形成したことを特徴とする蓄電池用ニッ
ケル活物質が記載されている。また、主成分が硫酸ニッ
ケル塩あるいは硝酸ニッケル塩の水溶液を用い、苛性カ
リあるいは苛性ソーダ等のPH9.5〜12.5に調整
されたアルカリ水溶液中で水酸化ニッケル粉末を析出さ
せた後、硫酸コバルト塩あるいは硝酸コバルト塩の水溶
液中に浸漬し、次にアルカリ水溶液で中和させることを
特徴とする蓄電池用ニッケル活物質の製造法が記載され
ている。なお、「結晶度」は水酸化ニッケルの(00
1)面の特性ピークの高さを半価巾で割ったものであ
る。On the other hand, JP-A-63-152866 discloses that the specific surface area is 60 m 2 / g or more and the crystallinity is 14
The following describes a nickel active material for a storage battery, wherein a thin layer of β-type cobalt hydroxide is formed on nickel hydroxide particles as a main component. Further, after using an aqueous solution of nickel sulfate or nickel nitrate as a main component, depositing nickel hydroxide powder in an alkaline aqueous solution adjusted to PH 9.5 to 12.5 such as caustic potash or caustic soda, a cobalt sulfate salt is precipitated. Alternatively, there is described a method for producing a nickel active material for a storage battery, wherein the method is immersed in an aqueous solution of a cobalt nitrate salt and then neutralized with an aqueous alkaline solution. The “crystallinity” is (00) of nickel hydroxide.
1) The height of the characteristic peak on the surface is divided by the half width.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、前述し
た結晶度及び比表面積を有する水酸化ニッケルを活物質
として含むペースト式ニッケル極を備えたアルカリ蓄電
池は、前記水酸化ニッケルにコバルト、あるいはカドミ
ウムを共沈させないと前記ニッケル極の充電時のγ−N
iOOHの生成率が高いため、利用率及びサイクル寿命
が劣るという問題点がある。また、前述した活物質の製
造方法は、アルカリ水溶液のPH以外の他の製造条件、
例えば、反応系の温度や、使用する水溶液の濃度、攪拌
速度等の影響を受けやすい。このため、前記方法により
製造されたニッケル活物質を含むペースト式ニッケル極
は、前述したように性能が劣るばかりか、性能がばらつ
くという問題点がある。However, an alkaline storage battery provided with a paste-type nickel electrode containing nickel hydroxide having the above-mentioned crystallinity and specific surface area as an active material has the above-mentioned nickel hydroxide containing cobalt or cadmium. Γ-N when charging the nickel electrode if not
Since the production rate of iOOH is high, there is a problem that the utilization rate and the cycle life are inferior. In addition, the above-described method for producing an active material includes production conditions other than PH of an aqueous alkaline solution,
For example, it is easily affected by the temperature of the reaction system, the concentration of the aqueous solution used, the stirring speed, and the like. Therefore, the paste-type nickel electrode containing the nickel active material manufactured by the above method has a problem that not only the performance is inferior but also the performance varies as described above.
【0009】本発明は、前記従来の問題を改善するため
になされたもので、高利用率で、かつ長寿命なペースト
式ニッケル極の製造方法を提供しようとするものであ
る。本発明は、高利用率のペースト式ニッケル極を備え
た長寿命なアルカリ蓄電池の製造方法を提供しようとす
るものである。The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method of producing a paste-type nickel electrode having a high utilization factor and a long life. An object of the present invention is to provide a method for manufacturing a long-life alkaline storage battery provided with a paste-type nickel electrode having a high utilization factor.
