Nothing Special   »   [go: up one dir, main page]

JPH10162795A - Pack battery - Google Patents

Pack battery

Info

Publication number
JPH10162795A
JPH10162795A JP8317502A JP31750296A JPH10162795A JP H10162795 A JPH10162795 A JP H10162795A JP 8317502 A JP8317502 A JP 8317502A JP 31750296 A JP31750296 A JP 31750296A JP H10162795 A JPH10162795 A JP H10162795A
Authority
JP
Japan
Prior art keywords
battery
batteries
battery pack
cylindrical
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP8317502A
Other languages
Japanese (ja)
Inventor
Koji Higashimoto
晃二 東本
Kenji Hara
賢二 原
Toshikazu Maejima
敏和 前島
Nobukazu Tanaka
伸和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8317502A priority Critical patent/JPH10162795A/en
Publication of JPH10162795A publication Critical patent/JPH10162795A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat radiating efficiency of batteries, reduce a temperature difference between individual batteries, and improve cycle service life performance by arranging plural ventilating holes in a place where a vessel inside surface of a pack battery and a cylindrical battery cannot substantially contact with each other. SOLUTION: In this pack battery, for example, battery groups where cells are connected by two pieces in parallel to each other, are connected by three pieces in series to each other, and batteries 2 are arranged and housed in a resinous vessel 3. A positive electrode external terminal and a negative electrode external terminal are arranged in the vessel 3. Ventilating holes 1 are also arranged in a plurality in a position close to a peripheral surface of the batteries 2 in a place where the cylindrical batteries 2 cannot substantially contact with them on a wall surface of the vessel 3 opposed to a cylindrical battery peripheral surface. In such constitution, the batteries 2 do not block up the ventilating holes 1, and the inside of the vessel 3 is always smoothly ventilated, and a temperature rise in the batteries 2 is restrained, and temperatures of plural batteries 2 in the vessel 3 can be uniformized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル−カドミ
ウム電池、ニッケル−水素電池、リチウムイオン電池等
の円筒形二次電池を複数個収納したパック電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a battery pack containing a plurality of cylindrical secondary batteries such as a nickel-cadmium battery, a nickel-hydrogen battery and a lithium ion battery.

【0002】[0002]

【従来の技術】近年、ノート型パソコン、ワープロ等の
情報機器や携帯電話等の移動通信機器、ビデオカメラ、
液晶テレビ等のAV機器の需要が急増している。その電
源としてニッケル−カドミウム電池、ニッケル−水素電
池、リチウムイオン電池等の密閉式小形二次電池が多く
使用されており、その中でもリチウムイオン二次電池に
代表される非水電解質二次電池は高電圧、高エネルギー
密度、軽量といった特性が活かされ、多種多様な分野で
盛んに採用されている。前記種々の機器の電源として使
用される電池は、多くの場合複数個の電池を直列及び/
又は並列接続し、それを密閉するパック電池で使用され
る。
2. Description of the Related Art In recent years, information devices such as notebook personal computers and word processors, mobile communication devices such as mobile phones, video cameras,
Demand for AV equipment such as liquid crystal televisions is rapidly increasing. As a power source, sealed small secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lithium-ion batteries are often used, and among them, non-aqueous electrolyte secondary batteries represented by lithium-ion secondary batteries are high in capacity. Utilizing characteristics such as voltage, high energy density, and light weight, it is widely used in various fields. In many cases, batteries used as power sources for the various devices include a plurality of batteries connected in series and / or.
Alternatively, it is used in a battery pack connected in parallel and hermetically sealed.

【0003】[0003]

