JPH10170916A - Illuminator and liquid crystal display device using the illuminator - Google Patents
Illuminator and liquid crystal display device using the illuminatorInfo
- Publication number
- JPH10170916A JPH10170916A JP8331868A JP33186896A JPH10170916A JP H10170916 A JPH10170916 A JP H10170916A JP 8331868 A JP8331868 A JP 8331868A JP 33186896 A JP33186896 A JP 33186896A JP H10170916 A JPH10170916 A JP H10170916A
- Authority
- JP
- Japan
- Prior art keywords
- light
- liquid crystal
- light guide
- crystal display
- polarizing plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液晶表示素子の背
面に設ける平面状照明装置、特に、偏光を制御した平面
状照明装置およびそれを用いた液晶表示装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar illumination device provided on the back of a liquid crystal display device, and more particularly to a planar illumination device with controlled polarization and a liquid crystal display device using the same.
【0002】[0002]
【従来の技術】近年、液晶表示装置、特にカラー液晶表
示装置の技術進歩は目覚ましく、CRTに劣らぬ表示品
質のディスプレイが数多く見られるようになった。更
に、ノート型パーソナルコンピュータが普及し、照明装
置としてのバックライトは、直視型カラー液晶表示装置
における必須のデバイスである。2. Description of the Related Art In recent years, the technical progress of liquid crystal display devices, especially color liquid crystal display devices, has been remarkable, and many displays having display quality not inferior to that of CRTs have come to be seen. Further, with the spread of notebook personal computers, a backlight as an illumination device is an essential device in a direct-view color liquid crystal display device.
【0003】カラー液晶表示装置は、大別して薄膜トラ
ンジスタ(TFT)を用いたアクティブマトリクス駆動
によるツイストネマチック(TN)液晶表示装置と、マ
ルチプレックス駆動のスーパーツイステッドネマチック
(STN)液晶表示装置との2方式がある。いずれも液
晶層をガラス基板で保持した素子の両側に偏光板を配置
し、直線偏光光の偏光状態を変調して表示を行うもので
ある。Color liquid crystal display devices are roughly classified into two types: a twisted nematic (TN) liquid crystal display device driven by active matrix using thin film transistors (TFTs) and a super twisted nematic (STN) liquid crystal display device driven by multiplex. is there. In both cases, polarizing plates are arranged on both sides of an element in which a liquid crystal layer is held by a glass substrate, and display is performed by modulating the polarization state of linearly polarized light.
【0004】これらのバックライトに要求される輝度レ
ベルは、その用途によって様々であるが、特に、カラー
ノート型パーソナルコンピュータにおいては、要求輝度
だけでなく薄型、軽量、低消費電力は至上命題である。
また、コンピュータの大画面ディスプレイとして液晶表
示装置に対する期待は高く、明るさ向上はもちろんのこ
と、広視野角表示ができるように出射特性の広いことが
要求されている。[0004] The luminance level required for these backlights varies depending on the application. Particularly, in a color notebook type personal computer, not only the required luminance but also a thin, lightweight and low power consumption is the most important proposition. .
In addition, there is a high expectation for a liquid crystal display device as a large-screen display of a computer, and it is required not only to improve brightness but also to have a wide emission characteristic so as to enable a wide viewing angle display.
【0005】しかし、従来は、液晶表示素子の裏面に配
置したバックライトからの出射光は無偏光光であるた
め、TN型,STN型いずれの液晶素子の場合も、表示
素子の入射側に配置された偏光板により、入射光のうち
の半分以上が吸収されてしまうために光利用効率が低
く、暗い表示となるか、あるいは、明るくするために
は、電力消費量が増加してしまうと云う問題があった。However, conventionally, since the light emitted from the backlight disposed on the back surface of the liquid crystal display element is unpolarized light, the light is disposed on the incident side of the display element regardless of whether the liquid crystal element is of the TN type or the STN type. According to the polarizing plate, more than half of the incident light is absorbed, so that the light use efficiency is low, and the display becomes dark or the power consumption increases to make the display bright. There was a problem.
【0006】更に、液晶表示素子の開口率が低いため
に、バックライトからの出射光が十分に利用できない問
題があった。Further, there is a problem that the light emitted from the backlight cannot be used sufficiently because the aperture ratio of the liquid crystal display element is low.
【0007】[0007]
【発明が解決しようとする課題】前記課題を解決するた
めに、例えば、特開平6−265892号公報のように
面上導光体の光出射面側に、出射光が面上導光体表面に
対しほぼ直角になるよな光偏向手段を設け、更にその上
に、断面が三角形状の柱状プリズムアレイのアレイ部分
に、偏光分離層を積層した偏光分離器を配置し偏光光を
出射する照明装置が提案されている。In order to solve the above problems, for example, as disclosed in Japanese Patent Application Laid-Open No. 6-265892, the outgoing light is applied to the light exit surface side of the surface light guide. The light deflecting means is provided so as to be substantially at right angles to the light, and a polarization separator in which a polarization separation layer is laminated on an array portion of a columnar prism array having a triangular cross section is further disposed thereon, and illumination for emitting polarized light. A device has been proposed.
【0008】しかしながら、高い偏光度を有する高性能
な偏光照明装置を達成するためには、偏光分離層へ入射
する光に高い平行度が要求される。However, in order to achieve a high-performance polarized light illuminator having a high degree of polarization, high parallelism is required for light incident on the polarization separation layer.
【0009】そこで、この問題を解決するために、薄い
導光パイプを隣接させ、かつ、マイクロプリズム構造に
より効率良く、高い平行度を持つ光を出射させる照明装
置が提案(特開平6−202107号公報)されてい
る。In order to solve this problem, there is proposed an illuminating device in which a thin light guide pipe is arranged adjacently and a light having high parallelism is efficiently emitted by a micro-prism structure (Japanese Patent Laid-Open No. 6-202107). Gazette).
【0010】本発明の目的は、開口率の低い液晶表示素
子を用いる場合に、非開口部からの反射光を、偏光を維
持してバックライトから再び液晶表示素子側に反射する
ことで光の有効利用と、実質の開口率向上を達成する照
明装置の提供にある。An object of the present invention is to use a liquid crystal display element having a low aperture ratio to reflect reflected light from a non-opening portion again from a backlight to the liquid crystal display element side while maintaining polarization, thereby reducing the amount of light. An object of the present invention is to provide a lighting device that achieves effective use and a substantial improvement in aperture ratio.
【0011】また、本発明の他の目的は、上記照明装置
を用いた低消費電力の液晶表示装置を提供することにあ
る。Another object of the present invention is to provide a low power consumption liquid crystal display device using the above-mentioned lighting device.
【0012】[0012]
【課題を解決するための手段】上記目的を達成する本発
明の要旨は次のとおりである。The gist of the present invention to achieve the above object is as follows.
【0013】〔1〕 板状の導光体と、その周縁に近接
配置された光源を有し、該光源から出射された光が前記
導光体内を伝搬して導光体の光出射面から出射されるよ
う構成された照明装置において、前記導光体の光出射面
の裏面に微細な傾斜面を有する多数の凸面,凹面または
段差で構成された反射面を備え、該反射面は少なくとも
前記傾斜面部分が鏡面化されており、該導光体の裏面に
直接もしくは空気層を介して反射板が設けられている照
明装置にある。[1] A plate-shaped light guide, and a light source disposed close to the periphery of the light guide, and light emitted from the light source propagates through the light guide and from the light exit surface of the light guide. In a lighting device configured to emit light, the light guide includes a plurality of convex, concave, or stepped reflecting surfaces having fine inclined surfaces on the back surface of the light emitting surface of the light guide, and the reflecting surface is at least the reflecting surface. There is a lighting device in which an inclined surface portion is mirror-finished, and a reflection plate is provided on the back surface of the light guide directly or via an air layer.
【0014】〔2〕 透明な一対の基板と、前記基板間
に挟持された液晶層と、前記基板の少なくとも一方の基
板上に形成され、前記液晶層の液晶分子を駆動させる電
界を印加する電極群と、これらの電極群に接続されたア
クティブ素子と、前記液晶層の液晶分子の配向を規制す
る配向膜と、前記液晶層の分子配向状態に応じて光学特
性を変える光学手段を有する液晶表示素子と、該液晶表
示素子の直下に配置された照明装置、並びに前記液晶表
示素子の電極群に電界を印加する手段を備えた液晶表示
装置において、前記液晶表示素子の非開口部が反射率の
高い物質で構成されており、前記照明装置が上記〔1〕
に記載の照明装置である液晶表示装置にある。[2] A pair of transparent substrates, a liquid crystal layer sandwiched between the substrates, and an electrode formed on at least one of the substrates and applying an electric field for driving liquid crystal molecules of the liquid crystal layer. A liquid crystal display comprising: a group; an active element connected to these electrode groups; an alignment film for controlling the alignment of liquid crystal molecules of the liquid crystal layer; and an optical unit for changing optical characteristics according to a molecular alignment state of the liquid crystal layer. A liquid crystal display device comprising a device, a lighting device disposed immediately below the liquid crystal display device, and a means for applying an electric field to an electrode group of the liquid crystal display device, wherein the non-opening portion of the liquid crystal display device has a reflectance. The lighting device is composed of a high material.
3. The liquid crystal display device which is the lighting device described in 1. above.
【0015】上記において、前記光源と導光体との間に
出射光の平行光化手段を設ける。また、前記導光体の光
出射面に反射型偏光板を設ける。In the above, a means for parallelizing emitted light is provided between the light source and the light guide. Further, a reflection type polarizing plate is provided on the light emitting surface of the light guide.
【0016】また、前記導光体の光出射面に反射型偏光
板を、導光体の表裏面のいずれか一方に位相差板を設け
る。さらに、前記光源と導光体との間に出射光の平行光
化手段、該平行光化手段と前記導光体との間に反射型偏
光板を設ける。更に、前記導光体上に反射型偏光板を設
ける。前記導光体の表裏いずれか一方の面に位相差板を
設けるのもよい。Further, a reflection type polarizing plate is provided on the light emitting surface of the light guide, and a retardation plate is provided on one of the front and back surfaces of the light guide. Further, a means for parallelizing emitted light is provided between the light source and the light guide, and a reflective polarizing plate is provided between the parallel light means and the light guide. Further, a reflective polarizing plate is provided on the light guide. A retardation plate may be provided on one of the front and back surfaces of the light guide.
【0017】前記液晶表示素子の前記液晶層の分子配向
状態に応じて光学特性を変える光学手段として一対の偏
光板を用い、入射側偏光板の偏光軸が、前記照明装置か
らの入射光の偏光軸とほぼ平行またはほぼ垂直であるこ
とが望ましい。A pair of polarizing plates are used as optical means for changing optical characteristics according to the molecular alignment state of the liquid crystal layer of the liquid crystal display element, and the polarization axis of the incident side polarizing plate is such that the polarization of incident light from the illumination device is changed. Desirably, it is substantially parallel or substantially perpendicular to the axis.