【0010】[0010]
【課題を解決するための手段】本発明に係るペースト式
ニッケル極の製造方法は、金属多孔体を有する基板に、
水酸化ニッケル(Ni(OH)2 )を主体とする活物質
を含むペーストを充填するペースト式ニッケル極の製造
方法であって、前記水酸化ニッケルは、X線回折におけ
る(101)面のピークの半価幅が0.8゜/2θ以上
であることを特徴とするものである。The method for producing a paste-type nickel electrode according to the present invention comprises the steps of:
A method for producing a paste-type nickel electrode in which a paste containing an active material mainly composed of nickel hydroxide (Ni (OH) 2 ) is filled, wherein the nickel hydroxide has a peak of (101) plane in X-ray diffraction. The half width is 0.8 ° / 2θ or more.
【0011】本発明に係るアルカリ蓄電池の製造方法
は、金属多孔体を有する基板に、水酸化ニッケル(Ni
(OH)2 )を主体とする活物質を含むペーストを充填
するペースト式ニッケル極を備えたアルカリ蓄電池の製
造方法であって、前記水酸化ニッケルは、X線回折にお
ける(101)面のピークの半価幅が0.8゜/2θ以
上であることを特徴とするものである。In the method for manufacturing an alkaline storage battery according to the present invention, nickel hydroxide (Ni
A method for manufacturing an alkaline storage battery having a paste-type nickel electrode filled with a paste containing an active material mainly composed of (OH) 2 , wherein the nickel hydroxide has a peak (101) plane in X-ray diffraction. The half width is 0.8 ° / 2θ or more.
【0012】[0012]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係る方法によれば、ペースト式ニッケル極を、
例えば、X線回折による(101)面のにおけるピーク
の半価幅を指標とし、この半価幅が0.8゜/2θ以上
の水酸化ニッケルを主体とする活物質を用意する工程
と、用意された活物質を含むペーストを調製する工程
と、前記ペーストを金属多孔体を有する基板に充填する
工程とを具備する方法により作製することができる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
According to the method of the present invention, the paste nickel electrode is
For example, a step of preparing an active material mainly composed of nickel hydroxide having a half width of 0.8 ピ ー ク / 2θ or more based on the half width of the peak on the (101) plane by X-ray diffraction as an index, It can be produced by a method including a step of preparing a paste containing the obtained active material, and a step of filling the paste into a substrate having a porous metal body.
【0013】この方法において、前記水酸化ニッケル
は、カドミウムもしくは亜鉛が共晶されていても良い。
また、前記ペーストに前記水酸化ニッケルと共晶してい
ない金属コバルトもしくはコバルト酸化物が存在してい
ても良い。In this method, the nickel hydroxide may be eutectic of cadmium or zinc.
In addition, metallic cobalt or cobalt oxide that is not eutectic with the nickel hydroxide may be present in the paste.
【0014】前記金属多孔体としてはスポンジ状ニッケ
ルやフェルト状ニッケルのような三次元構造を有するも
のを挙げることができる。前記水酸化ニッケルの製造方
法としては硝酸ニッケルや硫酸ニッケル等のニッケル塩
の水溶液と苛性ソーダや苛性カリ等のアルカリ水溶液と
の中和反応で得られるが、反応雰囲気のpHを調節する
ことにより、同じ水酸化ニッケルでもX線回折における
(101)面のピークの半価幅の異なる結晶を得ること
ができる。Examples of the porous metal include those having a three-dimensional structure such as sponge-like nickel and felt-like nickel. The method for producing the nickel hydroxide is obtained by a neutralization reaction between an aqueous solution of a nickel salt such as nickel nitrate or nickel sulfate and an aqueous alkali solution such as caustic soda or potassium caustic. Even with nickel oxide, a crystal having a different half width at the peak of the (101) plane in X-ray diffraction can be obtained.
【0015】さらに水酸化ニッケルにカドミウム、亜鉛
から選択された金属元素を共晶状態で添加、および金属
コバルト、コバルト酸化物(例えば、水酸化コバルト、
一般化コバルト)を添加することにより性能が向上す
る。Further, a metal element selected from cadmium and zinc is added to nickel hydroxide in a eutectic state, and metal cobalt and cobalt oxide (for example, cobalt hydroxide,
The performance is improved by adding generalized cobalt).