【発明が解決しようとする課題】パック電池は1つの容
器に複数個の電池が隣接するように設置され、密閉され
ているため、電池充放電時のジュール熱による熱がこも
ってしまう。また機器作動によってパック電池の周囲温
度が著しく高まる場合がある。このようにパック電池の
温度は充放電電流の大小、使用機器の使用状態等によっ
て大きく変化する。また、ノート型パソコン等のように
パック電池の占有体積が大きい機器ではパック電池内の
個々の電池間の温度差が大きくなる。一般に電池は温度
によって充放電特性が変化するため、パック電池内の個
々の電池間の温度差が大きくなると、電池間の性能のば
らつきが大きくなり、その結果最も性能低下した電池が
パック電池全体の性能を支配してしまう。その傾向はリ
チウム二次電池に代表される非水電解質二次電池に顕著
に現れる。その理由は非水電解質二次電池は、電解質が
水溶液系であるニッケル−カドミウム電池、ニッケル−
水素電池、鉛蓄電池等に比して過充電、過放電により電
池が劣化する度合いが大きいためである。本発明の目的
は、電池の放熱効率を向上させ、個々の電池間の温度差
を小さくすることによって、サイクル寿命性能の向上し
たパック電池を提供することである。
Since a plurality of batteries are installed in a single container so as to be adjacent to each other and are sealed, heat generated by Joule heat during charging / discharging of the batteries is trapped. In addition, the ambient temperature of the battery pack may be significantly increased by the operation of the device. As described above, the temperature of the battery pack greatly changes depending on the magnitude of the charge / discharge current, the use state of the equipment used, and the like. Further, in a device such as a notebook computer in which the occupied volume of the battery pack is large, the temperature difference between the individual batteries in the battery pack becomes large. In general, the charge and discharge characteristics of a battery change with temperature.If the temperature difference between the individual batteries in the battery pack increases, the performance variation between the batteries increases, and as a result, the battery with the lowest performance is the entire battery pack. Dominates performance. This tendency is noticeable in non-aqueous electrolyte secondary batteries represented by lithium secondary batteries. The reason is that the non-aqueous electrolyte secondary battery is a nickel-cadmium battery or a nickel-cadmium battery in which the electrolyte is an aqueous solution.
This is because the degree of deterioration of the battery due to overcharge and overdischarge is greater than that of a hydrogen battery, a lead storage battery, or the like. An object of the present invention is to provide a battery pack having improved cycle life performance by improving the heat radiation efficiency of the battery and reducing the temperature difference between the individual batteries.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明の、複数の円筒形電池2が容器3内に収納され
てなるパック電池、あるいは複数の円筒形電池2が容器
3に収納され、各円筒形電池2の側面の一部が容器3か
ら露出するように収納されたパック電池は、容器3内面
と円筒形電池3が実質的に接触し得ない箇所に、複数の
換気孔1を有することを特徴とする。この構成を採用す
ることによりパック内の通気性が飛躍的に向上する。そ
のため、放熱が進行し、熱が部分的にこもることがなく
なるため、容器3内の個々の電池2温度差を小さくで
き、また電池パック全体の絶対的な温度の上昇も抑える
ことができる。その結果、電池2特性のばらつきが抑え
られ、サイクル寿命性能が向上する。さらに、電池2温
度上昇を抑えるため安全性も向上する。上記構成におい
て、円筒形電池が実質的に接触し得ない箇所が、円筒形
電池周面と対向する容器壁面に存在することが好まし
い。その理由は、換気孔の場所が、電池で熱せられた気
流の激しい電池同士の隣接部分(空間)となるため、パ
ック内の通気性が飛躍的に向上するからである。従っ
て、放熱が進行し、熱が部分的にこもることがなくな
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a battery pack according to the present invention in which a plurality of cylindrical batteries 2 are stored in a container 3, or a plurality of cylindrical batteries 2 are stored in a container 3. Each of the battery packs housed such that a part of the side surface of each cylindrical battery 2 is exposed from the container 3 is provided with a plurality of ventilation holes at locations where the inner surface of the container 3 and the cylindrical battery 3 cannot substantially contact each other. 1 is provided. By adopting this configuration, the air permeability in the pack is dramatically improved. For this reason, heat is dissipated and the heat does not partially remain, so that the temperature difference between the individual batteries 2 in the container 3 can be reduced, and the absolute temperature rise of the entire battery pack can be suppressed. As a result, variations in the characteristics of the battery 2 are suppressed, and the cycle life performance is improved. Further, the safety is improved because the temperature rise of the battery 2 is suppressed. In the above configuration, it is preferable that a portion where the cylindrical battery cannot substantially contact exists on the container wall surface facing the peripheral surface of the cylindrical battery. The reason for this is that the location of the ventilation hole is an adjacent portion (space) between the batteries heated by the batteries and has a strong air current, so that the air permeability in the pack is dramatically improved. Therefore, heat dissipation proceeds, and heat does not partially remain.

