JPH10145303A - Optical transmission system - Google Patents
Optical transmission systemInfo
- Publication number
- JPH10145303A JPH10145303A JP8315622A JP31562296A JPH10145303A JP H10145303 A JPH10145303 A JP H10145303A JP 8315622 A JP8315622 A JP 8315622A JP 31562296 A JP31562296 A JP 31562296A JP H10145303 A JPH10145303 A JP H10145303A
- Authority
- JP
- Japan
- Prior art keywords
- main signal
- optical
- side device
- transmission
- transmission system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は光伝送システムに係
り、特に光変調度調整機能を有する光伝送システムに関
する。The present invention relates to an optical transmission system, and more particularly, to an optical transmission system having an optical modulation degree adjusting function.
【0002】[0002]
【従来の技術】送信側から主信号光を送出し受信側で受
信する際に、伝送される主信号の伝送品質を必要なレベ
ルに維持する方法が種々提案されている。2. Description of the Related Art Various methods have been proposed for maintaining the transmission quality of a transmitted main signal at a required level when a main signal light is transmitted from a transmission side and received at a reception side.
【0003】例えば特開平7−312580号公報に開
示された光送信器は、伝送するFM信号及びQPSK信
号の各光変調度をFM信号の伝送品質を満足する値にそ
れぞれ設定することで、アナログ変調及びデジタル変調
信号を同時に伝送する際の伝送品質を確保している。[0003] For example, an optical transmitter disclosed in Japanese Patent Laid-Open No. 7-31580 discloses an analog transmitter by setting each optical modulation factor of an FM signal and a QPSK signal to be transmitted to a value that satisfies the transmission quality of the FM signal. The transmission quality when simultaneously transmitting the modulated and digitally modulated signals is ensured.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記従
来の光送信器では、送信側で光変調度を最適値に設定す
るだけであり、実際に受信側で受光されたレベルを考慮
しているわけではない。このために、伝送区間の距離に
よって伝送損失が異なる場合に最適光変調度を伝送区間
毎にそれぞれ設定し直す必要がある。例えば、ある光伝
送区間の距離が長いと信号対雑音比特性(以下、CNR
特性という。)が劣化するために、光変調度を上昇させ
る必要があるが、光変調度を上げ過ぎると今度は伝送距
離が短い場合に受光回路等の歪み特性が劣化してしま
う。従って、従来の技術では、このCNR特性と歪み特
性とを共に最適にする光変調度の設定を行うことができ
ない。However, in the above-mentioned conventional optical transmitter, only the optical modulation factor is set to an optimum value on the transmitting side, and the level actually received on the receiving side is taken into consideration. is not. For this reason, when the transmission loss varies depending on the distance of the transmission section, it is necessary to reset the optimum optical modulation degree for each transmission section. For example, if the distance of a certain optical transmission section is long, the signal-to-noise ratio characteristic (hereinafter, CNR)
It is called a characteristic. ) Deteriorates, it is necessary to increase the light modulation degree. However, if the light modulation degree is too high, the distortion characteristics of the light receiving circuit and the like will deteriorate when the transmission distance is short. Therefore, according to the conventional technique, it is impossible to set the optical modulation factor to optimize both the CNR characteristic and the distortion characteristic.
【0005】更に、従来の技術では、伝送区間に何らか
の原因による伝送損失の変動が生じた場合に全く対処す
ることができない。Further, the conventional technique cannot deal with a case where a transmission loss fluctuates due to some cause in a transmission section.
【0006】本発明の目的は、伝送距離及び伝送損失の
変動に関係なく常に最適なCNR特性及び歪み特性を得
ることができる光伝送システムを提供することにある。An object of the present invention is to provide an optical transmission system capable of always obtaining optimum CNR characteristics and distortion characteristics irrespective of fluctuations in transmission distance and transmission loss.
【0007】[0007]
【課題を解決するための手段】本発明による光伝送シス
テムは、主信号送信側装置から主信号受信側装置へ光伝
送媒体を通して光主信号を伝送する光伝送システムに、
更に、前記主信号受信側装置から前記主信号送信側装置
へ光信号を伝送する伝送手段を設け、前記主信号受信側
装置は、前記光伝送媒体を通して受光した光主信号の受
光レベルを検出する受光レベル検出手段と、前記受光レ
ベルに基づいて主信号伝送系の信号対雑音比(CNR)
特性及び歪み特性が共に所定の規格範囲内になるように
前記主信号送信側装置での制御量を算出する演算手段
と、前記制御量を前記伝送手段によって前記主信号送信
側装置へ送信する送信手段と、を有し、前記主信号送信
側装置は、前記伝送手段から受信した前記制御量に従っ
て前記光主信号の光変調度を変化させる光変調度調整手
段を有する、ことを特徴とする。An optical transmission system according to the present invention is an optical transmission system for transmitting an optical main signal from an apparatus for transmitting a main signal to an apparatus for receiving a main signal through an optical transmission medium.
Further, transmission means for transmitting an optical signal from the main signal receiving side device to the main signal transmitting side device is provided, and the main signal receiving side device detects a light receiving level of an optical main signal received through the optical transmission medium. Light receiving level detecting means, and a signal-to-noise ratio (CNR) of a main signal transmission system based on the light receiving level
Calculating means for calculating a control amount in the main signal transmitting side device so that both characteristics and distortion characteristics are within a predetermined standard range; and transmitting the control amount to the main signal transmitting side device by the transmitting means. Means, and the main signal transmitting side device has an optical modulation degree adjusting means for changing an optical modulation degree of the optical main signal according to the control amount received from the transmission means.
【0008】主信号受信側装置において受信光信号の受
光レベルを検出して受信状態が最適となるように制御量
が決定され、その制御量に従って主信号送信側装置の光
変調度が制御されるために、主信号送信側装置と主信号
受信側装置との距離に関係なく最適なCNR特性及び歪
み特性を得ることができる。更に、受光レベルの基づい
て最適光変調度が設定されるために、伝送損失の変動に
も常に最適特性により対処することができる。The main signal receiving side device detects the light receiving level of the received optical signal, determines the control amount so that the receiving state is optimal, and controls the optical modulation degree of the main signal transmitting side device according to the control amount. Therefore, optimal CNR characteristics and distortion characteristics can be obtained regardless of the distance between the main signal transmitting side device and the main signal receiving side device. Further, since the optimum optical modulation factor is set based on the light receiving level, the fluctuation of the transmission loss can always be dealt with with the optimum characteristics.
【0009】[0009]
【発明の実施の形態】図1は、本発明による光伝送シス
テムの第1実施形態を示すブロック図である。ここで
は、説明を簡略化するために、光伝送システムにおける
対向した送信側装置及び受信側装置のそれぞれ送受信部
だけを図示している。FIG. 1 is a block diagram showing a first preferred embodiment of an optical transmission system according to the present invention. Here, for simplicity of description, only the transmitting and receiving units of the opposing transmitting side apparatus and receiving side apparatus in the optical transmission system are illustrated.
【0010】主信号送信側装置10は光ファイバ等の伝
送媒体を介して主信号受信側装置20に接続されてい
る。主信号送信側装置10の送信部は、前段にて変調さ
れた多波アナログ信号である送信主信号を可変増幅して
光変調度を調節する可変ゲイン増幅器101とこの可変
ゲイン増幅器101によって駆動されるレーザダイオー
ド(LD)等のレーザ光源102からなる。主信号送信
側装置10の送信部は、更に光変調度受信部と光変調制
御部とを有する。この光変調度受信部は、主信号受信側
装置20から光信号を受信するフォトダイオード(P
D)等の受光素子103と受光素子103によって光電
変換された信号から制御信号を検出する受信回路104
とからなり、光変調制御部は、受信した制御信号に従っ
て可変ゲイン増幅器101の増幅度を調整するゲインコ
ントローラ105からなる。The main signal transmitting device 10 is connected to the main signal receiving device 20 via a transmission medium such as an optical fiber. The transmission section of the main signal transmitting side device 10 is driven by the variable gain amplifier 101 for variably amplifying the transmission main signal, which is a multi-wave analog signal modulated in the previous stage, to adjust the degree of light modulation, and the variable gain amplifier 101 And a laser light source 102 such as a laser diode (LD). The transmitting unit of the main signal transmitting side device 10 further includes an optical modulation degree receiving unit and an optical modulation control unit. The optical modulation degree receiving section receives a photodiode (P) for receiving an optical signal from the main signal receiving side device 20.
D) and the like, and a receiving circuit 104 for detecting a control signal from a signal photoelectrically converted by the light receiving element 103
The optical modulation control unit includes a gain controller 105 that adjusts the amplification of the variable gain amplifier 101 according to the received control signal.
【0011】主信号受信側装置20の受信部は、主信号
送信側装置10から受信した光主信号を受光するフォト
ダイオード等の受光素子201と、受光素子201によ
って光電変換された受光電流IPHを増幅する受信回路
202と、からなる。受信部から出力された受信主信号
は分岐器203によって2分岐され、一方を受信主信号
として後段へ送出し、他方を光変調度調整のためにデー
タ処理部へ送出する。データ処理部は、受信主信号のパ
ワーレベルLDを検出するレベル検出器204と、既知
の値と検出されたパワーレベルとから受光素子201が
受光した受光レベルLRCVを算出する受光レベル算出部
205と、その受光レベルからCNR特性及び歪み特性
を算出する特性算出部206と、算出されたCNR特性
及び歪み特性の双方が規格範囲内となるように最適光変
調度DMOPを算出する最適変調度算出部207と、から
なる。算出された最適光変調度DMOPは、送信回路20
8を通してレーザダイオード等のレーザ光源209で光
信号に変換され、主信号送信側装置10の受光素子10
3へ送出される。The receiving section of the main signal receiving side device 20 receives a light receiving element 201 such as a photodiode for receiving the optical main signal received from the main signal transmitting side device 10 and a light receiving current IPH photoelectrically converted by the light receiving element 201. And a receiving circuit 202 for amplification. The receiving main signal output from the receiving unit is split into two by the splitter 203, and one is sent to the subsequent stage as a receiving main signal, and the other is sent to the data processing unit for adjusting the degree of optical modulation. The data processing unit includes a level detector 204 that detects a power level LD of the received main signal, a light reception level calculation unit 205 that calculates a light reception level LRCV received by the light receiving element 201 from a known value and the detected power level. A characteristic calculating unit 206 for calculating a CNR characteristic and a distortion characteristic from the received light level, and an optimal modulation factor calculating unit for calculating an optimal optical modulation factor DMOP such that both the calculated CNR characteristic and the distortion characteristic fall within a standard range. 207. The calculated optimum optical modulation degree DMOP is
8 and is converted into an optical signal by a laser light source 209 such as a laser diode.
3 is sent.
【0012】なお、受信部の抵抗R[Ω]及び損失PLR
[W]、受光素子201の光電変換効率EPD及び受信部
のゲインGPD、更に、分岐器203の損失PLB[W]
は、予め知られている値であり、メモリ(図示せず)に
格納され、次に述べるように受光レベル算出のために使
用される。また、可変ゲイン増幅器101、レーザ光源
102、受光素子201及び受信回路202のCNR特
性及びそれぞれの歪み特性の算出式も予めメモリに格納
されており、特性算出部206へ与えられる。The resistance R [Ω] and the loss PLR of the receiving section
[W], the photoelectric conversion efficiency EPD of the light receiving element 201, the gain GPD of the receiving unit, and the loss PLB [W] of the branching unit 203.
Is a known value, is stored in a memory (not shown), and is used for calculating the light receiving level as described below. Also, the calculation formulas of the CNR characteristics and the respective distortion characteristics of the variable gain amplifier 101, the laser light source 102, the light receiving element 201, and the receiving circuit 202 are stored in the memory in advance, and are given to the characteristic calculation unit 206.
【0013】受光レベル算出部205は、レベル検出器
204から検出されたパワーレベルLD[W]を入力し
て、(数1)により受光素子201の受光電流IPH
[A]を算出する。The light receiving level calculation unit 205 receives the power level LD [W] detected from the level detector 204 and calculates the light receiving current IPH of the light receiving element 201 according to (Equation 1).
[A] is calculated.
【0014】[0014]
【数1】LD=IPH2R−PLR−PLB ここで、Rは受信部の抵抗、PLRは受光部の損失、PLB
は分岐器203の損失であり、図示されていないメモリ
に予め与えられている。L = IPH2R-PLR-PLB where R is the resistance of the receiver, PLR is the loss of the light receiver, PLB
Is the loss of the branching unit 203, which is given in advance to a memory (not shown).
【0015】(数1)を変形すれば、受光電流IPHを求
める(数2)となる。By transforming (Equation 1), (Equation 2) is obtained of the light receiving current IPH.
【0016】[0016]
【数2】IPH={(LD+PLR+PLB)/R}1/2 続いて、この算出された受光電流IPHを(数3)に代入
して受光レベルLRCVを算出する。IPH = {(LD + PLR + PLB) / R} 1/2 Then, the calculated light receiving current IPH is substituted into (Equation 3) to calculate the light receiving level LRCV.
【0017】[0017]
【数3】IPH=(e/hf)×EPD×GPD×LRCV ここで、eは電子の電荷、hはプランク定数、fは光の
周波数、EPDは受光素子201の光電変換効率、GPDは
受光部のゲインである。## EQU3 ## where, e is the charge of electrons, h is Planck's constant, f is the frequency of light, EPD is the photoelectric conversion efficiency of the light receiving element 201, and GPD is light receiving. The unit gain.
【0018】(数3)を変形すれば、受光レベルLRCV
を求める(数4)を得る。By transforming equation (3), the received light level LRCV
(Equation 4) is obtained.
【0019】[0019]
【数4】LRCV=IPHhf/(e×EPD×GPD) こうして算出された受光レベルLRCVを入力して、特性
算出部206は、先ず、予め与えられた受光部の特性を
用いて光変調度DMに対するCNR[dB]を(数5)
から算出する。LRCV = IPHhf / (e * EPD * GPD) The light receiving level LRCV calculated as described above is input, and the characteristic calculating unit 206 firstly uses the given characteristic of the light receiving unit to perform the light modulation degree DM. CNR [dB] with respect to (Equation 5)
Is calculated from
【0020】[0020]
【数5】CNR=(DM×LRCV×EPD/√2)2/(N
z+Ns+Nh) ここで、Nzはレーザ光源102及び光伝送路の雑音特
性、Nsは受光素子201のショットノイズ、及びNhは
熱雑音である。## EQU5 ## CNR = (DM × LRCV × EPD / √2) 2 / (N
z + Ns + Nh) Here, Nz is the noise characteristic of the laser light source 102 and the optical transmission line, Ns is the shot noise of the light receiving element 201, and Nh is the thermal noise.
【0021】更に、特性算出部206は予め与えられた
各デバイスの歪み特性を合計することにより光変調度に
対する回路全体の歪み特性を算出する。すなわち、 回路全体の歪み特性=(可変ゲイン増幅器101の歪み
特性)++(レーザ光源102の歪み特性)+(受光部
の歪み特性)+・・・、 であり、ここで各デバイスの歪み特性は、一般に、 各デバイスの歪み特性=(各デバイスのIP3−各デバ
イスの入力又は出力値)×2 により計算される。ただし、この場合の歪み特性は、2
波相互変調3次歪みであり、IP3は各デバイスの入力
又は出力値0dBm時の相互変調三次歪み特性である。
入力値であるか出力値であるかはデバイスの種類に依存
する。各デバイスの入力値あるいは出力値は受光レベル
あるいは光変調度と共に変化するから、光変調度を上げ
ると歪み特性が劣化することがわかる。従って、CNR
特性は光変調度を下げると劣化し、歪み特性は光変調度
を挙げると劣化する。Further, the characteristic calculator 206 calculates the distortion characteristics of the entire circuit with respect to the degree of light modulation by summing the distortion characteristics of the respective devices given in advance. That is, the distortion characteristic of the entire circuit = (distortion characteristic of variable gain amplifier 101) +++ (distortion characteristic of laser light source 102) + (distortion characteristic of light receiving unit) +... , In general, the distortion characteristic of each device = (IP of each device 3−input or output value of each device) × 2. However, the distortion characteristic in this case is 2
IP3 is the intermodulation third-order distortion characteristic when the input or output value of each device is 0 dBm.
Whether it is an input value or an output value depends on the type of device. Since the input value or the output value of each device changes with the light receiving level or the light modulation, it is understood that increasing the light modulation deteriorates the distortion characteristics. Therefore, CNR
The characteristics deteriorate when the light modulation degree is reduced, and the distortion characteristics deteriorate when the light modulation degree is increased.
【0022】最適変調度算出部207は、特性算出部2
06から入力した受光レベルLRCVに対するCNR特性
及び歪み特性をこれらCNR及び歪みの規格範囲と比較
し、CNR特性及び歪み特性ともに規格範囲内にはいる
ようにバランスのとれた最適光変調度DMOPを決定す
る。The optimum modulation factor calculation unit 207 includes a characteristic calculation unit 2
The CNR characteristics and distortion characteristics for the received light level LRCV input from 06 are compared with these CNR and distortion specification ranges, and the optimal optical modulation factor DMOP is determined so that both the CNR characteristics and distortion characteristics are within the specification ranges. I do.
【0023】こうして得られた最適光変調度データDM
OPは、送信回路208及びレーザ光源209によって光
信号に変換され、主信号送信側装置10の受光素子10
3へ逆回線により送信される。この光信号は、主信号送
信側装置10の受光素子103及び受信回路104によ
って最適光変調度データDMOPに変換され、ゲインコン
トローラ105へ出力される。ゲインコントローラ10
5は、最適光変調度データDMOPに対応する制御電圧を
生成し、その制御電圧を可変ゲイン増幅器101へ出力
する。こうして主信号受信側装置20から最適光変調度
データをフィードバックさせることで、送信される光主
信号が常に最適光変調度となるように可変ゲイン増幅器
101の増幅度を調整することができる。The thus obtained optimum light modulation degree data DM
The OP is converted into an optical signal by the transmission circuit 208 and the laser light source 209, and the light receiving element 10 of the main signal transmission side device 10
3 is transmitted by the reverse line. This optical signal is converted into the optimum optical modulation factor data DMOP by the light receiving element 103 and the receiving circuit 104 of the main signal transmitting side device 10 and output to the gain controller 105. Gain controller 10
5 generates a control voltage corresponding to the optimum optical modulation factor data DMOP, and outputs the control voltage to the variable gain amplifier 101. By feeding back the optimum optical modulation factor data from the main signal receiving side device 20 in this way, the amplification of the variable gain amplifier 101 can be adjusted so that the transmitted optical main signal always has the optimum optical modulation factor.
【0024】言い換えれば、レベル検出器204によっ
て検出されたレベルLDに基づいて、データ処理部20
5〜207は、予め与えられた受光部201及び202
の特性を元に受光レベルLRCVを算出し、主信号光伝送
系の雑音特性と歪み特性とを考慮してCNR特性と歪み
特性とのバランスを取ることで最適光変調度を算出す
る。算出された最適光変調度を逆回線にのせ主信号送信
側装置10へ返送することで、可変ゲイン増幅器101
を最適変調度となるように利得制御を行う。これにより
送信側と受信側との間の伝送距離に関係なく、また伝送
路中の損失変動に関係なく、常にCNR特性及び歪み特
性のバランスがとれた光伝送を実現することができる。In other words, based on the level LD detected by the level detector 204, the data processing unit 20
5 to 207 are light receiving units 201 and 202 given in advance.
The light receiving level LRCV is calculated on the basis of the above characteristics, and the CNR characteristic and the distortion characteristic are balanced in consideration of the noise characteristic and the distortion characteristic of the main signal light transmission system to calculate the optimum optical modulation factor. The calculated optimal optical modulation factor is placed on the reverse line and returned to the main signal transmitting side device 10, whereby the variable gain amplifier 101
Is controlled so as to obtain the optimum modulation factor. This makes it possible to realize optical transmission in which the CNR characteristics and the distortion characteristics are always balanced irrespective of the transmission distance between the transmission side and the reception side and irrespective of the loss fluctuation in the transmission path.
【0025】図2は、本発明の第2実施形態を示すブロ
ック図である。第2実施形態では、センタノードとロー
カルノードとの間に上り回線と下り回線とが設けられ、
それぞれの回線で光主信号が伝送され、更に、受信側で
生成された最適変調度は上り回線あるいは下り回線に多
重化することによって送信側へ伝送される。基本的動作
は第1実施形態と同様であるから、第2実施形態の相違
点を中心に説明する。FIG. 2 is a block diagram showing a second embodiment of the present invention. In the second embodiment, an uplink and a downlink are provided between the center node and the local node,
The optical main signal is transmitted on each line, and the optimum modulation degree generated on the receiving side is transmitted to the transmitting side by multiplexing it on the uplink or downlink. Since the basic operation is the same as that of the first embodiment, the description will focus on the differences from the second embodiment.
【0026】同図において、ローカルノードにおいて、
前段にて変調された多波アナログ信号である送信主信号
は、光変調度を調節する可変ゲイン増幅器301で可変
増幅され、レーザダイオード(LD)等のレーザ光源3
02から上り回線を通してセンタノードへ送信される。
その際、レーザ光源302には後述する下り回線用制御
信号DMOP-Dが合波される。他方、下り回線からの光主
信号は、フォトダイオード(PD)等の受光素子303
及び受信回路304によって受信され、AGC用の可変
増幅器305によって増幅された後、分岐器306で下
り主信号と上り回線用制御信号DMOP-Uに分岐される。
上り回線用制御信号DMOP-Uは、上述したようにゲイン
コントローラ307に入力し、最適光変調度を得るよう
に可変ゲイン増幅器301の利得が調整される。分岐器
306によって分岐された下り主信号は、上述したよう
に、レベル検出器308及びデータ処理部309によっ
て最適変調度が算出され、下り回線用制御信号DMOP-D
が生成され、レーザ光源302で上り主信号に合波され
る。In the figure, at the local node,
The transmission main signal, which is a multi-wave analog signal modulated in the previous stage, is variably amplified by a variable gain amplifier 301 for adjusting the degree of light modulation, and is provided with a laser light source 3 such as a laser diode (LD).
02 to the center node through the uplink.
At this time, a downlink control signal DMOP-D, which will be described later, is multiplexed with the laser light source 302. On the other hand, the optical main signal from the downlink is received by a light receiving element 303 such as a photodiode (PD).
After being received by the receiving circuit 304 and amplified by the AGC variable amplifier 305, the signal is split by the splitter 306 into a downlink main signal and an uplink control signal DMOP-U.
The uplink control signal DMOP-U is input to the gain controller 307 as described above, and the gain of the variable gain amplifier 301 is adjusted so as to obtain the optimum optical modulation factor. For the downlink main signal branched by the branching unit 306, as described above, the optimal modulation factor is calculated by the level detector 308 and the data processing unit 309, and the downlink control signal DMOP-D
Is generated and multiplexed with the upstream main signal by the laser light source 302.
【0027】センタノードにおいて、上り回線からの光
主信号は、フォトダイオード(PD)等の受光素子40
1及び受信回路402によって受信され、AGC用の可
変増幅器403によって増幅された後、分岐器404で
上り主信号と下り回線用制御信号DMOP-Dに分岐され
る。下り回線用制御信号DMOP-Dは、上述したようにゲ
インコントローラ409に入力し、最適光変調度を得る
ように可変ゲイン増幅器410の利得が調整される。分
岐器404によって分岐された上り主信号は、上述した
ように、レベル検出器405及びデータ処理部406に
よって最適変調度が算出され、上り回線用制御信号DM
OP-Uが生成され、レーザダイオード(LD)等のレーザ
光源408で下り主信号に合波される。他方、前段にて
変調された多波アナログ信号である下り送信主信号は、
光変調度を調節する可変ゲイン増幅器410で可変増幅
され、レーザ光源408から下り回線を通してローカル
ノードへ送信される。At the center node, an optical main signal from the uplink is transmitted to a light receiving element 40 such as a photodiode (PD).
1 and received by the receiving circuit 402, amplified by the AGC variable amplifier 403, and then split by the splitter 404 into an uplink main signal and a downlink control signal DMOP-D. The downlink control signal DMOP-D is input to the gain controller 409 as described above, and the gain of the variable gain amplifier 410 is adjusted so as to obtain the optimum optical modulation factor. For the uplink main signal branched by the branching unit 404, as described above, the optimum modulation factor is calculated by the level detector 405 and the data processing unit 406, and the uplink control signal DM
An OP-U is generated and multiplexed with a downstream main signal by a laser light source 408 such as a laser diode (LD). On the other hand, the downlink transmission main signal, which is a multi-wave analog signal modulated in the previous stage,
The signal is variably amplified by a variable gain amplifier 410 that adjusts the degree of light modulation, and transmitted from a laser light source 408 to a local node via a downlink.
【0028】このように上り回線及び下り回線を利用し
て最適変調度を双方向に伝送し、送信側と受信側との間
の伝送距離に関係なく、また伝送路中の損失変動に関係
なく、常にCNR特性及び歪み特性のバランスがとれた
光伝送を実現することができる。As described above, the optimum modulation degree is transmitted bidirectionally using the uplink and downlink, regardless of the transmission distance between the transmission side and the reception side, and regardless of the loss fluctuation in the transmission path. Thus, it is possible to realize optical transmission in which CNR characteristics and distortion characteristics are always balanced.
【0029】なお、レベル検出器308で検出された下
り主信号の電力レベルを用いて可変ゲイン増幅器305
の利得が制御され、レベル検出器405で検出された上
り主信号の電力レベルを用いて可変ゲイン増幅器403
の利得が制御される。この自動利得制御によって、可変
ゲイン増幅器301及び410で光変調度調整された主
信号のレベルを補正している。The variable gain amplifier 305 uses the power level of the downstream main signal detected by the level detector 308.
Of the variable gain amplifier 403 using the power level of the upstream main signal detected by the level detector 405.
Is controlled. This automatic gain control corrects the level of the main signal whose optical modulation has been adjusted by the variable gain amplifiers 301 and 410.
【0030】図3は本発明の第3実施形態であるループ
システムを示す概略的構成図である。ここでは、一方向
の回線だけでループネットワークが構成され、各ノード
は、図2に示すセンタノードの分岐器404から出力さ
れる主信号が必要な処理部を介して可変ゲイン増幅器4
10の入力になるように構成されている。従って、例え
ば、図3のノードN1から出力される光主信号には前段
のノードNMに対する最適変調度データが合波されてお
り、この最適変調度データはノードN2〜NM-1を通過
し、ノードNMに到達して上述したように光変調度調整
が実行される。FIG. 3 is a schematic configuration diagram showing a loop system according to a third embodiment of the present invention. Here, a loop network is formed by only one-way lines, and each node is connected to the variable gain amplifier 4 via a processing unit that requires a main signal output from the branching unit 404 of the center node shown in FIG.
It is configured to provide 10 inputs. Therefore, for example, the optical main signal output from the node N1 in FIG. 3 is multiplexed with the optimal modulation factor data for the preceding node NM, and the optimal modulation factor data passes through the nodes N2 to NM-1, Upon reaching the node NM, the optical modulation factor adjustment is performed as described above.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明による光伝送システムの第1実施形態を
示すブロック図である。FIG. 1 is a block diagram illustrating a first embodiment of an optical transmission system according to the present invention.
【図2】本発明の第2実施形態を示すブロック図であ
る。FIG. 2 is a block diagram showing a second embodiment of the present invention.
【図3】本発明の第3実施形態であるループシステムを
示す概略的構成図である。FIG. 3 is a schematic configuration diagram illustrating a loop system according to a third embodiment of the present invention.
10 主信号送信側装置 20 主信号受信側装置 101 可変ゲイン増幅器 102 レーザダイオード 103 フォトダイオード 104 受信回路 105 ゲインコントローラ 201 フォトダイオード 202 受信回路 203 分岐器 204 レベル検出器 205 受光レベル算出部 206 CNR特性及び歪み特性算出部 207 最適変調度算出部 208 送信回路 209 レーザダイオード DESCRIPTION OF SYMBOLS 10 Main signal transmission side apparatus 20 Main signal reception side apparatus 101 Variable gain amplifier 102 Laser diode 103 Photodiode 104 Receiving circuit 105 Gain controller 201 Photodiode 202 Receiving circuit 203 Branching device 204 Level detector 205 Light receiving level calculation part 206 CNR characteristic and Distortion characteristic calculation unit 207 Optimal modulation factor calculation unit 208 Transmission circuit 209 Laser diode
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04B 10/18 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H04B 10/18
Claims (7)
へ光伝送媒体を通して光主信号を伝送する光伝送システ
ムにおいて、 前記主信号受信側装置から前記主信号送信側装置へ光信
号を伝送する伝送手段を設け、 前記主信号受信側装置は、前記光伝送媒体を通して受光
した光主信号の受光レベルを検出する受光レベル検出手
段と、前記受光レベルに基づいて主信号伝送系の信号対
雑音比(CNR)特性及び歪み特性が共に所定の規格範
囲内になるように前記主信号送信側装置での制御量を算
出する演算手段と、前記制御量を前記伝送手段によって
前記主信号送信側装置へ送信する送信手段と、を有し、 前記主信号送信側装置は、前記伝送手段から受信した前
記制御量に従って前記光主信号の光変調度を変化させる
光変調度調整手段を有する、 ことを特徴とする光伝送システム。1. An optical transmission system for transmitting an optical main signal from a main signal transmitting device to a main signal receiving device through an optical transmission medium, wherein the optical signal is transmitted from the main signal receiving device to the main signal transmitting device. A main signal receiving side device, a light receiving level detecting means for detecting a light receiving level of an optical main signal received through the optical transmission medium, and a signal to noise of a main signal transmission system based on the light receiving level. Calculating means for calculating a control amount in the main signal transmitting side device so that both the ratio (CNR) characteristic and distortion characteristic are within predetermined specification ranges; and transmitting the control amount to the main signal transmitting side device by the transmitting means. Transmission means for transmitting to the main signal transmission side device, the main signal transmission side device has an optical modulation degree adjustment means for changing the optical modulation degree of the optical main signal according to the control amount received from the transmission means, An optical transmission system, characterized in that:
歪み特性を生成する特性生成手段と、 前記CNR特性及び前記歪み特性が共に前記所定規格範
囲内になるように前記主信号送信側装置での前記制御量
を算出する制御量算出手段と、 からなることを特徴とする請求項1記載の光伝送システ
ム。2. The arithmetic unit includes: a characteristic generation unit configured to generate a CNR characteristic and a distortion characteristic of a main signal transmission system with respect to the light receiving level; and a control unit that controls the CNR characteristic and the distortion characteristic to fall within the predetermined standard range. The optical transmission system according to claim 1, further comprising: control amount calculation means for calculating the control amount in the main signal transmission side device.
増幅器の増幅度を変化させるゲインコントローラと、 からなることを特徴とする請求項1又は2に記載の光伝
送システム。3. The light modulation degree adjusting means includes: a light emitting means for generating the optical main signal in accordance with a transmission signal; a variable amplifier for variably amplifying the transmission signal; and a variable amplifier in accordance with the control amount received from the transmission means. The optical transmission system according to claim 1, further comprising: a gain controller that changes an amplification degree of the amplifier.
前記光主信号を伝送する主信号回線と前記制御量を反対
方向に伝送する制御回線とを含むことを特徴とする請求
項1又は2に記載の光伝送システム。4. The optical transmission medium includes the transmission means,
3. The optical transmission system according to claim 1, further comprising a main signal line for transmitting the optical main signal and a control line for transmitting the control amount in an opposite direction.
前記制御量は前記他の光主信号に多重化されて伝送され
ることを特徴とする請求項1又は2に記載の光伝送シス
テム。5. The transmission means transmits another optical main signal,
The optical transmission system according to claim 1, wherein the control amount is multiplexed with the other optical main signal and transmitted.
換する受光手段と、 前記電気的主信号から制御用主信号を分岐する分岐手段
と、 前記制御用主信号の電力レベルを検出するレベル検出手
段と、 前記電力レベルと予め与えられた主信号伝送系の特性デ
ータとに基づいて前記受光レベルを算出する算出手段
と、 からなることを特徴とする請求項1に記載の光伝送シス
テム。6. A light receiving unit for receiving an optical main signal from the optical transmission medium and converting the received optical main signal into an electric main signal, a branching unit for branching a control main signal from the electric main signal. A level detecting means for detecting a power level of the control main signal, and a calculating means for calculating the light receiving level based on the power level and a predetermined characteristic data of the main signal transmission system. The optical transmission system according to claim 1, wherein:
へ光伝送媒体を通して光主信号を伝送する光伝送システ
ムにおける光変調度制御方法において、 前記主信号受信側装置は前記主信号送信側装置から前記
光伝送媒体を通して受光した前記光主信号の受光レベル
を検出し、前記受光レベルに基づいて主信号伝送系の信
号対雑音比(CNR)特性及び歪み特性が共に所定の規
格範囲内になるように光変調度を決定し、前記光変調度
を前記主信号送信側装置へ送信し、 前記主信号送信側装置は、前記主信号受信側装置から受
信した前記光変調度に従って前記光主信号の光変調度を
変化させる、 ことを特徴とする光変調度制御方法。7. An optical modulation degree control method in an optical transmission system for transmitting an optical main signal from a main signal transmitting side device to a main signal receiving side device through an optical transmission medium, wherein the main signal receiving side device is connected to the main signal transmitting side device. A light receiving level of the optical main signal received from the device through the optical transmission medium is detected, and a signal-to-noise ratio (CNR) characteristic and a distortion characteristic of the main signal transmission system are both within a predetermined standard range based on the light receiving level. The optical modulation degree is determined so that the optical modulation degree is transmitted to the main signal transmitting side device, and the main signal transmitting side device is configured to transmit the optical modulation degree according to the optical modulation degree received from the main signal receiving side device. An optical modulation degree control method, comprising: changing an optical modulation degree of a signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8315622A JPH10145303A (en) | 1996-11-12 | 1996-11-12 | Optical transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8315622A JPH10145303A (en) | 1996-11-12 | 1996-11-12 | Optical transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10145303A true JPH10145303A (en) | 1998-05-29 |
Family
ID=18067589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8315622A Pending JPH10145303A (en) | 1996-11-12 | 1996-11-12 | Optical transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10145303A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016076897A (en) * | 2014-10-08 | 2016-05-12 | 株式会社フジクラ | Optical transmission system, control method therefor and active optical cable |
-
1996
- 1996-11-12 JP JP8315622A patent/JPH10145303A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016076897A (en) * | 2014-10-08 | 2016-05-12 | 株式会社フジクラ | Optical transmission system, control method therefor and active optical cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6067187A (en) | Optical amplifier and optical communication system employing the same | |
KR102510313B1 (en) | Optical receiving device | |
US11005573B2 (en) | Optic signal receiver with dynamic control | |
JP2005006313A (en) | Optical power equalizing apparatus for passive optical communication network | |
US20100150561A1 (en) | Optical receiver, optical line terminal and method of recovering received signals | |
JPH10145303A (en) | Optical transmission system | |
JP2006174474A (en) | Gain-adjusting apparatus and gain-adjusting method of optical receiver in optical communications system, and optical communications system thereof | |
JPH0993199A (en) | Optical transmission reception level adjustment circuit | |
JP2008141498A (en) | Optical transmitter | |
JP4091149B2 (en) | Optical element power control system | |
JP3977842B2 (en) | Reception error rate controller | |
US6687050B2 (en) | Amplifier gain error | |
JPH10303820A (en) | Optical receiver using apd | |
JPH11122190A (en) | Optical transmitter | |
JPH07177099A (en) | Optical reception equipment | |
JPS60130233A (en) | Fdm signal optical transmitter | |
JP2000295181A (en) | Optical transmitter and optical communication system | |
JP4173688B2 (en) | Optical module and optical communication system | |
JP2001168843A (en) | Optical burst transmission reception circuit | |
JPH06140993A (en) | Optical receiver | |
JPH04275468A (en) | Light receiver | |
JPH09233027A (en) | Optical transmitter-receiver | |
CN114124240A (en) | Optical receiver circuit and optical receiver | |
JP2508980B2 (en) | Optical transmitter circuit | |
JPH05267766A (en) | Light transmission device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19991124 |