【0016】同じ水酸化ニッケルNi(OH)2 であっ
ても結晶性の大小により、γ−NiOOHの生成度合い
が異なる傾向にある。それは充電時の反応でNi(O
H)2結晶は電解液界面のプロトン移動の自由度が結晶
化の大小により異なり、結晶性の小さいものの方がプロ
トン移動の自由度は高い傾向にあり、反面プロトン移動
の不自由なものほどγ−NiOOHを生成しやすい傾向
にあることから、全体的には結晶性の大きなNi(O
H)2 はγ−NiOOHを生成しやすいと言うことがで
きる。Even with the same nickel hydroxide Ni (OH) 2 , the degree of γ-NiOOH tends to vary depending on the degree of crystallinity. It is Ni (O
H) 2 crystals have a higher degree of freedom of proton transfer at the electrolyte interface depending on the degree of crystallization, and those having low crystallinity tend to have a higher degree of freedom of proton transfer, while those having less proton transfer have a higher γ. -NiOOH tends to be easily generated, so that Ni (O
H) 2 can be said to be easy to generate γ-NiOOH.
【0017】Ni(OH)2 の結晶性を示す尺度として
は数々の方法があるが、発明者は特にX線回折を行った
際の(101)面、Cu Kα管球を使用した場合2θ
値で38.7°付近に見られるピークの半価幅と、γ−
NiOOHの生成比率との間に高い相関性を見いだして
本発明を作成した。充電時のβ−NiOOH+γ−Ni
OOH量に対するγ一Ni00Hの比率が小さいほど、
ニッケル極の利用率は高く、また活物質の膨潤度合いが
小さいため、サイクル寿命が大きい傾向にある。There are a number of methods for indicating the crystallinity of Ni (OH) 2 , and the inventors have found that the (101) plane in particular when X-ray diffraction is performed, and that 2θ is used when a Cu Kα tube is used.
The half-width of the peak seen near 38.7 °
The present invention was found by finding a high correlation between the production ratio of NiOOH. Β-NiOOH + γ-Ni during charging
The smaller the ratio of γ-Ni00H to the amount of OOH,
Since the utilization rate of the nickel electrode is high and the degree of swelling of the active material is small, the cycle life tends to be long.
【0018】[0018]
【実施例】以下、本発明の好ましい実施例を詳細に説明
する。まず主活物質である水酸化ニッケルを下記の方法
で調製した。反応雰囲気のpHが一定に管理された環境
下で硫酸ニッケル水溶液と苛性ソーダ水溶液を順次投入
し、結晶成長、水洗、乾燥を経て、粒径1〜30μmの
水酸化ニッケルを作製した。反応雰囲気のpH値を4種
類にさせることにより結晶性の異なるNi(OH)2 を
4種類得ることができた。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. First, nickel hydroxide as a main active material was prepared by the following method. An aqueous solution of nickel sulfate and an aqueous solution of caustic soda were sequentially added under an environment in which the pH of the reaction atmosphere was controlled to be constant, and crystal growth, washing with water, and drying were performed to produce nickel hydroxide having a particle size of 1 to 30 μm. By changing the pH value of the reaction atmosphere to four types, four types of Ni (OH) 2 having different crystallinities could be obtained.