【0005】また上記構成において、換気孔の外側又は
内側に覆いが配置されていることが好ましい。その理由
は、本構成を採用することにより、換気孔から異物が入
りにくい構成を実現できるためである。仮に容器内に異
物が入っても、換気孔位置が円筒形電池周面と対向する
容器壁面であることで、円筒形電池上端及び/又は下端
部に換気孔が位置する場合に比して、電気的接続部分に
前記異物が存在する確率が小さくなる。従って、前記異
物が導電性材料であっても、致命的な故障とはなりにく
く、安全性も高くなる。
[0005] In the above structure, it is preferable that a cover is arranged outside or inside the ventilation hole. The reason is that by employing this configuration, it is possible to realize a configuration in which foreign substances hardly enter through the ventilation holes. Even if foreign matter enters the container, the position of the ventilation hole is the container wall surface facing the peripheral surface of the cylindrical battery, so that compared to the case where the ventilation hole is located at the upper end and / or lower end of the cylindrical battery, The probability of the presence of the foreign matter at the electrical connection is reduced. Therefore, even if the foreign substance is a conductive material, a catastrophic failure is unlikely to occur and safety is improved.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を単電
池に円筒形のリチウム二次電池を用いたパック電池を例
に述べる。まず、単電池の作製法を述べる。正極板には
厚さ20μmのアルミニウム箔の両面にリチウムコバル
ト複合酸化物を主体としたペースト状の溶液を塗布し、
乾燥・圧延した後、幅54mmに切断したものを用い
た。また負極板には厚さ10μmの銅箔の両面に炭素材
を主体としたペースト状の溶液を塗布し、乾燥・圧延し
た後、幅56mmに切断したものを用いた。これらの正
極板と負極板とを厚さ25μm幅58mmのポリエチレ
ン微多孔膜からなるセパレータを介して捲回し、捲回群
を作製した。この捲回群を缶に挿入し、予め負極集電体
に溶着させたタブ端子を缶底に溶着する。次に炭酸プロ
ピレンと炭酸ジメチルを体積比で30:70に混合した
溶媒にLiPF6を1mol/lの濃度で溶解させた電
解液を5ml注入した後、予め正極集電体に溶着させた
正極タブ端子を正極キャップに溶着し、正極キャップを
缶上部に配置させ、絶縁性のガスケットを介して缶上部
をかしめて電池を密閉した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to an example of a battery pack using a cylindrical lithium secondary battery as a unit cell. First, a method for manufacturing a unit cell will be described. A paste-like solution mainly composed of a lithium-cobalt composite oxide is applied to both surfaces of a 20 μm-thick aluminum foil on the positive electrode plate,
After drying and rolling, a product cut to a width of 54 mm was used. A negative electrode plate was prepared by applying a paste-like solution mainly composed of a carbon material to both surfaces of a 10-μm-thick copper foil, drying and rolling, and then cutting the resultant to a width of 56 mm. The positive electrode plate and the negative electrode plate were wound through a separator made of a microporous polyethylene film having a thickness of 25 μm and a width of 58 mm to form a wound group. The wound group is inserted into a can, and a tab terminal previously welded to the negative electrode current collector is welded to the bottom of the can. Next, after injecting 5 ml of an electrolytic solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l into a solvent in which propylene carbonate and dimethyl carbonate are mixed at a volume ratio of 30:70, the positive electrode tab previously fused to the positive electrode current collector was injected. The terminal was welded to the positive electrode cap, the positive electrode cap was placed on the upper part of the can, and the upper part of the can was caulked via an insulating gasket to seal the battery.