【0018】上記により、導光体から出射された光は、
液晶表示素子の非開口部から反射され、そのた殆どの光
は導光体裏面のフラット面を透過し、その裏面に配置さ
れた反射板で偏光状態をほぼ維持したまま再び液晶表示
装置へ出射される。これにより、液晶表示素子の入射側
偏光板による吸収が殆どなくなり、効率良く光が利用で
きるので、表示の明るさ向上を図ることができる。As described above, the light emitted from the light guide is
Most of the light reflected from the non-opening portion of the liquid crystal display element passes through the flat surface on the back surface of the light guide, and is emitted again to the liquid crystal display device while maintaining the polarization state substantially by the reflection plate disposed on the back surface. Is done. Thereby, absorption by the incident-side polarizing plate of the liquid crystal display element is almost eliminated, and light can be used efficiently, so that the brightness of the display can be improved.
【0019】[0019]
【発明の実施の形態】平面照明装置には、大別して2種
に分類され、直下型とエッジライト型がある。直下型
は、光源が照光面の内側にある方式で、エッジライト型
は、光源が照光面の外縁側に配置される。そして、透明
なアクリル樹脂等の導光体からなる照光面の1辺若しく
は2辺に蛍光ランプ(冷陰極放電管もしくは熱陰極放電
管)等の円柱状発光体を配置し、反射体からなるランプ
カバーをその外側に設けて、導光体内に光を導入する方
式である。薄型、軽量化が要求される液晶表示装置で
は、エッジライト型が有効である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Flat lighting devices are roughly classified into two types, a direct type and an edge light type. The direct type is a type in which the light source is inside the illuminated surface, and the edge light type is a type in which the light source is arranged on the outer edge side of the illuminated surface. Then, a columnar light-emitting body such as a fluorescent lamp (a cold cathode discharge tube or a hot cathode discharge tube) is arranged on one or two sides of an illuminating surface made of a light guide made of a transparent acrylic resin or the like, and a lamp made of a reflector is provided. In this method, light is introduced into the light guide by providing a cover outside the cover. An edge light type is effective for a liquid crystal display device which is required to be thin and light.
【0020】従来の液晶表示装置は、エッジライト型の
バックライトが主流で、面内の均一性を得るために、導
光体裏面に設けた白色インクの面積比率を、光源からの
距離に応じて変化させて対応していた。この従来の液晶
表示装置のバックライトの光利用効率を評価してみる
と、バックライトの明るさに、液晶表示素子単体の透過
率を乗じた値は、実際の液晶表示装置の明るさより低い
ことを確認した。In a conventional liquid crystal display device, an edge light type backlight is mainly used. In order to obtain in-plane uniformity, the area ratio of the white ink provided on the back surface of the light guide is determined according to the distance from the light source. And changed it. When evaluating the light use efficiency of the backlight of this conventional liquid crystal display device, the value obtained by multiplying the backlight brightness by the transmittance of the liquid crystal display element alone is lower than the actual brightness of the liquid crystal display device. It was confirmed.
【0021】これは、詳細な検討の結果、液晶表示素子
の非開口部は殆どが金属電極で、開口率50%の時、バ
ックライトの光の約半分以上が偏光板に吸収され、その
また50%が透過し、残りの50%が反射されてバック
ライトに戻っていることが分かった。As a result of detailed studies, most of the non-opening portions of the liquid crystal display element are made of metal electrodes, and when the aperture ratio is 50%, about half or more of the backlight light is absorbed by the polarizing plate. It was found that 50% was transmitted and the remaining 50% was reflected and returned to the backlight.
【0022】このバックライトに戻った光は、導光体上
の拡散板や、導光体裏面の白色インクにより偏光状態が
崩され、ほぼ無偏光になり、再び液晶表示素子に入射す
るが、入射側偏光板によって、その半分以上が吸収さ
れ、そのまた50%が透過する。これを繰り返すために
光の利用効率が低く暗い表示となる。The light returned to the backlight is depolarized by the diffusion plate on the light guide or the white ink on the back of the light guide, becomes almost non-polarized light, and enters the liquid crystal display element again. More than half of the light is absorbed by the incident-side polarizing plate, and 50% of the light is transmitted. Since this is repeated, the display efficiency is low and the display is dark.
【0023】従って、照明装置であるバックライトにお
いて偏光状態が維持されれば、液晶表示素子の入射側偏
光板により吸収される光を大幅低減できるので、開口率
の低い液晶表示素子であっても、実質開口率が向上し、
明るい表示が実現できる。Therefore, if the polarization state is maintained in the backlight which is an illumination device, the light absorbed by the incident-side polarizing plate of the liquid crystal display element can be greatly reduced, so that the liquid crystal display element having a low aperture ratio can be used. , The effective aperture ratio is improved,
Bright display can be realized.
【0024】液晶表示素子の非開口部からの反射光を偏
光を維持したまま再び液晶表示素子側に反射させるため
に、導光体上面に通常配置される拡散板を除き、導光体
裏面に微細な鏡面反射の傾斜面(好ましくは金属反射
面)とフラットな鏡面部とを併設し、導光体の裏面に空
気層を介し鏡面反射板を設ける。このとき、傾斜面はフ
ラット面に比べて面積比率を小さくする。In order to reflect the reflected light from the non-opening portion of the liquid crystal display element back to the liquid crystal display element side while maintaining the polarization, a diffuser plate which is usually arranged on the upper surface of the light guide, except for the diffusion plate, is provided on the rear surface of the light guide. A fine mirror reflection inclined surface (preferably a metal reflection surface) and a flat mirror surface are provided side by side, and a mirror reflection plate is provided on the back surface of the light guide via an air layer. At this time, the area ratio of the inclined surface is smaller than that of the flat surface.
【0025】また、傾斜面は導光体から光を出射させる
ための面で、フラット面は導光体内を全反射して伝搬さ
せるためのものである。フラット面は導光体内を伝搬す
時の反射回数が多数になるため反射率の最も高い全反射
を利用することが好ましい。The inclined surface is a surface for emitting light from the light guide, and the flat surface is for totally reflecting and propagating the light in the light guide. Since the flat surface has a large number of reflections when propagating in the light guide, it is preferable to use total reflection having the highest reflectance.
【0026】この構成により、液晶表示素子の非開口部
から反射された光の殆どは導光体裏面のフラット面を透
過し、その裏面に配置された反射板で偏光状態をほぼ維
持したまま再び液晶表示装置へ出射される。これによ
り、液晶表示素子の入射側偏光板による吸収が殆どなく
なり、効率良く光が利用できるので明るさ向上を図るこ
とができる。With this configuration, most of the light reflected from the non-opening portion of the liquid crystal display element passes through the flat surface on the back surface of the light guide, and is again maintained while the polarization state is substantially maintained by the reflector disposed on the back surface. The light is emitted to the liquid crystal display device. Thereby, absorption by the incident-side polarizing plate of the liquid crystal display element is almost eliminated, and light can be efficiently used, so that the brightness can be improved.
【0027】ここで、鏡面反射の傾斜面は凸または凹の
曲面とする。この傾斜反射面は、光源からの光を液晶表
示素子側に反射させるための反射面で、液晶表示装置に
必要な出射光の広がりを得るために曲面とする。このと
きも、微細な鏡面反射傾斜面の比率を、従来の白色イン
ク配置と同様に光源からの距離に合わせて変化させるこ
とが好ましい。Here, the inclined surface of the specular reflection is a convex or concave curved surface. The inclined reflecting surface is a reflecting surface for reflecting the light from the light source toward the liquid crystal display element, and has a curved surface for obtaining the required spread of the outgoing light for the liquid crystal display device. Also at this time, it is preferable to change the ratio of the fine mirror reflection inclined surface in accordance with the distance from the light source similarly to the conventional arrangement of the white ink.
【0028】また、光源からの光が導光体裏面のフラッ
トな鏡面部に入射した場合は全反射して導光体中を伝搬
し、微細な鏡面傾斜面に入射したときのみ導光体より出
射される。When the light from the light source enters the flat mirror surface on the back surface of the light guide, it is totally reflected and propagates through the light guide. Is emitted.
【0029】ここで、光源から導光体への入射光はフラ
ットな鏡面部に入射したときに全反射し、また、導光体
上面でも全反射する。この導光体への入射光の広がりを
小さくし、導光体からの出射光の面内の均一性を向上さ
せるために、導光体と光源との間に平行光化手段とし
て、光源に近づくにつれ広がりを持つ平行光化部を設け
た。Here, the incident light from the light source to the light guide is totally reflected when entering the flat mirror surface portion, and is also totally reflected on the upper surface of the light guide. In order to reduce the spread of the light incident on the light guide and improve the in-plane uniformity of the light emitted from the light guide, the light source serves as a parallel light converting means between the light guide and the light source. A parallel light-generating portion was provided that expanded as approaching.
【0030】導光体の表面において、導光体の屈折率に
よって定まる全反射角θc以上の入射角の光が全反射し
導光体内を伝搬する。全反射角θc未満の入射角の光が
導光体の上面で屈折し出射される。On the surface of the light guide, light having an incident angle equal to or greater than the total reflection angle θc determined by the refractive index of the light guide is totally reflected and propagates through the light guide. Light having an incident angle smaller than the total reflection angle θc is refracted by the upper surface of the light guide and emitted.
【0031】例えば、空気(屈折率n=1)と、透明樹
脂、例えば、アクリル、ポリカーボネート、ポリウレタ
ン、ポリスチレン等のプラスチック(屈折率n=1.5
程度)の界面における全反射角θcは、θc=sin−1
(1/n)=42°で与えられる。For example, air (refractive index n = 1) and a transparent resin such as acrylic, polycarbonate, polyurethane, or polystyrene (refractive index n = 1.5)
The total reflection angle θc at the interface of (degree) is θc = sin−1
(1 / n) = 42 °.
【0032】ここで、平行光化部がなくても導光体へ入
射した光θは、−(90゜−θc)≦θ≦+(90゜−θc)
内の光となるために、導光体の上面および下面のフラッ
ト部では全反射する。前記のように平行光化部からの導
光体への入射光の広がりを極力小さくすることで、導光
体からの出射光の面内の均一性を向上させるために、導
光体と光源との間に平行化手段として光源に近づくにつ
れ広がりを持つ平行光化部を設けた。Here, the light θ incident on the light guide without the collimating portion is-(90 ° -θc) ≦ θ ≦ + (90 ° -θc).
The light is internally reflected and totally reflected at the flat portions on the upper and lower surfaces of the light guide. In order to improve the in-plane uniformity of the light emitted from the light guide by minimizing the spread of the light incident on the light guide from the collimating portion as described above, the light guide and the light source A collimating unit is provided as a collimating means between the light source and the light source.
【0033】更には、バックライトから偏光光を出射さ
せるために、平行光化部と導光体の間にSID92 Di
gest pp427や、Asia Display 95 Digest pp7
35に示される反射偏光板を配置し、導光体への入射光
を偏光光とし、導光体で偏光を維持したまま出射し、偏
光光を得る。Further, in order to emit polarized light from the backlight, an SID 92 Di is provided between the parallel light converting portion and the light guide.
gest pp427 and Asia Display 95 Digest pp7
A reflective polarizer shown at 35 is disposed, the incident light to the light guide is polarized light, and the light is emitted while maintaining the polarization by the light guide to obtain polarized light.