【0019】この水酸化ニッケルを島津製作所(株)製
XD−34型X線回折分析装置にCu Kα管球及びグ
ラフィトモノクロメータを装着して結晶性を測定したと
ころ、(101)面を示す38.7゜付近のピークの半
価幅が0.9,0.8,0.7,0.6゜に相当するチ
ャートを示した。チャートの一例を図1に示す。この水
酸化ニッケル100重量部に対して一酸化コバルト10
重量部、カルボキシメチルセルロース0.3重量部を水
30重量部と共に混練してペースト状に調製後、このペ
ーストを孔径300μmのスポンジ状ニッケル多孔体に
充填し、乾燥、加圧、リード溶接を経て、本発明のペー
スト式ニッケル極を作製した。The crystallinity of the nickel hydroxide was measured by mounting a Cu Kα tube and a graphite monochromator on an XD-34 type X-ray diffraction analyzer manufactured by Shimadzu Corporation. A chart is shown in which the half width of the peak near 38.7 ° corresponds to 0.9, 0.8, 0.7, 0.6 °. One example of the chart is shown in FIG. Cobalt monoxide 10 per 100 parts by weight of this nickel hydroxide
Parts by weight, and 0.3 parts by weight of carboxymethylcellulose are kneaded together with 30 parts by weight of water to prepare a paste. The paste is filled in a sponge-like porous nickel body having a pore diameter of 300 μm, dried, pressed, and subjected to lead welding. A paste-type nickel electrode of the present invention was produced.
【0020】このペースト式ニッケル極をペースト式カ
ドミウム極、ナイロン製セパレータと共に捲回して電池
缶に挿入し、AAサイズのニッケルカドミウム蓄電池を
作製し、0.3C充電/1C充電の充放電サイクルを5
00サイクル行った。その時のサイクル数に対するニッ
ケル極理論容量に対する利用率の推移を図2に示す。This paste-type nickel electrode is wound together with a paste-type cadmium electrode and a nylon separator and inserted into a battery can to produce an AA-size nickel-cadmium storage battery, and a charge / discharge cycle of 0.3 C charge / 1 C charge is performed.
00 cycles were performed. FIG. 2 shows the transition of the utilization rate with respect to the theoretical capacity of the nickel electrode with respect to the number of cycles at that time.
【0021】次に500サイクル終了後の電池を充電状
態で分解し、ニッケル極を取り出し粉砕処理して同様に
X線回折分析を行い、2θで13゜付近に見られるγ−
NiOOHのピーク高さ(P−γ)と、19゜付近にみ
られるβ−NiOOHのピーク高さ(P−β)を測定
し、(P−γ)/{(P−γ)+(P−β)}の値から
全体中のγ−NiOOHの比率を算出した。上記半価幅
に対するγ−NiOOHの比率を図3に示す。Next, after 500 cycles, the battery is disassembled in a charged state, the nickel electrode is taken out and pulverized, and similarly subjected to X-ray diffraction analysis.
The peak height (P-γ) of NiOOH and the peak height (P-β) of β-NiOOH observed around 19 ° were measured, and (P−γ) / {(P−γ) + (P− β) The ratio of γ-NiOOH in the whole was calculated from the value of}. FIG. 3 shows the ratio of γ-NiOOH to the half width.
【0022】図2によると、(101)面ピークの半価
幅が0.9,0.8゜の水酸化ニッケルを使用したニッ
ケル極の場合、利用率が95%と高く、かつ500サイ
クルを経ても利用率の変化がほとんど見られない。図3
のγ−NiOOH比率も20%未満と小さい傾向にあ
る。これに対し、0.7,0.6゜のものは利用率が最
高でも90%であり、しかもサイクル中の低下が著しく
300サイクル付近で初期の50%未満に低下してい
る。これに対応してγ−NiOOH比率は40%〜80
%と非常に高い傾向にあり、活物質膨潤による電解液の
偏在を起こしていた。According to FIG. 2, in the case of a nickel electrode using nickel hydroxide having a (101) plane peak having a half width of 0.9 or 0.8 °, the utilization factor is as high as 95% and 500 cycles are required. Almost no change in usage rate is seen even after passing through. FIG.
Also tend to be as small as less than 20%. On the other hand, in the case of 0.7, 0.6%, the utilization rate is 90% at the maximum, and the decrease during the cycle is remarkable, and drops to less than the initial 50% around 300 cycles. Correspondingly, the γ-NiOOH ratio is between 40% and 80%.
%, Which is very high, and uneven distribution of the electrolytic solution was caused by swelling of the active material.