【0007】次に上記単電池を用いた電池パックの作製
法を述べる。上記のように作製した単電池を2個並列接
続した電池群を3個直列に接続し、図1の断面図に示す
ように樹脂製の容器3に電池2を配置、収納し、パック
電池を得た。図1の容器3には図示しない正極外部端
子、負極外部端子が設けられている。また同図のように
円筒形電池周面と対向する容器3の壁面で、円筒形電池
2が実質的に接触し得ない箇所に直径2mmの換気孔1
を複数個設けた。上記構成では、電池2が換気孔1を塞
ぐことが無く、常に容器3内の換気がスムースに行わ
れ、電池2温度上昇を抑制し、容器3内の複数の電池2
温度を均一化することができる。また換気孔1は、円筒
形電池2周面に近い位置に存在している。通常円筒形電
池は、その周面が電池表面積の大部分を占めるため、そ
の周囲を換気することにより、最も効率よく電池2温度
上昇の抑制することができる。あるいは容器3内の複数
の電池2温度をより均一化することができる。容器3内
の複数の電池2温度を均一化することにより、容器3内
の各電池2の特性を同等にすることができる。どの電池
系でもその温度により過充電領域、過放電領域が異なっ
てくる。複数の単電池が並列及び/又は直列に接続され
た状態で、その一部の電池の過充電領域、過放電領域が
異なってくると、特定の電池のみの劣化の進行が速ま
る。前述したように最も特性の悪い電池がパック電池全
体の特性を支配してしまう。特に電解質に有機溶媒等を
含む非水電解質二次電池は、過充電、過放電による電池
の劣化が水溶液系電解質電池に比して激しいので、本発
明の構成を採用することは寿命特性に対して特に効果的
である。
Next, a method of manufacturing a battery pack using the above-described unit cell will be described. As shown in the cross-sectional view of FIG. 1, the battery 2 is arranged and housed in a resin container 3, and a battery pack is prepared by connecting three battery groups in which two unit cells manufactured as described above are connected in parallel. Obtained. The container 3 of FIG. 1 is provided with a positive external terminal and a negative external terminal (not shown). Also, as shown in the figure, a ventilation hole 1 having a diameter of 2 mm is formed on a wall of the container 3 facing the peripheral surface of the cylindrical battery 2 where the cylindrical battery 2 cannot substantially contact.
Were provided. In the above configuration, the battery 2 does not block the ventilation hole 1, the ventilation in the container 3 is always performed smoothly, the temperature rise of the battery 2 is suppressed, and the plurality of batteries 2 in the container 3 are suppressed.
The temperature can be made uniform. The ventilation hole 1 is located at a position close to the peripheral surface of the cylindrical battery 2. In general, the peripheral surface of a cylindrical battery occupies most of the surface area of the battery. Therefore, by ventilating the periphery, the temperature rise of the battery 2 can be suppressed most efficiently. Alternatively, the temperature of the plurality of batteries 2 in the container 3 can be made more uniform. By making the temperatures of the plurality of batteries 2 in the container 3 uniform, the characteristics of the batteries 2 in the container 3 can be made equal. In any battery system, the overcharge area and the overdischarge area differ depending on the temperature. If a plurality of cells are connected in parallel and / or in series and some of the cells have different overcharge regions and overdischarge regions, the deterioration of a specific battery alone will proceed more quickly. As described above, the battery with the worst characteristics governs the characteristics of the whole battery pack. In particular, non-aqueous electrolyte secondary batteries containing an organic solvent or the like in the electrolyte are overcharged, and the deterioration of the battery due to overdischarge is more severe than that of the aqueous electrolyte battery. It is particularly effective.

【0008】本発明の換気孔1の構造は、図1に示した
換気孔1がむき出しのものの他に、換気孔1の外側又は
内側に覆いを配置した構造が好ましい。例えば図2、図
3に示すように、外側又は内側へ壁面の一部を変形させ
て突出させることにより、覆いを形成すると共に換気孔
1を形成した構造である。図2、図3の構成にすること
により、容器3内への異物混入を困難にすることがで
き、それによる万が一の短絡事故等を防止することがで
きる。図2、図3の構成を比較すると換気孔1の、内側
に覆いを設けた構成の方がかさばらず、パック電池の体
積エネルギー密度が高くなる点で好ましいと言える。
The structure of the ventilation hole 1 of the present invention is preferably a structure in which a cover is disposed outside or inside the ventilation hole 1 in addition to the structure in which the ventilation hole 1 shown in FIG. For example, as shown in FIG. 2 and FIG. 3, a structure in which a part of a wall surface is deformed and projected outward or inward to form a cover and a ventilation hole 1 is formed. By adopting the configuration shown in FIGS. 2 and 3, it is possible to make it difficult to mix foreign matter into the container 3, thereby preventing a short circuit accident or the like. Comparing the configurations of FIGS. 2 and 3, it can be said that the configuration in which the cover is provided on the inside of the ventilation hole 1 is preferable because it is less bulky and the volume energy density of the battery pack becomes higher.

【0009】本発明の実施に当たり、複数の円筒形電池
が容器に収納され、各円筒形電池の側面の一部が容器か
ら露出するように収納されたパック電池にも上述した構
成の換気孔を適用可能である。
In practicing the present invention, a plurality of cylindrical batteries are housed in a container, and a pack battery housed so that a part of the side surface of each cylindrical battery is exposed from the container is provided with the ventilation hole having the above-described structure. Applicable.

【0010】[0010]

【実施例】発明の実施の形態で述べた円筒形リチウム二
次電池を2本並列に接続し、さらにそれを3つ直列に接
続した。その2並列3直列の電池群を樹脂製の容器に図
1に示すように収納し、パック電池とした。このパック
電池は、直径が2mmの換気孔1を、円筒形電池3の周
面と対向する容器3の壁面で、円筒形電池3とは実質的
に接触し得ない箇所に片面につき5つ設けた。このパッ
ク電池を実施例1と呼ぶ。また比較のため、換気孔1
を、図4のように円筒形電池3の周面と実質的に接触す
る容器3壁面に有したパック電池を作製した。換気孔1
の配置位置以外は実施例1と全く同条件で作製したもの
である。このパック電池を比較例と呼ぶ。また、図6に
示すように換気孔1を全く設けない以外は実施例1のパ
ック電池と全く同条件で従来例のパック電池を作製し
た。上記したパック電池は、おのおの2800mAh−
10.8Vの初期特性がある。
EXAMPLE Two cylindrical lithium secondary batteries described in the embodiment of the invention were connected in parallel, and three of them were connected in series. The 2-parallel 3-series battery group was housed in a resin container as shown in FIG. 1 to obtain a battery pack. In this battery pack, five ventilation holes 1 having a diameter of 2 mm are provided on one side of the wall of the container 3 facing the peripheral surface of the cylindrical battery 3 at a position where it cannot substantially contact the cylindrical battery 3. Was. This battery pack is called Example 1. For comparison, ventilation hole 1
As shown in FIG. 4, a battery pack having a cylindrical battery 3 on the wall surface of the container 3 substantially in contact with the peripheral surface of the battery 3 was manufactured. Ventilation hole 1
Except for the arrangement position of, it was manufactured under exactly the same conditions as in Example 1. This battery pack is called a comparative example. Further, as shown in FIG. 6, a conventional battery pack was manufactured under exactly the same conditions as in the battery pack of Example 1 except that no ventilation hole 1 was provided. Each of the above-mentioned battery packs is 2800 mAh-
There is an initial characteristic of 10.8V.

【0011】作製したパック電池を設定電圧12.6
V、制限電流2800mAで2.5時間定電圧充電を行
って完全充電状態にした後、充放電時の温度変化、サイ
クル寿命試験、高温放置試験をそれぞれ行った。充放電
時の温度変化の測定は、パック電池内に収納された6個
の電池側面にそれぞれ2箇所熱電対をテープで固定し、
各条件下にパック電池を放置して充放電を行い、各単電
池の温度変化及びパック電池内の個々の電池間の温度差
を測定した。放電は2800mA(1CmAに相当)の
電流で放電終止電圧7.5Vに至るまで放電し、その後
設定電圧12.6V、制限電流2800mA(1Cm
A)で2.5時間定電圧充電を行った。パック電池の設
置条件、周囲温度、充放電時の電池の最高温度及び電池
間の最大温度差を表1に示す。尚、表中のパック電池設
置条件で、「部分加熱温度」と表示した項目は、パック
電池を構成する個々の単電池に温度差をつけてから充放
電を行う試験の条件を示したものである。パック電池を
構成する個々の単電池に温度差を与える方法は、パック
電池の一部に温度設定のできるヒータを巻き付け、加温
するものである。表中の部分加熱温度は、1時間静置状
態で加温した後の温度差を示しており、この状態から充
放電を開始する。
The manufactured battery pack was set at a set voltage of 12.6.
V, a constant voltage charge was performed at a limited current of 2800 mA for 2.5 hours to obtain a fully charged state, and then a temperature change during charge and discharge, a cycle life test, and a high-temperature storage test were performed. The measurement of the temperature change at the time of charging / discharging is performed by fixing two thermocouples to the side of each of the six batteries housed in the battery pack with tape.
The battery pack was allowed to stand under each condition to perform charging and discharging, and the temperature change of each cell and the temperature difference between individual batteries in the battery pack were measured. The discharge is performed at a current of 2800 mA (corresponding to 1 CmA) until the discharge end voltage reaches 7.5 V, after which the set voltage is 12.6 V and the limited current is 2800 mA (1 Cm).
In A), constant voltage charging was performed for 2.5 hours. Table 1 shows the installation conditions of the battery pack, the ambient temperature, the maximum temperature of the battery during charging and discharging, and the maximum temperature difference between the batteries. The items indicated as "partial heating temperature" in the battery pack installation conditions in the table indicate the conditions for the test in which the individual cells constituting the battery pack are charged and discharged after having a temperature difference. is there. A method of giving a temperature difference to individual cells constituting a battery pack is to wind a heater capable of setting a temperature around a part of the battery pack and heat it. The partial heating temperature in the table indicates a temperature difference after heating in a standing state for one hour, and charging / discharging is started from this state.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示すように実施例1は、どの条件下
においても比較例及び従来例より電池最高温度が低く、
また容器内の個々の電池間温度差も小さい。容器3内面
と円筒形電池3が実質的に接触し得ない容器3壁の部分
に穴を開けて空気の通気性をよくしたため、放熱がしや
すくなったことがわかる。パック電池内の個々の電池間
に温度差を与えた条件でも、実施例1は比較例及び従来
例よりパック電池内の個々の電池間の温度差が小さい。
比較例のパック電池が、実施例1のパック電池よりも良
好な放熱効果が得られない理由は、比較例の電池パック
の換気孔1が円筒形電池周面により塞がれる場合があ
り、換気が良好でなかったためと考えられる。
As shown in Table 1, the maximum temperature of the battery of Example 1 was lower than that of the comparative example and the conventional example under any conditions.
Also, the temperature difference between the individual batteries in the container is small. It can be seen that heat was easily released because holes were formed in the wall of the container 3 where the inner surface of the container 3 could not substantially contact the cylindrical battery 3 to improve air permeability. Even under the condition that a temperature difference is given between the individual batteries in the battery pack, the temperature difference between the individual batteries in the battery pack of Example 1 is smaller than that of the comparative example and the conventional example.
The reason why the battery pack of the comparative example cannot obtain a better heat radiation effect than the battery pack of the first embodiment is that the ventilation hole 1 of the battery pack of the comparative example may be closed by the cylindrical battery peripheral surface, and It is considered that was not good.

【0014】次に小形機器に組み込まれたパック電池を
想定して、つまりパック電池内の電池が外部から暖めら
れた場合を想定して、パック電池の一部にヒータを巻き
付けパック電池自体に初期10℃の温度差を与えた状態
でサイクル寿命試験を行った。充放電条件は周囲温度2
5℃、放電は放電電流560mA0.2CmA)、放電
終止電圧7.5Vで、充電は設定電圧12.6V、制限
電流2800mA(1CmA)、充電時間2.5時間の
定電流定電圧充電で、充電後30分間休止を1サイクル
とした。サイクル寿命試験の結果、図5に示すように実
施例のパック電池は200サイクル後も初期容量の約8
0%の容量があり、容量の推移も安定している。これに
対して比較例のパック電池は200サイクルで初期容量
の約70%の容量となり、従来例のパック電池は更に低
いレベルで容量推移している。これはパック電池内の温
度ばらつきによって電池間の容量ばらつきが大きくな
り、結果的に容量の小さい電池がパック電池全体の容量
を支配し、容量低下が早期に起こったと考えられる。従
って、パック電池内の個々の電池間の温度差を抑えるこ
とは、機器作動時の電池に対する負荷を均一にすること
となり、その結果サイクル寿命が向上する。
Next, assuming a battery pack incorporated in a small device, that is, assuming that the battery in the battery pack is warmed from the outside, a heater is wound around a part of the battery pack and the battery pack itself is initialized. A cycle life test was performed with a temperature difference of 10 ° C. Charge and discharge conditions are ambient temperature 2
5 ° C., discharge is discharge current 560 mA 0.2 CmA), discharge end voltage 7.5 V, charge is constant current constant voltage charge with set voltage 12.6 V, limited current 2800 mA (1 CmA), and charge time 2.5 hours. After that, the rest was one cycle for 30 minutes. As a result of the cycle life test, as shown in FIG. 5, the pack battery of the example had an initial capacity of about 8 even after 200 cycles.
There is 0% capacity, and the change in capacity is stable. On the other hand, the capacity of the battery pack of the comparative example reaches about 70% of the initial capacity in 200 cycles, and the capacity of the battery pack of the conventional example changes at a lower level. This is considered to be due to the fact that the variation in the capacity between the batteries becomes large due to the temperature variation in the battery pack, and as a result, the battery with a small capacity dominate the capacity of the whole battery pack, and the capacity reduction occurred early. Therefore, suppressing the temperature difference between the individual batteries in the battery pack makes the load on the batteries uniform during operation of the device, and as a result, the cycle life is improved.

【0015】次にパック内に異物が入る可能性を評価し
た。粒径1mmのガラスビーズをパック電池の上から1
00g落として容器内に入ったガラスビーズの重量を測
定するものである。比較の対象は、換気孔の外側又は内
側に覆いが配置されたものである。具体的には図2に示
すような容器3外側へ壁面の一部を変形させて突出させ
ることにより、覆いを形成すると共に換気孔1を形成し
た構造パック電池(実施例2)と、図3に示すような容
器3内側へ壁面の一部を変形させて突出させることによ
り、覆いを形成すると共に換気孔1を形成した構造のパ
ック電池(実施例3)である。その結果、実施例2、実
施例3のパック電池容器3内に混入したビーズは0.2
gに対して、実施例1のパック電池容器3内に混入した
ビーズは4gだった。このことから判るように、換気孔
の1外側又は内側に覆いが配置された構造にすることに
より、容器3内に異物が入る可能性がかなり少なくなる
ことがわかる。
Next, the possibility of foreign matter entering the pack was evaluated. A glass bead with a particle size of 1 mm
The weight of the glass beads dropped into the container after being dropped by 00 g is measured. The object of comparison is one in which a cover is arranged outside or inside the ventilation hole. Specifically, a part of the wall surface is deformed and projected to the outside of the container 3 as shown in FIG. 2 to form a cover and a ventilation hole 1 (Example 2). A battery pack (Example 3) having a structure in which a cover is formed and a ventilation hole 1 is formed by deforming and projecting a part of the wall surface into the inside of the container 3 as shown in FIG. As a result, the beads mixed in the battery pack containers 3 of Example 2 and Example 3 contained 0.2%.
The amount of beads mixed into the battery pack container 3 of Example 1 was 4 g with respect to g. As can be seen from the above, by adopting a structure in which the cover is arranged outside or inside one of the ventilation holes, the possibility that foreign matters enter the container 3 is considerably reduced.

【0016】本実施例ではリチウムイオン二次電池を収
納したパック電池を用いたが、ニッケル−カドミウム電
池、ニッケル−水素電池等の円筒形電池を収納したパッ
ク電池でも同様の効果が得られる。また、比較例のよう
に、円筒形電池周面の部分に穴を開けて、更に実施例1
のように穴を開けたパック容器はさらに好ましい。ま
た、円筒形電池周面の一部が露出するような形状に成形
した容器に組電池を収納した場合でも、実施例1のよう
な場所に穴を確保することは熱放散性の効果をもたら
す。
In this embodiment, a pack battery containing a lithium ion secondary battery is used. However, a similar effect can be obtained with a pack battery containing a cylindrical battery such as a nickel-cadmium battery or a nickel-hydrogen battery. Further, as in the comparative example, a hole was formed in the peripheral part of the cylindrical battery, and
A pack container having a hole as described above is more preferable. Further, even when the battery pack is housed in a container formed in such a shape that a part of the peripheral surface of the cylindrical battery is exposed, securing a hole in the place as in the embodiment 1 has a heat dissipation effect. .

【0017】[0017]

【発明の効果】本発明により、パック電池の放熱効率を
向上させ、個々の電池間の温度差を小さくすることによ
って、サイクル寿命性能の向上したパック電池を提供す
ることができた。
According to the present invention, it is possible to provide a battery pack having improved cycle life performance by improving the heat radiation efficiency of the battery pack and reducing the temperature difference between the individual batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のパック電池の一例の断面図である。FIG. 1 is a cross-sectional view of an example of a battery pack of the present invention.

【図2】本発明のパック電池の一例の断面図である。FIG. 2 is a cross-sectional view of an example of the battery pack of the present invention.

【図3】本発明のパック電池の一例の断面図である。FIG. 3 is a sectional view of an example of the battery pack of the present invention.

【図4】比較例のパック電池の一例の断面図である。FIG. 4 is a sectional view of an example of a battery pack of a comparative example.

【図5】パック電池の充放電サイクル数に対する容量保
持率の関係を示した図である。
FIG. 5 is a diagram showing the relationship between the number of charge / discharge cycles of a battery pack and the capacity retention ratio.

【図6】従来のパック電池の一例の断面図である。FIG. 6 is a cross-sectional view of an example of a conventional battery pack.

【符号の説明】[Explanation of symbols]