【0034】ここで、前記のSID92に記載される誘
電体多層膜による反射偏光板を反射偏光板タイプ1、A
sia Display 95に記載されるコレステリックの特性
反射を利用した反射偏光板を反射偏光板タイプ2と呼ぶ
ことにする。Here, the reflective polarizer made of the dielectric multilayer film described in the above SID92 is a reflective polarizer type 1, A
The reflective polarizer using cholesteric characteristic reflection described in sia Display 95 is referred to as reflective polarizer type 2.
【0035】反射偏光板タイプ1を用いた場合は、偏光
方向を90度変えるための位相差板、好ましくは1/4
波長板(往復で1/2波長)を反射偏光板からの主の偏
光方向に45度傾けて光源の反射カバーに配置摺ること
が好ましい。When the reflective polarizing plate type 1 is used, a retardation plate for changing the polarization direction by 90 degrees, preferably 1/4
It is preferable that the wavelength plate (1/2 wavelength in the reciprocating direction) is inclined at 45 degrees to the main polarization direction from the reflective polarizing plate and is disposed on the reflective cover of the light source.
【0036】更には、導光体入射側に反射偏光板を配置
しても、導光体を伝搬中に多数回反射を繰り返し、反射
面が完全な鏡面ではないので偏光状態が崩れる。従っ
て、導光体上面に上記反射偏光板を配置することが好ま
しい。また、導光体上面に反射偏光板タイプ1を配置し
たとき、導光体の上面、下面いずれか一方に偏光方向を
90度変えるための位相差板、好ましくは1/4波長板
(往復で1/2波長)を反射偏光板からの主の偏光方向
に45度傾けて配置する。Furthermore, even if a reflective polarizer is disposed on the light guide incident side, reflection is repeated many times during propagation through the light guide, and the polarization state is broken because the reflection surface is not a perfect mirror surface. Therefore, it is preferable to dispose the reflective polarizer on the upper surface of the light guide. When the reflective polarizer type 1 is disposed on the upper surface of the light guide, a phase difference plate for changing the polarization direction by 90 degrees on either the upper surface or the lower surface of the light guide, preferably a 波長 wavelength plate (reciprocating). (2 wavelength) is inclined at 45 degrees to the main polarization direction from the reflective polarizer.
【0037】反射偏光板タイプ1は、前記SID92に
記載される頂角がほぼ90度のプリズムアレイ上に、屈
折率の異なる誘電体膜を多層積層した誘電体多層膜であ
り、スパッタ、蒸着、ディピング等で膜厚も精度良く作
製できる。また、一軸屈折媒体の2種を交互に積層した
ものを用いてもよい。The reflective polarizing plate type 1 is a dielectric multilayer film in which dielectric films having different refractive indices are laminated on a prism array having an apex angle of approximately 90 degrees described in the SID 92 described above. The film thickness can be manufactured with high accuracy by dipping or the like. Further, a material obtained by alternately laminating two types of uniaxial refraction media may be used.
【0038】また、反射偏光板タイプ2は、前記Asia
Display 95に記載されるコレステリック液層高分子
を、可視波長域で特性反射を示すようにピッチの異なる
コレステリック液晶高分子を積層し、ある回りの円偏光
を透過、逆回りの円偏光を反射させ、その上に1/4波
長板を積層し、ある一方向の直性偏光を透過するもので
ある。Further, the reflective polarizing plate type 2 comprises the above-described Asia.
The cholesteric liquid layer polymer described in Display 95 is laminated with a cholesteric liquid crystal polymer having a different pitch so as to exhibit characteristic reflection in the visible wavelength range, and transmits circularly polarized light around a certain direction and reflects circularly polarized light around the opposite direction. , A quarter-wave plate is laminated thereon, and transmits one-way linearly polarized light.
【0039】上記構成の照明装置上に、照明装置からの
出射光の主な偏光軸に合わせて、液晶表示素子の入射側
偏光板の偏光軸を配置することで、低消費電力で明るい
液晶表示装置を得ることができる。By arranging the polarization axis of the incident-side polarizing plate of the liquid crystal display element on the illumination device having the above configuration in accordance with the main polarization axis of the light emitted from the illumination device, a bright liquid crystal display with low power consumption is provided. A device can be obtained.
【0040】ここで、実施例で使用する言葉を定義す
る。偏光状態を示すS偏光は入射面(入射面とは、入射
光線と境界面に立てた入射法線がなす平面)に垂直な偏
光であり、P偏光は入射面に平行な偏光である。Here, words used in the embodiments are defined. The S-polarized light indicating the polarization state is polarized light perpendicular to the incident surface (the incident surface is a plane formed by the incident light and the incident normal to the boundary surface), and the P-polarized light is polarized light parallel to the incident surface.
【0041】一般に、屈折率N0の透明媒体と、屈折率
N1の透明媒体の界面において、N0媒体からN1媒体へ
光が入射するとき、入射光の入射角をθとすると、入射
角θの正接がN1/N0に等しい(tanθ=N1/N0)
とき、P偏光の反射成分は無く、全て反射光はS偏光と
なり、透過光は残りのS偏光とP偏光であることが知ら
れている。このときの入射角θをブリュースタ角と云
う。In general, when light is incident from the N 0 medium to the N 1 medium at the interface between the transparent medium having the refractive index N 0 and the transparent medium having the refractive index N 1 , if the incident angle of the incident light is θ, The tangent of the angle θ is equal to N 1 / N 0 (tan θ = N 1 / N 0 )
At this time, it is known that there is no P-polarized light reflection component, all reflected light is S-polarized light, and transmitted light is the remaining S-polarized light and P-polarized light. The incident angle θ at this time is called a Brewster angle.
【0042】このブリュースタ角を利用して、屈折率の
異なる媒体を積層し、その積層膜厚を波長オーダで制御
することで各偏光の位相を制御し、P偏光のみを透過
し、S偏光を反射する反射偏光板が作製できる。Using this Brewster angle, media having different refractive indices are stacked, and the thickness of the stacked layers is controlled on the wavelength order to control the phase of each polarized light, transmit only P-polarized light, and transmit S-polarized light. Can be produced.
【0043】反射偏光板タイプ1の作用は、P偏光成分
のみを透過し、それに直交するS偏光成分を反射する。
この反射されたS偏光は、散乱反射や偏光解消子として
位相差板を使用すると、位相差板により楕円偏光(直線
偏光、円偏光を含む)になり、再び反射偏光板に入射し
P偏光成分のみが透過し、S偏光成分は反射され導光体
へ戻る。これを繰り返すことにより、殆ど全ての光がP
偏光に変換され出射される。The function of the reflective polarizing plate type 1 is to transmit only the P-polarized light component and reflect the S-polarized light component orthogonal thereto.
When a retardation plate is used as a scattered reflection or depolarizer, the reflected S-polarized light is converted into elliptically polarized light (including linearly polarized light and circularly polarized light) by the retardation plate. Only the S-polarized light component is transmitted, and the S-polarized light component is reflected and returns to the light guide. By repeating this, almost all light is P
The light is converted into polarized light and emitted.
【0044】従って、好ましくは反射されたS偏光が、
全てP偏光に変換されるように、往復透過後1/2波長
になるように1/4波長板として作用する位相差板を設
定することが好ましい。これにより、光利用効率の高い
偏光照明装置を達成できる。Thus, preferably the reflected S-polarized light is
It is preferable to set a retardation plate that functions as a quarter-wave plate so that all light is converted to P-polarized light so that the wavelength becomes half the wavelength after reciprocal transmission. Thereby, a polarized light illuminating device having high light use efficiency can be achieved.
【0045】反射偏光板タイプ2の作用は、右回り(ま
たは左回り)の円偏光のみを透過し、左回り(または右
回り)の円偏光を反射し、透過した円偏光は1/4波長
板で1方向の直線偏光となる。The function of the reflective polarizing plate type 2 is to transmit only clockwise (or counterclockwise) circularly polarized light, reflect counterclockwise (or clockwise) circularly polarized light, and transmit the circularly polarized light to a quarter wavelength. The plate becomes linearly polarized light in one direction.
【0046】一方、反射された左回り(または右回り)
の円偏光は、鏡面反射板で反射されて右回り(または左
回り)の円偏光となり反射偏光板タイプ2を透過し、1
/4波長板で1方向の直線偏光となり、全ての光は直線
偏光に変換される。反射板が鏡面反射板でない場合で
も、反射光は楕円偏光(直線偏光,円偏光を含む)にな
り、再び反射偏光板に入射し右回り(または左回り)の
円偏光のみが透過し、左回り(または右回り)の円偏光
は反射されて導光体へ戻る。On the other hand, the reflected counterclockwise (or clockwise)
Is reflected by the specular reflector, becomes clockwise (or counterclockwise) circularly polarized light, passes through the reflective polarizer type 2 and 1
The light is converted into linearly polarized light in one direction by the 波長 wavelength plate, and all light is converted into linearly polarized light. Even if the reflection plate is not a specular reflection plate, the reflected light becomes elliptically polarized light (including linearly polarized light and circularly polarized light), enters the reflection polarizing plate again, and transmits only clockwise (or counterclockwise) circularly polarized light. The surrounding (or clockwise) circularly polarized light is reflected back to the light guide.
【0047】これを繰り返すことにより、殆ど全ての光
が右回り(または左回り)の円偏光のみに変換され、そ
の後1/4波長板で1方向の直線偏光となり出射され
る。By repeating this, almost all the light is converted into only clockwise (or counterclockwise) circularly polarized light, and thereafter, is output as linear polarized light in one direction by a quarter-wave plate.
【0048】反射板には、少なからず光の吸収が存在す
るため、反射された左回り(または右回り)の円偏光
が、右回り(または左回り)の円偏光に変換されるよう
に完全な鏡面反射板であることが好ましい。Since there is considerable light absorption in the reflector, the reflected counterclockwise (or clockwise) circularly polarized light is completely converted into clockwise (or counterclockwise) circularly polarized light. It is preferable that the mirror reflection plate is a simple mirror reflection plate.
【0049】また、上記照明装置を用いた液晶表示装置
は、TN型、STN型等の偏光状態を制御して表示を行
う液晶素子の入射側偏光板の偏光軸と、照明装置の偏光
軸とを合わせた構成である。これにより、照明装置から
の光を効率良く利用でき、明るく低消費電力の液晶表示
装置を得ることができる。A liquid crystal display device using the above illuminating device has a polarization axis of an incident side polarizing plate of a liquid crystal element for displaying by controlling a polarization state of a TN type or an STN type, and a polarization axis of the illuminating device. It is the structure which combined. Thus, light from the lighting device can be efficiently used, and a bright and low power consumption liquid crystal display device can be obtained.
【0050】本発明に好適な液晶表示装置の一例を図1
2に示す。図12は、横電界方式のアクティブマトリク
ス型液晶表示装置の模式断面図(a),(b)と、その
模式平面図(c),(d)であり、(a),(c)が無
電界状態、また、(b),(d)が電界印加状態の液晶
分子の配向状態をそれぞれ示す。FIG. 1 shows an example of a liquid crystal display device suitable for the present invention.
It is shown in FIG. FIGS. 12A and 12B are schematic cross-sectional views (a) and (b) of a lateral electric field type active matrix type liquid crystal display device, and schematic plan views (c) and (d), in which (a) and (c) are omitted. (B) and (d) show the orientation states of the liquid crystal molecules in the electric field applied state, respectively.
【0051】また、本発明の照明装置は、散乱部材を使
用せずに導光体裏面構造で、出射特性の分布を広げるこ
とも狭めることも可能で、広視野角な液晶表示装置にも
対応できる。Further, the illumination device of the present invention has a light guide back surface structure without using a scattering member, and can broaden or narrow the distribution of the emission characteristics, and is applicable to a liquid crystal display device having a wide viewing angle. it can.
【0052】[0052]
〔実施例 1〕図1,2に本発明の照明装置の模式側断
面図を示す。本実施例はエッジライト型平面照明装置
で、透明なアクリル樹脂からなる導光体56の2側面の
長さに対応した発光部を有する冷陰極蛍光ランプ52
と、それをカバーし光を導光体56側に反射するランプ
カバー51とを端部に、導光体56の裏面には反射板5
4を配置した。光源52としては、直径3mm×長さ約
290mmの冷陰極蛍光ランプを使用した。[Embodiment 1] Figs. 1 and 2 are schematic side sectional views of a lighting device according to the present invention. This embodiment is an edge-light type flat illuminating device, in which a cold cathode fluorescent lamp 52 having a light emitting portion corresponding to the length of two sides of a light guide 56 made of a transparent acrylic resin.
And a lamp cover 51 that covers it and reflects light toward the light guide 56 at the end, and a reflector 5 on the back surface of the light guide 56.
4 was arranged. As the light source 52, a cold cathode fluorescent lamp having a diameter of 3 mm and a length of about 290 mm was used.
【0053】ランプカバー51は、半円筒形(あるいは
楕円筒形)で内面が反射板となっている。アクリル樹脂
製の導光体56は、屈折率1.49で290mm×22
4mm×4.5mmのものを使用した。導光体56裏面
の微細構造57はピッチ1.2mmで高さ(84)が5
0μm、その中心傾き角(83)が35度、この傾斜面
57Aのみにアルミを蒸着した。この傾斜面57Aは、
最大斜度約45度、最小斜度約25度で、徐々に変化さ
せた。The lamp cover 51 has a semi-cylindrical shape (or an elliptical cylindrical shape), and has an inner surface serving as a reflection plate. The light guide 56 made of acrylic resin has a refractive index of 1.49 and 290 mm × 22.
Those having a size of 4 mm × 4.5 mm were used. The fine structure 57 on the back surface of the light guide 56 has a pitch of 1.2 mm and a height (84) of 5
Aluminum was vapor-deposited only on the inclined surface 57A with a central inclination angle (83) of 35 degrees. This inclined surface 57A is
The gradient was gradually changed at a maximum inclination of about 45 degrees and a minimum inclination of about 25 degrees.
【0054】また、導光体への入射部の平行光化部53
は、光源52側を厚さ4mm、導光体56側を厚さ4.
5mm、長さ81を約10mmとし、傾き角80を約
1.4度とした。また、導光体56と平行光化部60の
各面は光学的鏡面処理を施した。Further, the parallel light converting portion 53 at the incident portion to the light guide is provided.
Has a thickness of 4 mm on the light source 52 side and a thickness of 4 mm on the light guide 56 side.
5 mm, the length 81 was about 10 mm, and the inclination angle 80 was about 1.4 degrees. Each surface of the light guide 56 and the parallel light conversion unit 60 was subjected to an optical mirror surface treatment.
【0055】また、導光体56と平行光化部53の間
に、ポリカーボネイト(屈折率1.586)でなる頂角
90度,ピッチ約30μmのプリズム形状のアレイ上に
膜厚64nmのZrO2(屈折率2.05)、膜厚64n
mのMgF2(屈折率1.38)をそれぞれ5層交互に積
層したタイプ1の反射偏光板60を、プリズム形状の溝
がなすストライプが図面の上下方向となるように配置し
た。前記反射偏光板60としてはタイプ2のものを使用
することもできる。A 64 nm-thick ZrO 2 film is placed between the light guide 56 and the parallel light converting portion 53 on a prism-shaped array made of polycarbonate (refractive index: 1.586) having a vertex angle of 90 ° and a pitch of about 30 μm. (Refractive index 2.05), film thickness 64n
A reflective polarizing plate 60 of type 1 in which five MgF 2 layers (refractive index: 1.38) were alternately laminated was arranged such that the stripes formed by the prism-shaped grooves were in the vertical direction in the drawing. As the reflective polarizing plate 60, a type 2 reflective polarizing plate can also be used.
【0056】液晶表示素子10としては、SID96で
発表された対角13.3インチのスーパーTFT−LC
D(開口率約40%)を使用した。As the liquid crystal display element 10, a 13.3 inch diagonal super TFT-LC announced by SID96 was used.
D (opening ratio: about 40%) was used.
【0057】上記構成とした結果、光源52からの出射
光70は、約±42度以内で平行光化部53に入射し、
平行光化部で約±36度以内の光に変換され、反射偏光
板60へ入射する。As a result of the above configuration, the outgoing light 70 from the light source 52 enters the parallel light converting section 53 within about ± 42 degrees,
The light is converted into light within approximately ± 36 degrees by the parallel light conversion unit, and is incident on the reflective polarizing plate 60.
【0058】ここで、反射偏光板60へ入射した無偏光
光70は、紙面に垂直方向のP偏光は透過し、紙面に平
行なS偏光は反射され、光源側に戻り、偏光が崩れて再
び反射偏光板60に入射し、そのP偏光成分のみ透過す
ることを繰り返し、光源52からの無偏光光は、ほとん
どがP偏光に変換され導光体56へ入射される。Here, the unpolarized light 70 incident on the reflective polarizing plate 60 transmits the P-polarized light in the direction perpendicular to the plane of the paper, reflects the S-polarized light parallel to the plane of the paper, returns to the light source side, breaks the polarized light, and again. Repetition of incidence on the reflective polarizing plate 60 and transmission of only the P-polarized component is repeated, and most of the unpolarized light from the light source 52 is converted into P-polarized light and is incident on the light guide 56.
【0059】導光体56へ入射した偏光光71は、傾斜
面57Aに到達した光のみが導光体56の上面より出射
され、微細構造57の平坦部および導光体56の上面に
とぷたつした光は、その界面で屈折率差により全反射
し、導光体56内を伝搬し、傾斜面57Aに到達して導
光体56の上面より出射される。As for the polarized light 71 that has entered the light guide 56, only the light that has reached the inclined surface 57A is emitted from the upper surface of the light guide 56, and the flat light of the fine structure 57 and the upper surface of the light guide 56 are formed. The collected light is totally reflected at the interface due to a difference in refractive index, propagates in the light guide 56, reaches the inclined surface 57A, and is emitted from the upper surface of the light guide 56.
【0060】この効果により、導光体56の上面でほぼ
均一な出射光を実現することができた。上記の構成で面
内均一度80%(最大輝度に対する最小輝度比)以上を
達成した。With this effect, it was possible to achieve substantially uniform outgoing light on the upper surface of the light guide 56. With the above configuration, in-plane uniformity of 80% or more (minimum luminance ratio to maximum luminance) was achieved.
【0061】また、出射光の広がりは、正面輝度に対し
て明るさが1/2になる角度範囲を測定した結果、光源
52に平行方向は約±50度、光源52に垂直方向は約
±40度であり、広視野角な液晶表示装置に適用するの
に十分な出射特性を得ることができた。The spread of the emitted light was measured in an angle range where the brightness was 1 / of the front luminance. As a result, the direction parallel to the light source 52 was about ± 50 degrees, and the direction perpendicular to the light source 52 was about ± 50 degrees. It was 40 degrees, and sufficient emission characteristics could be obtained for application to a liquid crystal display device having a wide viewing angle.
【0062】図1の構成で、液晶表示素子10の入射側
偏光板12の偏光軸と、照明装置50からの出射光の主
な偏光軸をほぼ一致させた明るさと、上記照明装置50
上に偏光板のみを配置して、液晶表示素子10の開口率
40%で除算した明るさとを比較した結果、前者が約5
0%程度明るいことが分かった。In the configuration shown in FIG. 1, the brightness in which the polarization axis of the incident-side polarizing plate 12 of the liquid crystal display element 10 and the main polarization axis of the light emitted from the illumination device 50 are almost matched, and the brightness of the illumination device 50
As a result of comparing the brightness obtained by dividing only the polarizing plate on the liquid crystal display element 10 with the aperture ratio of 40%, the former was about 5%.
It turned out that it was about 0% bright.
【0063】これは、非開口部13に照射された光が、
照明装置50の裏面の反射板54により偏光を維持した
まま液晶表示素子10に再び反射され、再利用できた結
果である。従って、本実施例の照明装置を用いること
で、開口率が低い液晶表示素子を用いても、非開口部が
反射率の高い金属電極等であれば、偏光を維持したまま
再利用することができるために、1.5倍の開口率を持
つ液晶表示素子と同等の明るさを達成することができ
る。This is because the light irradiated on the non-opening 13 is
This is a result of being reflected again by the liquid crystal display element 10 while maintaining the polarization by the reflector 54 on the back surface of the illumination device 50, and being able to be reused. Therefore, by using the illumination device of this embodiment, even if a liquid crystal display element having a low aperture ratio is used, if the non-opening portion is a metal electrode or the like having a high reflectance, it can be reused while maintaining polarization. Therefore, brightness equivalent to that of a liquid crystal display device having an aperture ratio of 1.5 can be achieved.
【0064】〔実施例 2〕図3,4は、本実施例の照
明装置およびそれを用いた液晶表示装置の模式側断面図
である。導光体56の裏面の微細構造58と平行光化部
53以外は、実施例1と同様な構成である。ここでは、
実施例1の構成との相違点のみ説明する。[Embodiment 2] FIGS. 3 and 4 are schematic side sectional views of a lighting device of this embodiment and a liquid crystal display device using the same. The configuration is the same as that of the first embodiment, except for the microstructure 58 on the back surface of the light guide 56 and the parallel light portion 53. here,
Only differences from the configuration of the first embodiment will be described.
【0065】導光体56の裏面の微細構造58は、光源
52側をピッチ0.1mm高さ(84)を約5μm、中
心部をピッチ0.05mmとし、傾斜の平均傾き角(8
3)を40度とし、この傾斜面58Aのみにアルミを蒸
着した。この傾斜面58Aは、最大斜度約45度、最小
斜度約35度で徐々に変化するようにした。The fine structure 58 on the back surface of the light guide 56 has a pitch of 0.1 mm on the light source 52 side, a height (84) of about 5 μm, a pitch of 0.05 mm at the center, and an average inclination angle (8
3) was set to 40 degrees, and aluminum was deposited only on the inclined surface 58A. The inclined surface 58A is configured to gradually change at a maximum inclination of about 45 degrees and a minimum inclination of about 35 degrees.
【0066】この傾斜面58Aは、紙面の奥行き方向は
一定とした。また、導光体56への入射部である平行光
化部53は、光源53側を厚さ3mm、導光体56側を
厚さ4.5mm、長さ(81)を約10mmとし、傾き
角80を約4度とした。また、導光体56と平行光化部
53の各面は光学研磨処理を施した。The inclined surface 58A has a constant depth direction in the drawing. In addition, the parallel light converting portion 53 which is an incident portion to the light guide 56 has a thickness of 3 mm on the light source 53 side, a thickness of 4.5 mm on the light guide 56 side, and a length (81) of about 10 mm, and is inclined. Angle 80 was about 4 degrees. In addition, the respective surfaces of the light guide 56 and the parallel light forming portion 53 were subjected to an optical polishing process.
【0067】導光体56と平行光化部53との間に、コ
レステリック高分子液晶と1/4波長板を積層した前記
タイプ2の反射偏光板60を偏光方向が図面の奥行き方
向になるように配置した。なお、前記タイプ1の反射偏
光板を用いることもできる。The type 2 reflective polarizing plate 60 in which a cholesteric polymer liquid crystal and a 波長 wavelength plate are laminated between the light guide 56 and the parallel light converting portion 53 is so arranged that the polarization direction is the depth direction of the drawing. Was placed. In addition, the reflective polarizing plate of the type 1 may be used.
【0068】液晶表示素子10には、SID96で発表
された対角13.3インチのスーパーTFT−LCD
(開口率約40%)を使用した。The liquid crystal display element 10 includes a 13.3 inch diagonal super TFT-LCD announced by SID96.
(An aperture ratio of about 40%) was used.
【0069】上記構成とした結果、光源52からの出射
光70は、約±42度以内で平行光化部53間に入射
し、平行光化部で約±22度以内の光に変換され、反射
偏光板60へ入射する。As a result of the above configuration, the outgoing light 70 from the light source 52 enters the parallel light converting section 53 within about ± 42 degrees and is converted into light within about ± 22 degrees by the parallel light converting section. The light enters the reflective polarizing plate 60.
【0070】上記の構成により、導光体56からの出射
光は面内均一度80%以上を達成した。また、出射光の
広がりは、正面輝度に対して明るさが1/2になる角度
範囲を測定した結果、光源52に平行方向は約±50
度、光源52に垂直方向(図面の左右方向)は約±35
度であり、広視野角な液晶表示装置に適用するのに十分
な出射特性を得ることができた。With the above configuration, the light emitted from the light guide 56 achieves an in-plane uniformity of 80% or more. The spread of the emitted light was measured in an angle range where the brightness was 1 / of the front luminance. As a result, the direction parallel to the light source 52 was approximately ± 50.
The direction perpendicular to the light source 52 (the horizontal direction in the drawing) is approximately ± 35.
And the emission characteristics sufficient to be applied to a liquid crystal display device having a wide viewing angle could be obtained.
【0071】図3の構成で、液晶表示素子10の入射側
偏光板12の偏光軸と、照明装置50からの出射光の主
な偏光軸をほぼ一致させた明るさと、上記照明装置50
上に偏光板のみを配置して、液晶表示素子10の開口率
40%で除算した明るさとを比較した結果、前者が約5
0%程度明るいことが分かった。In the configuration shown in FIG. 3, the brightness in which the polarization axis of the incident-side polarizing plate 12 of the liquid crystal display element 10 and the main polarization axis of the light emitted from the illumination device 50 are substantially matched, and the brightness of the illumination device 50
As a result of comparing the brightness obtained by dividing only the polarizing plate on the liquid crystal display element 10 with the aperture ratio of 40%, the former was about 5%.
It turned out that it was about 0% bright.
【0072】これは、非開口部13に照射された光が、
照明装置50の裏面の反射板54により偏光を維持した
まま液晶表示素子10に再び反射され、再利用できた結
果である。従って、本実施例の照明装置を用いること
で、開口率が低い液晶表示素子を用いても、非開口部が
反射率の高い金属電極等であれば、偏光を維持したまま
再利用することができるために、1.5倍の開口率を持
つ液晶表示素子と同等の明るさを達成することができ
る。This is because the light irradiated on the non-opening portion 13 is
This is a result of being reflected again by the liquid crystal display element 10 while maintaining the polarization by the reflector 54 on the back surface of the illumination device 50, and being able to be reused. Therefore, by using the illumination device of this embodiment, even if a liquid crystal display element having a low aperture ratio is used, if the non-opening portion is a metal electrode or the like having a high reflectance, it can be reused while maintaining polarization. Therefore, brightness equivalent to that of a liquid crystal display device having an aperture ratio of 1.5 can be achieved.
【0073】また、この時の明るさは、実施例1と比較
すると約15%向上した。これは、導光体56の構造
を、中心部が細くなるようにしたことにより光源52に
戻る光が低減し光利用効率が向上したものである。The brightness at this time was improved by about 15% as compared with the first embodiment. This is because light returning to the light source 52 is reduced by improving the structure of the light guide 56 so that the center portion is made thinner, and light use efficiency is improved.
【0074】〔実施例 3〕図5,6は、本実施例の照
明装置およびそれを用いた液晶表示装置の模式側断面図
である。導光体56の裏面の微細構造58と平行光化部
53以外は、実施例1、2と同様な構成である。ここで
は、実施例1の構成との相違点のみ説明する。[Embodiment 3] FIGS. 5 and 6 are schematic side sectional views of a lighting device of the present embodiment and a liquid crystal display device using the same. The configuration is the same as that of the first and second embodiments, except for the microstructure 58 on the back surface of the light guide 56 and the parallel light portion 53. Here, only differences from the configuration of the first embodiment will be described.
【0075】導光体56の裏面の微細構造58は、光源
52側をピッチ0.1mm高さ(84)を約10μm、
中心部をピッチ0.05mmとし、傾斜の平均傾き角
(83)を35度とし、この微細構造58のみにアルミ
を蒸着した。この微細構造58は、最大斜度約40度、
最小斜度約30度で徐々に変化するようにした。この微
細構造58は、紙面の奥行き方向は一定とした。また、
導光体への入射部である平行光化部53は、光源52側
を厚さ4.5mm、導光体56側を厚さ4.5mm、長さ
(81)を約10mmとし、傾き角(809を約0度と
した。また、導光体56と平行光化部53の各面は光学
研磨処理を施した。The fine structure 58 on the back surface of the light guide 56 has a pitch of 0.1 mm and a height (84) of about 10 μm on the light source 52 side.
The center portion was pitch 0.05 mm, the average inclination angle (83) was 35 degrees, and aluminum was vapor-deposited only on the fine structure 58. This fine structure 58 has a maximum inclination of about 40 degrees,
It gradually changed at the minimum inclination of about 30 degrees. This fine structure 58 has a constant depth direction in the drawing. Also,
The parallel light converting portion 53, which is an incident portion to the light guide, has a thickness of 4.5 mm on the light source 52 side, a thickness of 4.5 mm on the light guide 56 side, a length (81) of about 10 mm, and a tilt angle. (809 was set to about 0 degrees. Each surface of the light guide 56 and the parallel light forming part 53 was subjected to an optical polishing treatment.
【0076】導光体56と平行光化部53との間に、コ
レステリック高分子液晶と1/4波長板を積層した前記
タイプ2の反射偏光板60を、偏光方向が紙面の奥行き
方向になるように配置した。なお、前記タイプ1の反射
偏光板を用いてもよい。The type 2 reflective polarizing plate 60 in which a cholesteric polymer liquid crystal and a 波長 wavelength plate are laminated between the light guide 56 and the parallel light converting portion 53 is used. It was arranged as follows. Note that a reflective polarizing plate of the type 1 may be used.
【0077】液晶表示素子10としては、実施例1と同
じ開口率約40%のものを用いた。As the liquid crystal display element 10, the one having the same aperture ratio of about 40% as in the first embodiment was used.
【0078】上記構成とした結果、光源52からの出射
光70は、約±42度以内で平行光化部53に入射し、
平行光化部で約±42度の範囲のまま全反射され、反射
偏光板60へ入射する。As a result of the above configuration, the outgoing light 70 from the light source 52 enters the collimating section 53 within about ± 42 degrees,
The light is totally reflected by the parallel light conversion unit in a range of about ± 42 degrees, and enters the reflective polarizing plate 60.
【0079】上記の構成により、導光体56からの出射
光は面内均一度80%以上を達成した。また、出射光の
広がりは、正面輝度に対して明るさが1/2になる角度
範囲を測定した結果、光源52に平行方向(紙面の奥行
き方向)は約±55度で、光源52に垂直方向(紙面の
左右方向)は約±45度であり、広視野角液晶表示装置
に適用するのに十分な出射特性を得ることができた。With the above configuration, the light emitted from the light guide 56 achieves an in-plane uniformity of 80% or more. The spread of the emitted light was measured in an angle range where the brightness was 1 / of the front luminance. As a result, the direction parallel to the light source 52 (the depth direction of the paper) was approximately ± 55 degrees, and The direction (horizontal direction of the paper) was about ± 45 degrees, and sufficient emission characteristics could be obtained for application to a wide viewing angle liquid crystal display device.
【0080】図5の構成で、液晶表示素子10の入射側
偏光板12の偏光軸と、照明装置50からの出射光の主
な偏光軸をほぼ一致させた明るさと、上記発明の照明装
置50上に偏光板のみを配置して、液晶表示素子10の
開口率40%で除算した明るさとを比較した結果、前者
が約50%程度明るいことが分かった。In the configuration shown in FIG. 5, the brightness in which the polarization axis of the incident-side polarizing plate 12 of the liquid crystal display element 10 and the main polarization axis of the light emitted from the illumination device 50 are almost matched, and the illumination device 50 of the invention described above. As a result of comparing the brightness obtained by dividing only the aperture ratio of the liquid crystal display element 10 by arranging only the polarizing plate on the upper side, it was found that the former was about 50% brighter.
【0081】これは、非開口部13に照射された光が、
照明装置50の裏面反射板54により偏光を維持したま
ま液晶表示素子10に再び反射され、再利用できた結果
である。従って、本実施例の照明装置を用いることで、
開口率が低い液晶表示素子を用いても、非開口部が反射
率の高い金属電極等であれば、偏光を維持したまま再利
用することができるために、1.5倍の開口率を持つ液
晶表示素子と同等の明るさを達成することができる。This is because the light irradiated on the non-opening 13 is
This is a result of being reflected again by the liquid crystal display element 10 while maintaining the polarization by the back reflector 54 of the illuminating device 50 and being reused. Therefore, by using the lighting device of the present embodiment,
Even if a liquid crystal display element having a low aperture ratio is used, if the non-opening portion is a metal electrode or the like having a high reflectance, the non-opening portion can be reused while maintaining the polarization, so that the aperture ratio is 1.5 times. Brightness equivalent to that of a liquid crystal display element can be achieved.
【0082】また、この時に明るさは、実施例1と比較
すると約10%程度低下した。これは、出射光範囲が広
がったことによるもので光量が低下したものではない。At this time, the brightness was reduced by about 10% as compared with the first embodiment. This is due to the fact that the range of the emitted light is widened, and not that the light amount is reduced.
【0083】〔実施例 4〕次に、図7、8に前記反射
偏光板60の例を示す。図7は、誘電体多層膜型のタイ
プ1の反射偏光板である。これは、ポリカーボネート
(屈折率1.586)からなる頂角90度、ピッチ約3
0μmのプリズム形状のアレイ上にZrO2(屈折率2.
05),MgF2(屈折率1.38)をそれぞれ交互に多
層積層して作製した誘電体多層膜である。[Embodiment 4] Next, FIGS. 7 and 8 show an example of the reflective polarizing plate 60. FIG. FIG. 7 illustrates a dielectric multilayer film type 1 reflective polarizer. This is made of polycarbonate (refractive index 1.586), a vertex angle of 90 degrees and a pitch of about
ZrO 2 (refractive index 2 on the array of prismatic shape 0 .mu.m.
05) and MgF 2 (refractive index: 1.38).
【0084】これにより、無偏光光である入射光70
は、P偏光のみ透過し出射光71となり、S偏光75は
反射される。従って、吸収損失の無い偏光板が作製で
き、反射されるS偏光を再利用できれば、光利用効率の
向上が実現できる。Thus, the incident light 70, which is non-polarized light,
Is transmitted only P-polarized light to become emission light 71, and S-polarized light 75 is reflected. Therefore, if a polarizing plate having no absorption loss can be manufactured, and the reflected S-polarized light can be reused, improvement in light use efficiency can be realized.
【0085】誘電体多層膜材料としては、TiO2,Z
rO2,ZnS,Y2O3,SiO2,MgF2,Na3,A
lF6,Ta2O5等が使用できる。屈折率は、通常、1.
4〜2.5程度でブリュースタ条件を満足するように成
膜する。As the dielectric multilayer material, TiO 2 , Z
rO 2 , ZnS, Y 2 O 3 , SiO 2 , MgF 2 , Na 3 , A
lF 6, Ta 2 O 5 or the like can be used. The refractive index is usually 1.
The film is formed so as to satisfy the Brewster condition at about 4 to 2.5.
【0086】成膜方法は、蒸着、スパッタ、ディップ、
コーティング等公知の方法を用いることができる。The film formation method includes vapor deposition, sputtering, dipping,
Known methods such as coating can be used.
【0087】誘電体多層膜型のタイプ1の反射偏光板
は、1軸異方性媒体を積層することでも作製でき、例え
ば、ポリカーボネート、ポリビニルアルコール、ポリス
チレン等を積層することで作製できる。The type 1 reflective polarizing plate of the dielectric multilayer type can be produced by laminating a uniaxial anisotropic medium, for example, by laminating polycarbonate, polyvinyl alcohol, polystyrene or the like.
【0088】図8は、コレステリック液晶高分子を用い
特性反射を利用したもので、コレステリック液晶高分子
65は、特性反射が可視領域で発現されるようピッチの
異なる層を積層する。FIG. 8 shows the use of characteristic reflection using a cholesteric liquid crystal polymer. In the cholesteric liquid crystal polymer 65, layers having different pitches are laminated so that characteristic reflection is exhibited in the visible region.
【0089】実験的に、少なくても2層以上が必要なこ
とが確認できた。1層でもコレステリック液晶高分子の
ピッチが層内で変化でき、Δn(屈折率異方性)が十分
大きければ問題はない。It has been experimentally confirmed that at least two layers are required. There is no problem as long as the pitch of the cholesteric liquid crystal polymer can be changed in one layer even in one layer and Δn (refractive index anisotropy) is sufficiently large.
【0090】また、コレステリック液晶高分子65上に
1/4波長板として作用する位相差板64を配置した。
これにより、無偏光光である入射光70は、コレステリ
ック液晶高分子65と同じ回りの円偏光は反射され76
となり、逆回りの円偏光は透過し、位相差板64で直線
偏光となり出射される。従って、吸収損失の無い偏光板
が作製でき、反射された円偏光は、例えば、金属反射で
逆回りの円偏光にして再利用し光利用効率を向上でき
る。Further, on the cholesteric liquid crystal polymer 65, a retardation plate 64 acting as a quarter-wave plate was arranged.
As a result, the incident light 70, which is non-polarized light, reflects circularly polarized light around the same direction as the cholesteric liquid crystal polymer 65, and is reflected by the cholesteric liquid crystal polymer 65.
Then, the circularly polarized light in the opposite direction is transmitted and becomes linearly polarized light by the phase difference plate 64 and is emitted. Therefore, a polarizing plate having no absorption loss can be manufactured, and the reflected circularly polarized light can be re-used as, for example, circularly polarized light in the opposite direction by metal reflection to improve the light use efficiency.
【0091】〔実施例 5〕以上本発明の基本構成につ
いて、3つの実施例と、それに用いる反射偏光板の実施
例について説明した。[Embodiment 5] With respect to the basic structure of the present invention, three embodiments and the embodiment of the reflective polarizing plate used therein have been described.
【0092】上記実施例1〜3において、照明装置50
からの出射光の偏光特性は、導光体入射時と比較して低
下していることが確認できた。In the first to third embodiments, the lighting device 50
It was confirmed that the polarization characteristics of the light emitted from the light guide were lower than when the light guide was incident.
【0093】そこで、照明装置50からの出射光の偏光
特性を高めるために、図9,10を用いて説明する。照
明装置50上に反射偏光板60を配置することで照明装
置50からの出射光の偏光度を向上させることができ
る。ここでは、図7の誘電体多層膜型の反射偏光板を用
いた。更には、位相差板69(1/4波長板を偏光方向
に45度傾けて配置)を導光体56の下面に配置した。Therefore, a description will be given with reference to FIGS. 9 and 10 in order to enhance the polarization characteristics of the light emitted from the illumination device 50. FIG. By arranging the reflective polarizing plate 60 on the lighting device 50, the degree of polarization of light emitted from the lighting device 50 can be improved. Here, a dielectric multilayer film-type reflective polarizing plate shown in FIG. 7 was used. Further, a phase difference plate 69 (a 波長 wavelength plate is arranged at an angle of 45 ° in the polarization direction) is arranged on the lower surface of the light guide 56.
【0094】これにより、反射偏光板60からの反射光
78はS偏光であるが、位相差板69を往復透過するこ
とで1/2波長板として作用し、P偏光になり反射偏光
板60を透過し液晶表示素子10に照射される。As a result, although the reflected light 78 from the reflective polarizing plate 60 is S-polarized light, it acts as a half-wave plate by reciprocatingly passing through the retardation plate 69, and becomes P-polarized light. The light passes through and irradiates the liquid crystal display element 10.
【0095】図9の構成とすることで、照明装置50か
らの出射光の偏光特性を上げることができ明るさが向上
した。ここで、位相差板69を導光体56の裏面に配置
したが、上面に配置しても同様な効果を得ることができ
た。With the configuration shown in FIG. 9, the polarization characteristics of the light emitted from the illumination device 50 can be improved, and the brightness can be improved. Here, the retardation plate 69 is arranged on the back surface of the light guide 56, but the same effect can be obtained even if it is arranged on the top surface.
【0096】図9に示す構成を実施例1〜3に適用する
ことも可能であり、また、反射偏光板60として、図8
に示すタイプ2のものを使用できるが、このときは位相
差板69は必要としない。The structure shown in FIG. 9 can be applied to the first to third embodiments.
However, in this case, the phase difference plate 69 is not required.
【0097】上記図9は、導光体56の両側に光源を配
置した構成であるが、片側の場合でも同じ効果を実現す
ることができるが、その場合、裏面の微細構造は光源か
らの距離に応じて変化させることが必要である。FIG. 9 shows a configuration in which the light sources are arranged on both sides of the light guide 56, but the same effect can be realized in the case of only one side. In this case, the fine structure on the back surface is at a distance from the light source. It is necessary to change according to.
【0098】上記実施例では、横電界方式のTN液晶表
示装置を例に説明したが、偏光を制御する表示モードで
あれば、通常の縦電界方式の液晶表示装置が用いられ
る。In the above embodiment, the TN liquid crystal display device of the horizontal electric field type has been described as an example. However, if the display mode is to control the polarization, a normal vertical electric field type liquid crystal display device is used.
【0099】〔実施例 6〕図11は、本実施例の照明
装置およびそれを用いた液晶表示装置の模式側断面図で
ある。本実施例は、エッジライト型の平面照明装置であ
り、透明なアクリル樹脂からなる導光体56の1側面
に、光源52とランプカバー51とを端面に、導光体5
6の裏面に、空気層100を介して反射板54を配置し
た点が特徴である。[Embodiment 6] FIG. 11 is a schematic side sectional view of a lighting device of this embodiment and a liquid crystal display device using the same. This embodiment is an edge-light type planar illumination device, in which a light source 52 and a lamp cover 51 are provided on one side of a light guide 56 made of a transparent acrylic resin, and a light guide 5 is provided.
6 is characterized in that a reflecting plate 54 is arranged on the back surface via an air layer 100.
【0100】光源52は、直径3mm×長さ290mm
(紙面奥行き方向)の冷陰極蛍光ランプを使用した。導
光体56裏面の微細構造57は、ピッチ50μm,高さ
20μmから、導光体端面ではピッチ30μm,高さ1
0μmまで、光源52から遠ざかるに従い変化させた。
また、微細構造57の傾斜角は中心部のは約36度と
し、最大斜度41度、最小斜度31度になるように湾曲
形成した。The light source 52 is 3 mm in diameter × 290 mm in length.
A cold cathode fluorescent lamp (in the depth direction of the paper) was used. The fine structure 57 on the back surface of the light guide 56 has a pitch of 50 μm and a height of 20 μm, and the end face of the light guide has a pitch of 30 μm and a height of 1 μm.
The distance was changed to 0 μm as the distance from the light source 52 increased.
The inclination angle of the microstructure 57 was about 36 degrees at the center, and was curved so that the maximum inclination was 41 degrees and the minimum inclination was 31 degrees.
【0101】また、液晶表示素子10としては、実施例
1と同じ開口率約40%のものを使用した。Further, as the liquid crystal display element 10, the one having the same aperture ratio of about 40% as in Example 1 was used.
【0102】上記構成とした結果、光源52から導光体
56への入射光のうち、導光体56裏面の微細構造57
の傾斜部に入射した光は、出射光72となり液晶表示素
子10へ入射する。ここで、金属膜からなる非開口部1
3に入射した光は反射され、偏光状態を維持したまま、
再び、導光体56の裏面の反射板54で反射され、開口
部から出射され、出射光74となる。As a result of the above configuration, of the incident light from the light source 52 to the light guide 56, the fine structure 57 on the back surface of the light guide 56
The light that has entered the inclined portion becomes outgoing light 72 and enters the liquid crystal display element 10. Here, the non-opening portion 1 made of a metal film
The light incident on 3 is reflected, and while maintaining the polarization state,
Again, the light is reflected by the reflection plate 54 on the back surface of the light guide 56, emitted from the opening, and becomes emitted light 74.
【0103】ランプから導光体56への入射光のうち、
導光体56裏面の微細構造57の平坦部に入射した光
は、導光体56中を光源52から遠ざかる方向へ導光
し、微細構造57の傾斜部に入射した光が液晶表示素子
10へ入射する。Of the light incident on the light guide 56 from the lamp,
The light incident on the flat portion of the fine structure 57 on the back surface of the light guide 56 is guided in the light guide 56 in a direction away from the light source 52, and the light incident on the inclined portion of the fine structure 57 is directed to the liquid crystal display element 10. Incident.
【0104】開口部に入射した光は液晶表示素子10か
ら出射され、非開口部に入射した光は反射され、偏光状
態を維持したまま再び導光体56の裏面の反射板54で
反射され、開口部から出射されて出射光74となる。こ
のように、非開口部からの反射光の偏光を維持したまま
再利用することにより明るさ向上を実現した。The light that has entered the opening is emitted from the liquid crystal display element 10, the light that has entered the non-opening is reflected, and is again reflected by the reflector 54 on the back surface of the light guide 56 while maintaining the polarization state. The light emitted from the opening becomes the emitted light 74. As described above, the brightness is improved by reusing the reflected light from the non-opening portion while maintaining the polarization.
【0105】従来のバックライトと比較して1.3倍の
明るさ向上を実現した。更に、本実施例は、図1に示す
ように導光体入射側に反射偏光板60や、図9に示すよ
うに導光体56と液晶表示素子10間に反射偏光板60
を導入することができ、これにより更に光利用効率を向
上することができる。The brightness is improved 1.3 times as compared with the conventional backlight. Further, in this embodiment, as shown in FIG. 1, a reflective polarizing plate 60 is provided on the light guide incident side, and a reflective polarizer 60 is provided between the light guide 56 and the liquid crystal display element 10 as shown in FIG.
Can be introduced, whereby the light use efficiency can be further improved.
【0106】[0106]
【発明の効果】導光体裏面に微小な凹凸からなる反射面
を設け、液晶表示素子の非開口部からの反射光の偏光を
維持し、再び出射することで、開口率の低い液晶表示素
子において、実質的に開口率を向上させ、明るさ向上を
図ることができる。According to the present invention, a reflection surface made of minute irregularities is provided on the back surface of the light guide, and the polarization of the reflected light from the non-opening portion of the liquid crystal display element is maintained and emitted again, so that the liquid crystal display element having a low aperture ratio is obtained. In this case, the aperture ratio can be substantially improved, and the brightness can be improved.
【0107】更に、導光体入射部に反射偏光板を設け、
偏光光を照射する低消費電力で明るい照明装置を得るこ
とができる。更には、導光体裏面の微小反射曲面によ
り、出射特性の広い広視野角対応の照明装置を得ること
ができる。Further, a reflective polarizing plate is provided at the light guide incident portion,
A bright lighting device with low power consumption for irradiating polarized light can be obtained. Further, the illumination device having a wide emission characteristic and a wide viewing angle can be obtained by the minute reflection curved surface on the back surface of the light guide.
【図1】本発明の照明装置を用いた液晶表示装置の一実
施例を示す模式側断面図である。FIG. 1 is a schematic side sectional view showing one embodiment of a liquid crystal display device using the lighting device of the present invention.
【図2】本発明の照明装置の一実施例を示す模式側断面
図である。FIG. 2 is a schematic side sectional view showing one embodiment of the lighting device of the present invention.
【図3】本発明の照明装置を用いた液晶表示装置の一実
施例を示す模式側断面図である。FIG. 3 is a schematic side sectional view showing one embodiment of a liquid crystal display device using the lighting device of the present invention.
【図4】本発明の照明装置の一実施例を示す模式側断面
図である。FIG. 4 is a schematic side sectional view showing one embodiment of the lighting device of the present invention.
【図5】本発明の照明装置を用いた液晶表示装置の一実
施例を示す模式側断面図である。FIG. 5 is a schematic side sectional view showing one embodiment of a liquid crystal display device using the lighting device of the present invention.
【図6】本発明の照明装置の一実施例を示す模式側断面
図である。FIG. 6 is a schematic side sectional view showing one embodiment of a lighting device of the present invention.
【図7】本発明に使用する反射偏光板の一実施例の模式
側断面図である。FIG. 7 is a schematic side sectional view of one embodiment of a reflective polarizing plate used in the present invention.
【図8】本発明に使用する反射偏光板の一実施例の模式
側断面図である。FIG. 8 is a schematic side sectional view of one embodiment of a reflective polarizing plate used in the present invention.
【図9】本発明の照明装置を用いた液晶表示装置の一実
施例を示す模式側断面図である。FIG. 9 is a schematic side sectional view showing one embodiment of a liquid crystal display device using the lighting device of the present invention.
【図10】本発明の照明装置の一実施例を示す模式側断
面図である。FIG. 10 is a schematic side sectional view showing one embodiment of a lighting device of the present invention.
【図11】本発明の照明装置を用いた液晶表示装置の一
実施例を示す模式側断面図である。FIG. 11 is a schematic side sectional view showing one embodiment of a liquid crystal display device using the lighting device of the present invention.
【図12】本発明の照明装置に好適な横電界方式の液晶
表示装置の模式図である。FIG. 12 is a schematic view of a horizontal electric field type liquid crystal display device suitable for the lighting device of the present invention.
1…共通電極(コモン電極)、2…ゲート絶縁膜、3…
信号電極(ドレイン電極)、4…画素電極(ソース電
極)、5…配向膜、6…液晶分子、7…基板、8…偏光
板、9…電界方向、10…液晶表示素子、11…出射側
偏光板、12…入射側偏光板、13…非開口部、14…
開口部、50…照明装置、51…カバー、52…光源、
53…平行光化部、54…反射板、55…鏡面曲面反射
面、56…導光体、57…微細構造、57A…鏡面曲面
反射面、58…微細構造、58A…鏡面曲面反射面、6
0…反射偏光板、60A…反射偏光板タイプ1、60B
…反射偏光板タイプ2、61,62…反射偏光板支持部
材、63…誘電体多層膜、64…1/4波長板、65…
コレステリック高分子液晶層、69…位相差板、70…
光源からの無偏光光、71…平行光化部からの出射光、
72…鏡面曲面反射面からの出射光、73…非開口部か
らの反射光、74…導光体からの出射光、75…反射偏
光板からの反射光、76…反射偏光板からの反射光、7
7…導光体からの出射光、78…反射偏光板からの反射
光、79…位相差板透過後の出射光、80…平行光化部
の傾き角、81…平行光化部の長さ、82…平行光化部
の入射角、83…鏡面曲面反射面の中心傾斜角度、84
…鏡面曲面反射面の高さ、90,91…反射偏光板から
の出射光、100…空気層。DESCRIPTION OF SYMBOLS 1 ... Common electrode (common electrode), 2 ... Gate insulating film, 3 ...
Signal electrode (drain electrode), 4 pixel electrode (source electrode), 5 alignment film, 6 liquid crystal molecules, 7 substrate, 8 polarizing plate, 9 electric field direction, 10 liquid crystal display element, 11 emission side Polarizing plate, 12: incident side polarizing plate, 13: non-opening, 14:
Opening, 50: lighting device, 51: cover, 52: light source,
53: parallel light converting portion, 54: reflecting plate, 55: mirror-surface curved reflecting surface, 56: light guide, 57: microstructure, 57A: mirror-surface curved reflecting surface, 58: microstructure, 58A: mirror-surface curved reflecting surface, 6
0: reflective polarizing plate, 60A: reflective polarizing plate type 1, 60B
... Reflective polarizing plate type 2, 61, 62 ... Reflective polarizing plate support member, 63 ... dielectric multilayer film, 64 ... 1/4 wavelength plate, 65 ...
Cholesteric polymer liquid crystal layer, 69 ... retardation plate, 70 ...
Non-polarized light from the light source, 71 ... outgoing light from the parallelizing unit,
72: light emitted from a mirrored curved reflecting surface, 73: light reflected from a non-opening portion, 74: light emitted from a light guide, 75: reflected light from a reflective polarizing plate, 76: reflected light from a reflective polarizing plate , 7
7: light emitted from the light guide, 78: reflected light from the reflective polarizing plate, 79: emitted light after passing through the phase difference plate, 80: inclination angle of the parallel light converting portion, 81: length of the parallel light converting portion , 82: incident angle of the parallel light conversion unit, 83: center inclination angle of the mirrored curved reflecting surface, 84
... Height of the mirror-surface curved reflecting surface, 90, 91... Light emitted from the reflective polarizing plate, 100.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 祐二 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 (72)発明者 矢野 周治 大阪府茨木市下穂積一丁目1番2号 日東 電工株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Mori 3300 Hayano Mobara-shi, Chiba Pref. Electronic Device Division, Hitachi, Ltd. (72) Inventor Shuji Yano 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Inside the corporation
Claims (15)
れた光源を有し、該光源から出射された光が前記導光体
内を伝搬して導光体の光出射面から出射されるよう構成
された照明装置において、前記導光体の光出射面の裏面
に微細な傾斜面を有する多数の凸面,凹面または段差で
構成された反射面を備え、該反射面は少なくとも前記傾
斜面部分が鏡面化されており、該導光体の裏面に直接も
しくは空気層を介して反射板が設けられていることを特
徴とする照明装置。1. A light guide having a plate-shaped light guide and a light source disposed close to the periphery thereof, and light emitted from the light source propagates through the light guide and is emitted from a light emitting surface of the light guide. The light guide is configured to have a plurality of convex, concave or stepped reflecting surfaces having fine inclined surfaces on the back surface of the light emitting surface of the light guide, and the reflecting surfaces are at least the inclined surfaces. An illumination device, wherein a surface portion is mirror-finished, and a reflecting plate is provided directly or via an air layer on the back surface of the light guide.
光化手段を設けた請求項1に記載の照明装置。2. The illuminating device according to claim 1, further comprising means for parallelizing emitted light between the light source and the light guide.
設けた請求項2に記載の照明装置。3. The lighting device according to claim 2, wherein a reflection type polarizing plate is provided on a light exit surface of the light guide.
を、導光体の表裏面のいずれか一方に位相差板を設けた
請求項2に記載の照明装置。4. The lighting device according to claim 2, wherein a reflection type polarizing plate is provided on a light exit surface of the light guide, and a retardation plate is provided on one of the front and back surfaces of the light guide.
光化手段、該平行光化手段と前記導光体との間に反射型
偏光板を設けた請求項1に記載の照明装置。5. The light-emitting device according to claim 1, further comprising: means for parallelizing emitted light between the light source and the light guide; and a reflective polarizing plate between the parallel light means and the light guide. Lighting equipment.
求項5に記載の照明装置。6. The lighting device according to claim 5, wherein a reflective polarizing plate is provided on the light guide.
相差板を設けた請求項6に記載の照明装置。7. The lighting device according to claim 6, wherein a retardation plate is provided on one of the front and back surfaces of the light guide.
された液晶層と、前記基板の少なくとも一方の基板上に
形成され、前記液晶層の液晶分子を駆動させる電界を印
加する電極群と、これらの電極群に接続されたアクティ
ブ素子と、前記液晶層の液晶分子の配向を規制する配向
膜と、前記液晶層の分子配向状態に応じて光学特性を変
える光学手段を有する液晶表示素子と、該液晶表示素子
の直下に配置された照明装置、並びに前記液晶表示素子
の電極群に電界を印加する手段を備えた液晶表示装置に
おいて、 前記液晶表示素子の非開口部が反射率の高い物質で構成
されており、 前記照明装置が板状の導光体と、その周縁に近接配置さ
れた光源を有し、該光源から出射された光が前記導光体
内を伝搬して導光体の光出射面から出射されるよう構成
され、前記導光体の光出射面の裏面に微細な傾斜面を有
する多数の凸面,凹面または段差で構成された反射面を
備え、該反射面は少なくとも前記傾斜面部分が鏡面化さ
れており、該導光体の裏面に直接もしくは空気層を介し
て反射板が設けられていることを特徴とする液晶表示装
置。8. A pair of transparent substrates, a liquid crystal layer sandwiched between the substrates, and an electrode group formed on at least one of the substrates and applying an electric field for driving liquid crystal molecules of the liquid crystal layer. A liquid crystal display element comprising: an active element connected to these electrode groups; an alignment film that regulates the alignment of liquid crystal molecules in the liquid crystal layer; and an optical unit that changes optical characteristics according to the molecular alignment state of the liquid crystal layer. And a lighting device disposed immediately below the liquid crystal display element, and a liquid crystal display device including means for applying an electric field to an electrode group of the liquid crystal display element, wherein the non-opening portion of the liquid crystal display element has a high reflectance. The illumination device has a plate-shaped light guide and a light source disposed close to the periphery of the light guide, and light emitted from the light source propagates through the light guide to form the light guide. From the light exit surface of A light-emitting surface of the light guide, the light-emitting surface of which has a plurality of convex, concave, or stepped reflecting surfaces having fine inclined surfaces, and at least the inclined surface portions are mirror-finished. And a reflector provided on the back surface of the light guide directly or via an air layer.
に出射光の平行光化手段を設けた請求項8に記載の液晶
表示装置。9. The liquid crystal display device according to claim 8, wherein means for parallelizing emitted light is provided between the light source and the light guide of the lighting device.
射型偏光板を設けた請求項9に記載の液晶表示装置。10. The liquid crystal display device according to claim 9, wherein a reflection type polarizing plate is provided on a light emitting surface of a light guide of the lighting device.
射型偏光板を、導光体の表裏面のいずれか一方に位相差
板を設けた請求項9に記載の液晶表示装置。11. The liquid crystal display device according to claim 9, wherein a reflection type polarizing plate is provided on a light emitting surface of the light guide of the lighting device, and a retardation plate is provided on one of the front and back surfaces of the light guide.
出射光の平行光化手段、該平行光化手段と前記導光体と
の間に反射型偏光板を設けた請求項8に記載の液晶表示
装置。12. The illumination device according to claim 8, further comprising means for parallelizing emitted light between the light source of the lighting device and the light guide, and a reflective polarizing plate between the parallel light means and the light guide. 3. The liquid crystal display device according to 1.
板を設けた請求項12に記載の液晶表示装置。13. The liquid crystal display device according to claim 12, wherein a reflective polarizing plate is provided on the light guide of the lighting device.
一方の面に位相差板を設けた請求項13に記載の液晶表
示装置。14. The liquid crystal display device according to claim 13, wherein a retardation plate is provided on one of the front and back surfaces of the light guide of the lighting device.
配向状態に応じて光学特性を変える光学手段が一対の偏
光板であり、入射側偏光板の偏光軸が、前記照明装置か
らの入射光の偏光軸とほぼ平行またはほぼ垂直である請
求項8〜14のいずれかに記載の液晶表示装置。15. An optical means for changing optical characteristics according to a molecular orientation state of the liquid crystal layer of the liquid crystal display element is a pair of polarizing plates, and a polarization axis of an incident side polarizing plate is provided so that incident light from the lighting device is incident. The liquid crystal display device according to any one of claims 8 to 14, wherein the liquid crystal display device is substantially parallel or substantially perpendicular to the polarization axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8331868A JPH10170916A (en) | 1996-12-12 | 1996-12-12 | Illuminator and liquid crystal display device using the illuminator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8331868A JPH10170916A (en) | 1996-12-12 | 1996-12-12 | Illuminator and liquid crystal display device using the illuminator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10170916A true JPH10170916A (en) | 1998-06-26 |
Family
ID=18248551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8331868A Pending JPH10170916A (en) | 1996-12-12 | 1996-12-12 | Illuminator and liquid crystal display device using the illuminator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10170916A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001215505A (en) * | 2000-02-02 | 2001-08-10 | Omron Corp | Liquid crystal display device and mobile information terminal device |
JP2002049037A (en) * | 2000-08-03 | 2002-02-15 | Hitachi Ltd | Illumination device and liquid crystal display device using the same |
WO2002103445A1 (en) * | 2001-06-18 | 2002-12-27 | Fujitsu Limited | Illuminating device and liquid crystal display device |
JP2003075825A (en) * | 2001-08-31 | 2003-03-12 | Toshiba Corp | Liquid crystal display device |
US6577361B1 (en) | 1998-12-09 | 2003-06-10 | Citizen Watch Co., Ltd. | Liquid crystal display |
WO2004088413A1 (en) * | 2003-03-28 | 2004-10-14 | Sanyo Electric Co . Ltd | Light mixing member, multi-lamp lighting equipment and projection video display |
JP2005078824A (en) * | 2003-08-28 | 2005-03-24 | Casio Comput Co Ltd | Surface light source and liquid crystal display device comprising it |
JP2011504641A (en) * | 2007-11-23 | 2011-02-10 | アイティーアイ スコットランド リミテッド | Light guide |
KR20110073686A (en) * | 2009-12-24 | 2011-06-30 | 엘지디스플레이 주식회사 | Panel of liquid crystal display, backlight unit, and liquid crystal display |
WO2016098985A1 (en) * | 2014-12-15 | 2016-06-23 | Samsung Electronics Co., Ltd. | Backlight apparatus and display apparatus having the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6373789U (en) * | 1986-10-30 | 1988-05-17 | ||
JPH0887011A (en) * | 1994-09-16 | 1996-04-02 | Toshiba Corp | Display device |
JPH08304629A (en) * | 1995-05-09 | 1996-11-22 | Toshiba Corp | Light transmission plate |
JPH0973083A (en) * | 1995-09-05 | 1997-03-18 | Toshiba Corp | Illuminator and liquid crystal display device |
-
1996
- 1996-12-12 JP JP8331868A patent/JPH10170916A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6373789U (en) * | 1986-10-30 | 1988-05-17 | ||
JPH0887011A (en) * | 1994-09-16 | 1996-04-02 | Toshiba Corp | Display device |
JPH08304629A (en) * | 1995-05-09 | 1996-11-22 | Toshiba Corp | Light transmission plate |
JPH0973083A (en) * | 1995-09-05 | 1997-03-18 | Toshiba Corp | Illuminator and liquid crystal display device |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6577361B1 (en) | 1998-12-09 | 2003-06-10 | Citizen Watch Co., Ltd. | Liquid crystal display |
JP2001215505A (en) * | 2000-02-02 | 2001-08-10 | Omron Corp | Liquid crystal display device and mobile information terminal device |
JP2002049037A (en) * | 2000-08-03 | 2002-02-15 | Hitachi Ltd | Illumination device and liquid crystal display device using the same |
US7021812B2 (en) | 2001-06-18 | 2006-04-04 | Fujitsu Limited | Lighting device and liquid crystal display device |
WO2002103445A1 (en) * | 2001-06-18 | 2002-12-27 | Fujitsu Limited | Illuminating device and liquid crystal display device |
CN100392492C (en) * | 2001-06-18 | 2008-06-04 | 富士通株式会社 | Illuminating device and liquid crystal display device |
JP2003075825A (en) * | 2001-08-31 | 2003-03-12 | Toshiba Corp | Liquid crystal display device |
US7503660B2 (en) | 2003-03-28 | 2009-03-17 | Sanyo Electric Co., Ltd. | Light mixing member, multiple-lamp lighting equipment and projection video display |
WO2004088413A1 (en) * | 2003-03-28 | 2004-10-14 | Sanyo Electric Co . Ltd | Light mixing member, multi-lamp lighting equipment and projection video display |
JP2005078824A (en) * | 2003-08-28 | 2005-03-24 | Casio Comput Co Ltd | Surface light source and liquid crystal display device comprising it |
JP2011504641A (en) * | 2007-11-23 | 2011-02-10 | アイティーアイ スコットランド リミテッド | Light guide |
KR20110073686A (en) * | 2009-12-24 | 2011-06-30 | 엘지디스플레이 주식회사 | Panel of liquid crystal display, backlight unit, and liquid crystal display |
WO2016098985A1 (en) * | 2014-12-15 | 2016-06-23 | Samsung Electronics Co., Ltd. | Backlight apparatus and display apparatus having the same |
US10012782B2 (en) | 2014-12-15 | 2018-07-03 | Samsung Electronics Co., Ltd. | Backlight apparatus and display apparatus having the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100264415B1 (en) | Back light and lcd device | |
TW565733B (en) | Liquid crystal display device | |
KR100300456B1 (en) | Backlight Device and Liquid Crystal Display | |
KR100828531B1 (en) | Liquid crystal display | |
EP1855150A2 (en) | Illuminating apparatus providing polarized color light and display apparatus including the same | |
WO2016107084A1 (en) | Optical module and reflective display device | |
JPH0887011A (en) | Display device | |
JP2005521197A (en) | Polarized light emission waveguide, illumination device, and display device having such illumination device | |
JPH0973083A (en) | Illuminator and liquid crystal display device | |
US20080252816A1 (en) | Liquid crystal display device having improved viewing angle and brightness | |
JPH11352479A (en) | Backlight device and transmission type display device | |
JP3521940B2 (en) | Lighting device and liquid crystal display device | |
JP4794069B2 (en) | Illumination device and liquid crystal display device | |
JPH11242908A (en) | Lighting system and liquid crystal display using the same | |
JP4185614B2 (en) | Liquid crystal display | |
JPH09189907A (en) | Illumination device | |
JPH09146092A (en) | Illumination device and liquid crystal display device using the same | |
JPH09326205A (en) | Backlight and liquid crystal display device | |
JPH10170916A (en) | Illuminator and liquid crystal display device using the illuminator | |
JP3604413B2 (en) | Direct-view liquid crystal display | |
US7903200B2 (en) | Liquid crystal display device and mobile electronic device using the same | |
TWI274902B (en) | Prism sheet and backlight unit employed in a liquid crystal display | |
JPH1020125A (en) | Surface light source device and liquid crystal display device | |
JPH10282342A (en) | Light conductive plate, surface light source device, polarization light source device, and liquid crystal display device | |
JP3516466B2 (en) | Lighting device and liquid crystal display device |