【0023】本実施例はコバルト系の添加剤として一酸
化コバルトを使用したが、代用として金属コバルトや水
酸化コバルト等のコバルト酸化物を使用しても同様な効
果が得られる。またここでは詳細な結果を示さないが、
水酸化ニッケルにカドミウムまたは亜鉛を3〜7重量%
共晶添加したペースト式ニッケル極においては700サ
イクルの経過後も利用率の変化は見られず、良好な特性
を示した。In this embodiment, cobalt monoxide is used as a cobalt-based additive. However, similar effects can be obtained by using a cobalt oxide such as metal cobalt or cobalt hydroxide instead. I will not show detailed results here,
3-7% by weight of cadmium or zinc in nickel hydroxide
The eutectic-added paste-type nickel electrode did not show any change in utilization even after 700 cycles, and exhibited good characteristics.
【0024】[0024]
【発明の効果】以上詳述したように本発明によれば、水
酸化ニッケルの利用率が高く、かつ長寿命なペースト式
ニッケル極の製造方法及びアルカリ蓄電池の製造方法を
提供することができ、その工業的価値は大である。As described above in detail, according to the present invention, it is possible to provide a method of manufacturing a paste-type nickel electrode and a method of manufacturing an alkaline storage battery having a high utilization rate of nickel hydroxide and a long life. Its industrial value is great.
【図1】水酸化ニッケルのX線回折分析のチャート図。FIG. 1 is a chart of an X-ray diffraction analysis of nickel hydroxide.
【図2】水酸化ニッケルのX線回折による(101)面
の2θにおけるピークの半価幅とニッケル極の活物質利
用率との関係を示す特性図。FIG. 2 is a characteristic diagram showing the relationship between the half-value width of the peak at 2θ of the (101) plane of nickel hydroxide by X-ray diffraction and the active material utilization of the nickel electrode.
【図3】水酸化ニッケルのX線回折による(101)面
の2θにおけるピークの半価幅と500サイクル後のγ
−NiOOHの生成比率との関係を示す特性図。FIG. 3 shows the half-value width of the peak at 2θ of the (101) plane obtained by X-ray diffraction of nickel hydroxide and γ after 500 cycles.
FIG. 3 is a characteristic diagram showing a relationship with a production ratio of NiOOH.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 秦 勝幸 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Katsuyuki Hata 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation
Claims (4)
ケル(Ni(OH)2 )を主体とする活物質を含むペー
ストを充填するペースト式ニッケル極の製造方法であっ
て、 前記水酸化ニッケルは、X線回折における(101)面
のピークの半価幅が0.8゜/2θ以上であることを特
徴とするペースト式ニッケル極の製造方法。1. A method for producing a paste-type nickel electrode, comprising filling a substrate having a porous metal body with a paste containing an active material mainly composed of nickel hydroxide (Ni (OH) 2 ). Is a method for producing a paste-type nickel electrode, wherein the half-value width of the peak of the (101) plane in X-ray diffraction is 0.8 ° / 2θ or more.
くは亜鉛が共晶されていることを特徴とする請求項1記
載のペースト式ニッケル極の製造方法。2. The method according to claim 1, wherein the nickel hydroxide is eutectic of cadmium or zinc.
ケル(Ni(OH)2 )を主体とする活物質を含むペー
ストを充填するペースト式ニッケル極を備えたアルカリ
蓄電池の製造方法であって、 前記水酸化ニッケルは、X線回折における(101)面
のピークの半価幅が0.8゜/2θ以上であることを特
徴とするアルカリ蓄電池の製造方法。3. A method for manufacturing an alkaline storage battery having a paste nickel electrode in which a substrate having a porous metal body is filled with a paste containing an active material mainly composed of nickel hydroxide (Ni (OH) 2 ). The method for producing an alkaline storage battery according to claim 1, wherein the nickel hydroxide has a peak half width at (101) plane in X-ray diffraction of 0.8 線 / 2θ or more.