1.換気孔 2.電池 3.容器 1. Ventilation hole 2. Battery 3. container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 伸和 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shinkazu Tanaka 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数の円筒形電池が容器内に収納されてな
るパック電池において、 容器壁には前記円筒形電池が実質的に接触し得ない箇所
に、複数の換気孔を有すること特徴とするパック電池。
1. A battery pack in which a plurality of cylindrical batteries are housed in a container, wherein the container wall has a plurality of ventilation holes at locations where the cylindrical batteries cannot substantially contact. Battery pack.
【請求項2】複数の円筒形電池が容器に収納され、各円
筒形電池の側面の一部が容器から露出するように収納さ
れたパック電池において、 容器壁には前記円筒形電池が実質的に接触し得ない箇所
に、複数の換気孔を有すること特徴とするパック電池。
2. A battery pack in which a plurality of cylindrical batteries are housed in a container, and a part of the side surface of each cylindrical battery is housed so as to be exposed from the container, wherein the cylindrical battery is substantially formed on the container wall. A battery pack having a plurality of ventilation holes at locations where it cannot contact the battery.
【請求項3】円筒形電池が実質的に接触し得ない箇所
が、円筒形電池周面と対向する容器壁面に存在すること
を特徴とする請求項1又は2記載のパック電池。
3. The battery pack according to claim 1, wherein the portion where the cylindrical battery cannot substantially contact exists on the wall of the container facing the peripheral surface of the cylindrical battery.
【請求項4】換気孔の外側又は内側に覆いが配置された
請求項1〜3のいずれかに記載のパック電池。
4. The battery pack according to claim 1, wherein a cover is arranged outside or inside the ventilation hole.
【請求項5】円筒形電池が非水電解質二次電池である請
求項1〜4のいずれかに記載のパック電池。
5. The battery pack according to claim 1, wherein the cylindrical battery is a non-aqueous electrolyte secondary battery.
JP8317502A 1996-11-28 1996-11-28 Pack battery Abandoned JPH10162795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8317502A JPH10162795A (en) 1996-11-28 1996-11-28 Pack battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8317502A JPH10162795A (en) 1996-11-28 1996-11-28 Pack battery

Publications (1)

Publication Number Publication Date
JPH10162795A true JPH10162795A (en) 1998-06-19

Family

ID=18088954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8317502A Abandoned JPH10162795A (en) 1996-11-28 1996-11-28 Pack battery

Country Status (1)

Country Link
JP (1) JPH10162795A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504841A (en) * 2009-09-10 2013-02-07 ノイホルト、ノーマン Insert for power storage part
WO2020153016A1 (en) 2019-01-25 2020-07-30 三洋電機株式会社 Battery pack
WO2020152992A1 (en) 2019-01-25 2020-07-30 三洋電機株式会社 Battery pack
WO2021020328A1 (en) 2019-08-01 2021-02-04 三洋電機株式会社 Battery pack
WO2021020003A1 (en) 2019-07-29 2021-02-04 三洋電機株式会社 Battery pack
WO2021019970A1 (en) 2019-07-29 2021-02-04 三洋電機株式会社 Battery pack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504841A (en) * 2009-09-10 2013-02-07 ノイホルト、ノーマン Insert for power storage part
WO2020153016A1 (en) 2019-01-25 2020-07-30 三洋電機株式会社 Battery pack
WO2020152992A1 (en) 2019-01-25 2020-07-30 三洋電機株式会社 Battery pack
WO2021020003A1 (en) 2019-07-29 2021-02-04 三洋電機株式会社 Battery pack
WO2021019970A1 (en) 2019-07-29 2021-02-04 三洋電機株式会社 Battery pack
WO2021020328A1 (en) 2019-08-01 2021-02-04 三洋電機株式会社 Battery pack

Similar Documents

Publication Publication Date Title
US5879834A (en) Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP4579880B2 (en) Secondary battery
Riezenman The search for better batteries
KR102203248B1 (en) Battery module and battery pack including the same
JPH10106637A (en) Battery pack cooling method
KR20190005403A (en) Battery module, battery pack including the same, and vehicle including the same
KR101999529B1 (en) Pouch-Type Secondary Battery Having Electrode Lead with Couple Notch
McDowall Understanding lithium-ion technology
CN110832693B (en) Secondary battery, secondary battery pack, and device
JPH05325943A (en) Cylindrical secondary battery
JP4329326B2 (en) Secondary battery and secondary battery pack with temperature protection element unit
JPH10162795A (en) Pack battery
JPH10154494A (en) Pack battery
JPH1055825A (en) Nonaqueous electrolytic secondary battery
JPH11273644A (en) Set battery and housing body for set battery
JPH11204096A (en) Non-aqueous electrolyte battery and non-aqueous electrolyte battery pack
KR20190005404A (en) Battery module, battery pack including the same, and vehicle including the same
JPH11121040A (en) Lithium secondary battery
JPH05234614A (en) Cylindrical battery
CN113330626A (en) Electrochemical device and electronic device
Abraham Advances in lithium-ion battery research and technology
JPH10112305A (en) Nonaqueous electrolyte secondary battery and its manufacture
US20240234856A9 (en) Apparatus and method for forming a battery cell with high thermal conductance filler material for excellent thermal performance
JP2001243936A (en) Non-aqueous secondary cell
CN114597552B (en) Electrochemical device and electronic device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040407