くは亜鉛が共晶されていることを特徴とする請求項3記
載のアルカリ蓄電池の製造方法。4. The method according to claim 3, wherein the nickel hydroxide is eutectic of cadmium or zinc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10018738A JP3094062B2 (en) | 1998-01-30 | 1998-01-30 | Method for producing paste-type nickel electrode and method for producing alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10018738A JP3094062B2 (en) | 1998-01-30 | 1998-01-30 | Method for producing paste-type nickel electrode and method for producing alkaline storage battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03187097A Division JP3080441B2 (en) | 1991-04-25 | 1991-04-25 | Paste nickel electrode and alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10172563A true JPH10172563A (en) | 1998-06-26 |
JP3094062B2 JP3094062B2 (en) | 2000-10-03 |
Family
ID=11980021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10018738A Expired - Fee Related JP3094062B2 (en) | 1998-01-30 | 1998-01-30 | Method for producing paste-type nickel electrode and method for producing alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3094062B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002522893A (en) * | 1998-08-17 | 2002-07-23 | オヴォニック バッテリー カンパニー インコーポレイテッド | Nickel hydroxide anode material showing improved conductivity and designed activation energy |
US6649304B2 (en) | 2000-06-16 | 2003-11-18 | Canon Kabushiki Kaisha | Nickel-series rechargeable battery and process for the production thereof |
-
1998
- 1998-01-30 JP JP10018738A patent/JP3094062B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002522893A (en) * | 1998-08-17 | 2002-07-23 | オヴォニック バッテリー カンパニー インコーポレイテッド | Nickel hydroxide anode material showing improved conductivity and designed activation energy |
EP1110258A4 (en) * | 1998-08-17 | 2006-06-28 | Ovonic Battery Co | Nickel hydroxide positive electrode material exhibiting improved conductivity and engineered activation energy |
US6649304B2 (en) | 2000-06-16 | 2003-11-18 | Canon Kabushiki Kaisha | Nickel-series rechargeable battery and process for the production thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3094062B2 (en) | 2000-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5773169A (en) | Active material and positive electrode for alkaline storage battery | |
JPH11292547A (en) | Lithium cobaltate, its production and lithium cell using that | |
US5674643A (en) | Non-sintered nickel electrode for alkaline storage cell | |
JPH0559546B2 (en) | ||
JP3296754B2 (en) | Nickel electrode active material for alkaline storage battery and method for producing the same | |
JPH11213998A (en) | Positive electrode active material for alkaline storage battery | |
JP3080441B2 (en) | Paste nickel electrode and alkaline storage battery | |
JP3371473B2 (en) | Paste positive electrode plate for alkaline storage batteries | |
JP3324781B2 (en) | Alkaline secondary battery | |
JP3094062B2 (en) | Method for producing paste-type nickel electrode and method for producing alkaline storage battery | |
JP2002056844A (en) | Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode | |
US6368748B1 (en) | Nickel-metal hydride storage cell having a high capacity and an excellent cycle characteristic and manufacturing | |
JP3112660B2 (en) | Method for producing paste-type nickel electrode and method for producing alkaline storage battery | |
JP2731050B2 (en) | Paste nickel electrode and alkaline storage battery | |
JP2835282B2 (en) | Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same | |
JP2000082463A (en) | Nickel positive electrode active material for alkaline battery and its manufacture | |
JP2765028B2 (en) | Sealed alkaline battery | |
JPH11185746A (en) | Positive electrode material for alkaline storage battery | |
JPH02234356A (en) | Sealed-type alkali battery | |
JPH05254847A (en) | Production of nickel hyroxide powder for nickel electrode | |
JP3518259B2 (en) | Nickel-hydrogen storage battery and method for producing positive electrode active material thereof | |
JP2938994B2 (en) | Nickel electrode for alkaline secondary batteries | |
JP2975129B2 (en) | Electrodes for alkaline storage batteries | |
US20040202932A1 (en) | Electrochemically active material for an electrode | |
JP3540557B2 (en) | Nickel electrode for alkaline storage battery and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080728 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080728 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080728 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090728 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |