Nothing Special   »   [go: up one dir, main page]

JPH10135515A - Electrode formation of group-iii nitride semiconductor - Google Patents

Electrode formation of group-iii nitride semiconductor

Info

Publication number
JPH10135515A
JPH10135515A JP30715696A JP30715696A JPH10135515A JP H10135515 A JPH10135515 A JP H10135515A JP 30715696 A JP30715696 A JP 30715696A JP 30715696 A JP30715696 A JP 30715696A JP H10135515 A JPH10135515 A JP H10135515A
Authority
JP
Japan
Prior art keywords
layer
electrode
nickel
gold
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30715696A
Other languages
Japanese (ja)
Other versions
JP3499385B2 (en
Inventor
Naoki Shibata
直樹 柴田
Toshiya Kamimura
俊也 上村
Makoto Asai
誠 浅井
Junichi Umezaki
潤一 梅崎
Takahiro Ozawa
隆弘 小澤
Tomohiko Mori
朋彦 森
Takeshi Owaki
健史 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyoda Gosei Co Ltd
Priority to JP30715696A priority Critical patent/JP3499385B2/en
Publication of JPH10135515A publication Critical patent/JPH10135515A/en
Application granted granted Critical
Publication of JP3499385B2 publication Critical patent/JP3499385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve bonding strength and ohmic property and reduce contact resistance by forming a nickel(Ni) electrode layer and a gold (Au) electrode layer one by one on a surface of a semiconductor and carrying out heat treatment in the presence of oxygen (O2 ). SOLUTION: Nickel(Ni) is formed to a film in high vacuum on an exposed P<+> -layer 7 by a deposition device and a first metallic layer is formed. Then, an electrode 8A to the p<-> -layer 7 is shaped by removing Ni and Au deposited on a photoresist. Mixture gas of O2 gas and gas containing one or more kinds of N2 , H2 , He, Ne, Ar, Kr is introduced and subjected to heat treatment. Nickel and gold are laminated and are subjected to heat treatment in oxygen atmosphere in this way, an element distribution in a depth direction from a surface of a p-conductivity type group-III nitride semiconductor is made a distribution then, gold permeates deeper than nickel. As a result, ohmic property is improved and contact resistance of an electrode is reduced. Furthermore, junction degree of an electrode layer is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、p伝導型3族窒化物半
導体に対する電極の電極形成方法に関する。特に、p伝
導型3族窒化物半導体に対する電極の接合強度とオーミ
ック性と接触抵抗を改善したものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an electrode for a p-type group III nitride semiconductor. In particular, the present invention relates to an electrode having improved junction strength, ohmic properties, and contact resistance of an electrode with respect to a p-type group III nitride semiconductor.

【0002】[0002]

【従来の技術】従来、p伝導型 GaN(p-GaN)の電極とし
て、金(Au)を GaN層表面に蒸着したものが知られてい
る。しかし、この金(Au)を GaN層表面に直接蒸着する場
合には、接合性が悪く、 GaN層に対して合金化処理する
と、金電極が剥離するという問題がある。
2. Description of the Related Art Heretofore, as a p-conductivity type GaN (p-GaN) electrode, one in which gold (Au) is vapor-deposited on a GaN layer surface is known. However, when this gold (Au) is directly deposited on the GaN layer surface, the bonding property is poor, and there is a problem that the alloying of the GaN layer causes the gold electrode to peel off.

【発明が解決しようとする課題】そこで、金(Au)と GaN
層表面との間にニッケル(Ni)を介在させて、金(Au)の G
aN層に対する密着性を向上させることが行われている。
しかし、この場合においても、オーミック性が良くなく
又電極の接触抵抗も大きいという問題がある。
Therefore, gold (Au) and GaN
Nickel (Ni) is interposed between the layer surface and gold (Au) G
Improving the adhesion to the aN layer has been performed.
However, even in this case, there is a problem that the ohmic property is not good and the contact resistance of the electrode is large.

【0003】従って本発明の目的は、p伝導型3族窒化
物半導体に対する電極において、接着強度が良好で、且
つ、よりオーミック性を改善し、接触抵抗を小さくした
電極の形成方法を提供することである。
Accordingly, an object of the present invention is to provide a method for forming an electrode for a p-type group III nitride semiconductor, which has good adhesive strength, further improved ohmic properties, and reduced contact resistance. It is.

【0004】[0004]

【課題を解決するための手段】請求項1の発明は、p伝
導型3族窒化物から成る半導体の電極の形成方法におい
て、半導体の表面上にニッケル(Ni)電極層と金(Au)電極
層を順次形成し、酸素(O2)存在下で熱処理を行うことを
特徴とする。
According to a first aspect of the present invention, there is provided a method for forming a semiconductor electrode comprising a p-type group III nitride, comprising: a nickel (Ni) electrode layer and a gold (Au) electrode on a surface of the semiconductor; It is characterized in that layers are sequentially formed and heat treatment is performed in the presence of oxygen (O 2 ).

【0005】請求項2の発明は、金(Au)電極層の厚さを
100 Å以下とし、請求項3の発明は、ニッケル(Ni)電極
層の厚さを200 Å以下としたことを特徴とする。又、請
求項4の発明は、金(Au)電極層及び前記ニッケル(Ni)電
極層を透光性があるように構成したことである。
According to a second aspect of the present invention, the thickness of the gold (Au) electrode layer is reduced.
The thickness of the nickel (Ni) electrode layer is set to 200 mm or less. A fourth aspect of the present invention is that the gold (Au) electrode layer and the nickel (Ni) electrode layer are configured to be translucent.

【0006】請求項5の発明は、熱処理を、450 ℃〜65
0 ℃で行い、請求項6の発明は、熱処理により、p伝導
型3族窒化物半導体に前記金(Au)電極層の構成元素が拡
散、浸透することにより、相対的にニッケル(Ni)電極層
は金(Au)電極層の上に形成されることを特徴とする。さ
らに、請求項7の発明は、熱処理は、チャンバー内の酸
素(O2)分圧を1Pa以上の状態で行うことを特徴とし、
請求項8の発明は、酸素(O2)の窒素(N2) に対する比率
を0.01〜10%とすることを特徴とする。
According to a fifth aspect of the present invention, the heat treatment is performed at 450 ° C. to 65 ° C.
The method according to claim 6, wherein the constituent element of the gold (Au) electrode layer diffuses and penetrates into the p-type group III nitride semiconductor by a heat treatment, so that the nickel (Ni) electrode is relatively formed. The layer is formed on the gold (Au) electrode layer. Furthermore, the invention of claim 7 is characterized in that the heat treatment is performed in a state where the oxygen (O 2 ) partial pressure in the chamber is 1 Pa or more,
The invention of claim 8 is characterized in that 0.01 to 10% by ratio of oxygen (O 2) nitrogen (N 2).

【0007】本発明は、上記のように、酸素雰囲気中で
熱処理することで、電極の元素分布が金属層の形成時の
分布に対して反転させることを特徴としている。即ち、
電極の形成後には、上側に形成した電極層の構成元素金
(Au)が、下側に形成した金属層の構成元素ニッケル(Ni)
よりも下側、即ち、3族窒化物半導体層の近くにより多
く分布し、下側に形成した金属層の構成元素ニッケル(N
i)が上側に形成した電極層の構成元素金(Au)よりも上
側、即ち、3族窒化物半導体層の遠くにより多く分布す
ることが特徴である。
As described above, the present invention is characterized in that the heat treatment is performed in an oxygen atmosphere so that the element distribution of the electrode is inverted with respect to the distribution at the time of forming the metal layer. That is,
After forming the electrodes, the constituent elements of the upper electrode layer, gold
(Au) is a constituent element of the metal layer formed on the lower side nickel (Ni)
Lower, that is, closer to the group III nitride semiconductor layer, the constituent element nickel (N
The feature is that i) is distributed more above the constituent element gold (Au) of the electrode layer formed on the upper side, that is, farther away from the group III nitride semiconductor layer.

【0008】[0008]

【作用及び発明の効果】ニッケル、金と積層して酸素雰
囲気で熱処理することで、p伝導型3族窒化物半導体の
表面から深さ方向における元素分布が、ニッケル(Ni)よ
りも金(Au)が深く浸透した分布とすることができる。そ
の結果、オーミック性が良好になり、電極の接触抵抗を
小さくすることができた。又、ニッケルをp伝導型3族
窒化物半導体の表面に最初に形成していることから、電
極層の接合度が向上した。
[Function and Effect of the Invention] By stacking nickel and gold and heat-treating them in an oxygen atmosphere, the element distribution in the depth direction from the surface of the p-type group III nitride semiconductor is gold (Au) more than nickel (Ni). ) Can be distributed deeply. As a result, the ohmic properties were improved, and the contact resistance of the electrodes could be reduced. In addition, since nickel was first formed on the surface of the p-type conductivity type group III nitride semiconductor, the degree of bonding of the electrode layer was improved.

【0009】金電極層の厚さを100 Å以下、ニッケル電
極層の厚さを200 Å以下とすることで、良好な透光性が
得られると共に、良好なオーミック性が得られた。金電
極層の厚さが100 Å以上となると雰囲気中の酸素がニッ
ケル電極層にまで至らないため、酸素元素による金属元
素の反転分布が見られないので、効果がない。又、ニッ
ケル電極層の厚さが200 Å以上となると透光性が低下す
るために望ましくない。又、熱処理を酸素雰囲気で450
℃〜650 ℃の範囲で行うと、金をp伝導型3族窒化物半
導体の表面からより深いところまで浸透させることがで
き、逆にニッケルを表面層により多く分布させることが
できた。この結果、電極層の接合強度が改善されると共
に、オーミック性が改善され、接触抵抗を小さくするこ
とが可能となった。
By setting the thickness of the gold electrode layer to 100 mm or less and the thickness of the nickel electrode layer to 200 mm or less, good translucency and good ohmic properties were obtained. If the thickness of the gold electrode layer is 100 mm or more, oxygen in the atmosphere does not reach the nickel electrode layer, and no inversion of the metal element due to the oxygen element is observed, so that there is no effect. On the other hand, if the thickness of the nickel electrode layer is more than 200 mm, the light transmittance is undesirably reduced. Heat treatment is performed in an oxygen atmosphere at 450
When performed at a temperature in the range of 650 ° C. to 650 ° C., gold could penetrate deeper from the surface of the p-conductivity group III nitride semiconductor, and nickel could be more widely distributed in the surface layer. As a result, the bonding strength of the electrode layer is improved, the ohmic property is improved, and the contact resistance can be reduced.

【0010】又、熱処理は、チャンバー内の酸素(O2)分
圧を1Pa(7×10-7torr)以上の状態で行うこと
で、上記した電極特性の改善が見られた。さらに、酸素
(O2)の窒素(N2) に対する比率は0.01%〜100 %が望ま
しい。酸素の比率が0.01%より少なくなると、ニッケ
ル、金の反転分布が生じないために、電極の接触抵抗が
大きくなり望ましくない。
The above-mentioned improvement in the electrode characteristics was observed by performing the heat treatment at a partial pressure of oxygen (O 2 ) in the chamber of 1 Pa (7 × 10 −7 torr) or more. Furthermore, oxygen
The ratio of (O 2 ) to nitrogen (N 2 ) is desirably 0.01% to 100%. If the ratio of oxygen is less than 0.01%, the contact resistance of the electrodes becomes large because the population inversion of nickel and gold does not occur.

【0011】このような電極を有する3族窒化物半導体
素子は、印加電圧の低下、信頼性の向上、接触抵抗の低
下等、素子特性が優れたものとなる。発光ダイオード、
レーザダイオードでは、発光効率が向上する。
A group III nitride semiconductor device having such an electrode has excellent device characteristics such as a reduction in applied voltage, an improvement in reliability, and a decrease in contact resistance. Light emitting diode,
In the laser diode, the luminous efficiency is improved.

【0012】[0012]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1はサファイア基板1の上に形成された3族
窒化物半導体で形成された発光素子100 の模式的な構成
断面図である。サファイア基板1の上に AlNバッファ層
2が設けられ、その上にSiドープn形GaN 層3(n
+ 層)が形成されている。このn+ 層3の上に 0.5μm
のSiドープのn伝導型のAl0.1Ga0.9N 層4(n層)が形
成され、n層4の上に厚さ 0.4μmのAl0.05Ga0.95/In
0.2Ga0.8N から成る多重量子井戸構造の活性層5が形成
され、その活性層5の上にマグネシウムドープのp伝導
型のAl0.1Ga0.9N 層6(p層)が形成されている。その
p層6の上に、高濃度マグネシウムドープのp伝導型の
GaN層7(p+ 層)が形成されている。p+ 層7の上に
は金属蒸着による電極8Aが、n+ 層3の上に電極8B
が形成されている。電極8Aは、p+ 層7に接合するニ
ッケルと、ニッケルに接合する金とで構成されている。
電極8Bはアルミニウム又はアルミニウム合金で構成さ
れている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to specific embodiments. FIG. 1 is a schematic cross-sectional view of a light emitting device 100 formed of a group III nitride semiconductor formed on a sapphire substrate 1. An AlN buffer layer 2 is provided on a sapphire substrate 1, and a Si-doped n-type GaN layer 3 (n
+ Layer) is formed. 0.5 μm on this n + layer 3
A Si doped n-conductivity type Al 0.1 Ga 0.9 N layer 4 (n layer) is formed, and a 0.4 μm thick Al 0.05 Ga 0.95 / In
An active layer 5 having a multiple quantum well structure made of 0.2 Ga 0.8 N is formed, and a magnesium-doped p-type Al 0.1 Ga 0.9 N layer 6 (p layer) is formed on the active layer 5. On the p layer 6, a p-conductivity type doped with high concentration magnesium is doped.
A GaN layer 7 (p + layer) is formed. An electrode 8A formed by metal deposition is provided on the p + layer 7, and an electrode 8B is provided on the n + layer 3.
Are formed. The electrode 8A is composed of nickel bonded to the p + layer 7 and gold bonded to nickel.
The electrode 8B is made of aluminum or an aluminum alloy.

【0013】次に、この発光素子100 の電極8Aの製造
方法について説明する。MOCVD法により、バッファ
層2からp+ 層7までを形成する。そして、p+ 層7の
上にマスクを形成し所定部分のマスクを除去し、マスク
で覆われていない部分のp+ 層7、p層6、活性層5、
n層4を塩素を含むガスによる反応性イオンエッチング
によりエッチングして、n+ 層3の表面を露出させた。
その後、マスクをエッチング処理にて除去した。次に、
以下の手順で電極8Aを形成した。
Next, a method of manufacturing the electrode 8A of the light emitting device 100 will be described. The buffer layer 2 to the p + layer 7 are formed by MOCVD. Then, a mask is formed on the p + layer 7 and a predetermined portion of the mask is removed, and the p + layer 7, the p layer 6, the active layer 5,
The n-layer 4 was etched by reactive ion etching with a gas containing chlorine to expose the surface of the n + -layer 3.
Thereafter, the mask was removed by an etching process. next,
The electrode 8A was formed in the following procedure.

【0014】(1) 表面上にフォトレジスト9を一様に塗
布して、フォトリソグラフィにより、p+ 層7の上の電
極形成部分のフォトレジスト9を除去して、窓部9Aを
形成する。 (2) 蒸着装置にて、露出させたp+ 層7の上に、10-6To
rr程度以下の高真空にてニッケル(Ni)を10〜200 Å成膜
させて、図2(a) に示すように、第1金属層81を形成
する。 (3) 続いて、第1金属層81の上に金(Au)を20〜500 Å
成膜させて、図2(a)に示すように、第2金属層82を
形成する。 (4) 次に、試料を蒸着装置から取り出し、リフトオフ法
により、フォトレジスト9上に堆積したNiとAuとを除去
して、p+ 層7に対する電極8Aを整形する。 (5) 電極8A上の一部に電極パッドを形成する場合に
は、フォトレジストを一様に塗布して、その電極パッド
の形成部分のフォトレジストに窓を開ける。次に、金(A
u)またはアルミ(Al)またはそれらを含む合金を1.5 μm
程度、蒸着により成膜させる。(4) の工程と同様に、リ
フトオフ法により、フォトレジスト上に堆積したAu又は
Alとを除去して、電極パッドを整形する。 (6) その後、試料雰囲気を真空ポンプにて排気したあ
と、所定のガスを導入し、その状態で雰囲気温度を450
℃以上650 ℃以下にして、数秒〜数10分程度、加熱させ
る。但し、この加熱処理は以下の条件で行うことが可能
である。雰囲気ガスはO2ガスと、N2,H2,He,Ne,Ar,Kr の
うちの1種以上を含むガスとの混合ガスが利用可能であ
り、圧力は1mTorr から大気圧を越える圧力の範囲で任
意である。さらに、雰囲気ガスにおけるN2,H2,He,O2,N
e,Ar,又はkrガスの分圧は0.01〜100 %であり、この雰
囲気ガスで封入した状態又はこの雰囲気ガスを還流させ
た状態で加熱しても良い。
(1) A photoresist 9 is uniformly applied on the surface, and the photoresist 9 on the electrode forming portion on the p + layer 7 is removed by photolithography to form a window 9A. (2) On the exposed p + layer 7, 10 -6 To
A first metal layer 81 is formed as shown in FIG. 2A by depositing nickel (Ni) in a high vacuum of about rr or less for 10 to 200 〜. (3) Subsequently, gold (Au) is coated on the first metal layer 81 by 20 to 500 Å.
By forming a film, a second metal layer 82 is formed as shown in FIG. (4) Next, the sample is taken out of the vapor deposition apparatus, and Ni and Au deposited on the photoresist 9 are removed by a lift-off method, and the electrode 8A for the p + layer 7 is shaped. (5) In the case where an electrode pad is formed on a part of the electrode 8A, a photoresist is uniformly applied, and a window is opened in the photoresist at a portion where the electrode pad is formed. Next, gold (A
u) or aluminum (Al) or an alloy containing them at 1.5 μm
A film is formed by vapor deposition to the extent. Similarly to the step (4), Au or Au deposited on the photoresist by the lift-off method
After removing Al, the electrode pad is shaped. (6) After that, the sample atmosphere is evacuated by a vacuum pump, and then a predetermined gas is introduced.
C. to 650.degree. C. and heat for several seconds to several tens of minutes. However, this heat treatment can be performed under the following conditions. As the atmosphere gas, a mixed gas of O 2 gas and a gas containing at least one of N 2 , H 2 , He, Ne, Ar, and Kr can be used, and the pressure is from 1 mTorr to a pressure exceeding atmospheric pressure. It is optional in the range. Further, N 2 , H 2 , He, O 2 , N
The partial pressure of the e, Ar, or kr gas is 0.01 to 100%, and the gas may be heated in a state sealed with the atmosphere gas or in a state in which the atmosphere gas is refluxed.

【0015】ニッケル(Ni)、金(Au)の積層後に上記の加
熱処理をした結果、ニッケル(Ni)の第1金属層81の上
の第2金属層82の金(Au)が、第1金属層81を通して
+層7の中に拡散あるいは接触し、p+ 層7のGaN と
合金状態を形成する。図2(b) に熱処理後の様子を模式
的に示す(パッド電極は図示されていない。) 。即ち、
熱処理前後において、AuとNiの深さ方向の分布が反転す
る。
As a result of the above heat treatment after the lamination of nickel (Ni) and gold (Au), the gold (Au) of the second metal layer 82 on the first metal layer 81 of nickel (Ni) becomes the first metal. Diffusion or contact into p + layer 7 through metal layer 81 to form an alloy state with GaN of p + layer 7. FIG. 2B schematically shows the state after the heat treatment (the pad electrode is not shown). That is,
Before and after the heat treatment, the distribution of Au and Ni in the depth direction is inverted.

【0016】熱処理が実施された後のp+ 層7の表面付
近の元素分布をオージェ電子分光分析(AES) で調べた。
その結果を図3に示す。p+ 層7の表面付近(表面から
約3nmまで)はニッケルの濃度が金濃度よりも高い。表
面から約3 nm以上に深いところのp+ 層7では金がニッ
ケルよりも高濃度に分布しているのが分かる。よって、
金はニッケルの第1金属層81を通過して、p+ 層7の
深層部にまで達して、そこで、合金が形成されているの
が分かる。また、この場合には酸素元素もp+層7の表
面付近にニッケル(Ni)と同様な分布特性で分布している
もの理解される。
The element distribution near the surface of the p + layer 7 after the heat treatment was examined by Auger electron spectroscopy (AES).
The result is shown in FIG. In the vicinity of the surface of the p + layer 7 (from the surface to about 3 nm), the nickel concentration is higher than the gold concentration. It can be seen that gold is distributed at a higher concentration than nickel in the p + layer 7 deeper than about 3 nm from the surface. Therefore,
The gold passes through the first metal layer 81 of nickel and reaches the deep part of the p + layer 7, where it can be seen that an alloy is formed. In this case, it is understood that the oxygen element is also distributed near the surface of the p + layer 7 with the same distribution characteristics as nickel (Ni).

【0017】450 ℃以上650 ℃以下の所定の温度で熱処
理を実施する前に、高真空(1m Torr 以下)まで排気せ
ず、数torr〜数10torrの空気が残存している状態に排気
し、その後大気圧まで窒素(N2) にて封入し、その後熱
処理を加えることにより低抵抗となることが判明した。
酸素(O2)と窒素(N2) の割合は0.01%〜100 %の範囲が
電極の接触抵抗を低下させる観点から望ましい。
Before performing the heat treatment at a predetermined temperature of 450 ° C. or more and 650 ° C. or less, the air is not exhausted to a high vacuum (1 m Torr or less), but is exhausted in a state where air of several torr to several tens of torr remains. Thereafter, it was found that the resistance was reduced by filling the atmosphere with nitrogen (N 2 ) to atmospheric pressure and then applying heat treatment.
The ratio of oxygen (O 2 ) to nitrogen (N 2 ) is preferably in the range of 0.01% to 100% from the viewpoint of reducing the contact resistance of the electrode.

【0018】上記のような反転分布が生じる理由とし
て、ニッケルが金よりもイオン化ポテンシャルが低いの
で、熱処理中に、ニッケルが表面近くに移動し、その反
作用として金が3族窒化物半導体と合金化され半導体内
に浸透すると考えられる。この結果、オーミック性の良
い金と3族窒化物半導体とが合金化される結果、この電
極のオーミック性は良好となる。又、ニッケルは、金よ
りも反応性が高く3族窒化物半導体と強固に接合する結
果、この電極の接着強度が向上する。
The reason why the population inversion described above occurs is that nickel has a lower ionization potential than gold, so that nickel moves closer to the surface during heat treatment, and as a reaction, gold alloys with the group III nitride semiconductor. It is thought that it penetrates into the semiconductor. As a result, gold having good ohmic properties and a group III nitride semiconductor are alloyed, so that the ohmic properties of this electrode are improved. Further, nickel has higher reactivity than gold and is strongly bonded to the group III nitride semiconductor, so that the bonding strength of the electrode is improved.

【0019】以下、発光素子に上記の電極を形成する時
の熱処理に関して、種々の実験を行った。図4は、上記
の厚さでニッケル、金を積層して、600 ℃で熱処理する
時に、窒素に対する酸素の比率を変化させて電極を形成
した時の20mAの電流が流れる時の発光素子の駆動電圧V
f を測定したものである。O2 /N2 の比率が0.05〜10
0%の時に、駆動電圧Vf が3.6 V以下となり、酸素が
存在しない状態で熱処理して形成した駆動電圧Vf が4.
8 Vであるため、明らかに、酸素雰囲気中で熱処理をし
た方が電極の接触電位差が低下していることが理解され
る。
In the following, various experiments were conducted on the heat treatment for forming the above-mentioned electrodes on the light emitting device. FIG. 4 shows the driving of the light emitting element when a current of 20 mA flows when the electrode is formed by changing the ratio of oxygen to nitrogen when heat treatment is performed at 600 ° C. by stacking nickel and gold with the above thickness. Voltage V
f is measured. The ratio of O 2 / N 2 is 0.05 to 10
At 0%, the driving voltage Vf becomes 3.6 V or less, and the driving voltage Vf formed by heat treatment in the absence of oxygen is 4.V.
Since the voltage is 8 V, it is apparent that the heat treatment in an oxygen atmosphere clearly reduces the contact potential difference between the electrodes.

【0020】図5は、熱処理温度600 ℃、O2 /N2
率1%、金層の厚さ60Åの条件で熱処理する時に、ニッ
ケル層の厚さを変化させて電極を形成した時の20mAの電
流が流れる時の発光素子の駆動電圧Vf を測定したもの
である。ニッケル層の厚さが22Å〜66Åの範囲の時に、
駆動電圧Vf は3.52V以下となった。ニッケル層の厚さ
が18Åより薄くなると、駆動電圧Vf は3.88V以上とな
り、ニッケル層の厚さに関して顕著な特性が見られた。
FIG. 5 is a graph showing the relationship between the heat treatment temperature of 600 ° C., the O 2 / N 2 ratio of 1%, and the thickness of the gold layer of 60 °. The drive voltage Vf of the light emitting element when the current of FIG. When the thickness of the nickel layer is in the range of 22Å to 66Å,
The driving voltage Vf became 3.52 V or less. When the thickness of the nickel layer was smaller than 18 °, the driving voltage Vf became 3.88 V or more, and remarkable characteristics were observed with respect to the thickness of the nickel layer.

【0021】図6は、ニッケル層の厚さ44Å、O2 /N
2 比率1%、熱処理温度を580 ℃、600 ℃、620 ℃の場
合で、金層の厚さを変化させて電極を形成した時の20mA
の電流が流れる時の発光素子の駆動電圧Vf を測定した
ものである。金層の厚さが110 Åと厚くなると、いずれ
の熱処理温度であっても、駆動電圧Vf が高くなってい
るのが理解される。これは、金層が厚いため、雰囲気中
の酸素元素がニッケル層に達しないためと思われる。よ
って、金層の厚さは100 Åより薄いことが望ましい。
FIG. 6 shows a nickel layer having a thickness of 44 ° and O 2 / N
2 20 % when the electrode is formed by changing the thickness of the gold layer when the ratio is 1% and the heat treatment temperature is 580 ° C, 600 ° C, and 620 ° C.
The drive voltage Vf of the light emitting element when the current of FIG. It is understood that when the thickness of the gold layer is increased to 110 °, the driving voltage Vf is increased at any heat treatment temperature. This is presumably because the oxygen element in the atmosphere did not reach the nickel layer because the gold layer was thick. Therefore, the thickness of the gold layer is desirably less than 100 mm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体的な実施例にかかる発光素子の構
造を示した断面図。
FIG. 1 is a sectional view showing a structure of a light emitting device according to a specific example of the present invention.

【図2】p+ 層の表面層における電極の熱処理前と熱処
理後の構造を模式的に示した断面図。
FIG. 2 is a cross-sectional view schematically showing a structure of a surface layer of a p + layer before and after heat treatment of an electrode.

【図3】p+ 層の表面層のオージェ電子分光分析の結果
を示した測定図。
FIG. 3 is a measurement diagram showing the result of Auger electron spectroscopy analysis of the surface layer of the p + layer.

【図4】O2 /N2 比率に対する発光素子の駆動電圧の
変化を測定した測定図。
FIG. 4 is a measurement diagram showing a change in a driving voltage of a light emitting element with respect to an O 2 / N 2 ratio.

【図5】ニッケル電極層の厚さに対する発光素子の駆動
電圧の変化を測定した測定図。
FIG. 5 is a measurement diagram showing a change in a driving voltage of a light emitting element with respect to a thickness of a nickel electrode layer.

【図6】金電極層の厚さに対する発光素子の駆動電圧の
変化を測定した測定図。
FIG. 6 is a measurement diagram showing a change in a driving voltage of a light emitting element with respect to a thickness of a gold electrode layer.

【符号の説明】[Explanation of symbols]

100… GaN系半導体発光素子 8A,8B…電極 4…n層 5…活性層 6…p層 7…p+ 層 9A…窓部100 GaN-based semiconductor light emitting element 8A, 8B ... electrode 4 ... n layer 5 ... active layer 6 ... p layer 7 ... p + layer 9A ... window

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上村 俊也 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 浅井 誠 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 梅崎 潤一 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 小澤 隆弘 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 森 朋彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 大脇 健史 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiya Uemura 1 Ochiai Nagahata, Kasuga-cho, Nishi-Kasugai-gun, Aichi Prefecture Inside Toyoda Gosei Co., Ltd. Inside Toyoda Gosei Co., Ltd. (72) Inventor Junichi Umezaki 1 Ochiai Ogata, Kasuga-cho, Nishi-Kasugai-gun, Aichi Prefecture Inside Toyoda Gosei Co., Ltd. 1 Toyota Central R & D Laboratories Co., Ltd. (72) Inventor Tomohiko Mori 41-cho, Yokomichi, Oku-cho, Nagakute-cho, Aichi-gun Aichi Prefecture Inside the Toyota Central R & D Laboratories Co., Ltd. 41, Yokomichi, Toyota Central Research Institute, Inc.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】p伝導型3族窒化物から成る半導体の電極
の形成方法において、 前記半導体の表面上にニッケル(Ni)電極層と金(Au)電極
層を順次形成し、 酸素(O2)存在下で熱処理を行うことを特徴とするp伝導
型3族窒化物半導体の電極形成方法。
1. A p conductivity type group III method of forming a semiconductor electrode consisting of nitrides, nickel (Ni) electrode layer and a gold (Au) electrode layer are sequentially formed on the semiconductor surface, the oxygen (O 2 A) a method of forming an electrode of a p-type group III nitride semiconductor, wherein heat treatment is performed in the presence of the electrode.
【請求項2】 前記金(Au)電極層の厚さは100 Å以下で
あることを特徴とする請求項1に記載のp伝導型3族窒
化物半導体の電極形成方法。
2. The method according to claim 1, wherein the thickness of the gold (Au) electrode layer is 100 ° or less.
【請求項3】 前記ニッケル(Ni)電極層の厚さは200 Å
以下であることを特徴とする請求項1に記載のp伝導型
3族窒化物半導体の電極形成方法。
3. The thickness of the nickel (Ni) electrode layer is 200 mm.
2. The method for forming an electrode of a p-type group III nitride semiconductor according to claim 1, wherein:
【請求項4】 前記金(Au)電極層及び前記ニッケル(Ni)
電極層は透光性を有することを特徴とする請求項1に記
載のp伝導型3族窒化物半導体の電極形成方法。
4. The gold (Au) electrode layer and the nickel (Ni)
The method for forming an electrode of a p-type group III nitride semiconductor according to claim 1, wherein the electrode layer has a light transmitting property.
【請求項5】 前記熱処理は、450 ℃〜650 ℃で行うこ
とを特徴とする請求項1に記載のp伝導型3族窒化物半
導体の電極形成方法。
5. The method according to claim 1, wherein the heat treatment is performed at 450 ° C. to 650 ° C.
【請求項6】 前記熱処理により、p伝導型3族窒化物
半導体に前記金(Au)電極層の構成元素が拡散、浸透する
ことにより、相対的に前記ニッケル(Ni)電極層は前記金
(Au)電極層の上に形成されることを特徴とする請求項1
に記載のp伝導型3族窒化物半導体の電極形成方法。
6. The heat treatment causes the constituent elements of the gold (Au) electrode layer to diffuse and penetrate into the p-conductivity group III nitride semiconductor, so that the nickel (Ni) electrode layer is relatively
2. The (Au) electrode layer is formed on an electrode layer.
4. The method for forming an electrode of a p-type group III nitride semiconductor according to item 1.
【請求項7】 前記熱処理は、熱処理雰囲気の酸素(O2)
分圧を1Pa(7×10-7torr)以上の存在下で行うこ
とを特徴とする請求項1に記載のp伝導型3族窒化物半
導体の電極形成方法。
7. The heat treatment is performed using oxygen (O 2 ) in a heat treatment atmosphere.
2. The method for forming an electrode of a p-type group III nitride semiconductor according to claim 1, wherein the partial pressure is set in the presence of 1 Pa (7 × 10 −7 torr) or more.
【請求項8】 前記酸素(O2)の前記窒素(N2) に対する
比率を0.01〜100 %とすることを特徴とする請求項7に
記載のp伝導型3族窒化物半導体の電極形成方法。
8. The method according to claim 7, wherein the ratio of the oxygen (O 2 ) to the nitrogen (N 2 ) is 0.01 to 100%. .
JP30715696A 1996-11-02 1996-11-02 Method for forming group III nitride semiconductor electrode Expired - Fee Related JP3499385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30715696A JP3499385B2 (en) 1996-11-02 1996-11-02 Method for forming group III nitride semiconductor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30715696A JP3499385B2 (en) 1996-11-02 1996-11-02 Method for forming group III nitride semiconductor electrode

Publications (2)

Publication Number Publication Date
JPH10135515A true JPH10135515A (en) 1998-05-22
JP3499385B2 JP3499385B2 (en) 2004-02-23

Family

ID=17965711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30715696A Expired - Fee Related JP3499385B2 (en) 1996-11-02 1996-11-02 Method for forming group III nitride semiconductor electrode

Country Status (1)

Country Link
JP (1) JP3499385B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209493A (en) * 1997-01-17 1998-08-07 Toyoda Gosei Co Ltd Manufacturing method of gallium nitride compound semiconductor and device
JPH10341039A (en) * 1997-04-10 1998-12-22 Toshiba Corp Semiconductor light emitting element and fabrication thereof
JPH11186605A (en) * 1997-12-18 1999-07-09 Toyoda Gosei Co Ltd Electrode forming method of gallium nitride based compound semiconductor and manufacture of element
US6287947B1 (en) 1999-06-08 2001-09-11 Lumileds Lighting, U.S. Llc Method of forming transparent contacts to a p-type GaN layer
WO2002017371A1 (en) * 2000-08-24 2002-02-28 Toyoda Gosei Co., Ltd. Method for reducing semiconductor resistance, device for reducing semiconductor resistance and semiconductor element
US6649440B1 (en) 1999-06-08 2003-11-18 Lumileds Lighting U.S., Llc Aluminum indium gallium nitride-based LED having thick epitaxial layer for improved light extraction
WO2005029598A1 (en) * 2003-09-22 2005-03-31 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device and electrode for the same
JP2007173854A (en) * 2007-01-29 2007-07-05 Sony Corp Method of heat treating nitride compound semiconductor layer, and method of manufacturing semiconductor element
JP2007317783A (en) * 2006-05-24 2007-12-06 Toyoda Gosei Co Ltd Method of forming electrode, light emitting element, and its manufacturing method
US7462877B2 (en) * 2003-08-25 2008-12-09 Samsung Electronics Co., Ltd. Nitride-based light emitting device, and method of manufacturing the same
DE19934031B4 (en) * 1998-10-26 2008-12-11 Industrial Technology Research Institute, Chutung Ohmic contact to semiconductor devices and a method of making the same
JP2009535802A (en) * 2006-04-25 2009-10-01 ソウル オプト デバイス カンパニー リミテッド Metal electrode formation method, semiconductor light emitting device manufacturing method, and nitride compound semiconductor light emitting device
JP2010245109A (en) * 2009-04-01 2010-10-28 Sumitomo Electric Ind Ltd Group iii nitride based semiconductor element, and method of producing electrode
JP2011517064A (en) * 2008-03-31 2011-05-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor chip and manufacturing method thereof
JP2014082461A (en) * 2012-10-17 2014-05-08 Cree Inc Using stress reduction barrier sub-layers in semiconductor die
WO2020049835A1 (en) 2018-09-07 2020-03-12 住友重機械工業株式会社 Semiconductor manufacture method and semiconductor manufacture device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150280A1 (en) 2016-03-01 2017-09-08 スタンレー電気株式会社 Vertical-type ultraviolet light-emitting diode

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209493A (en) * 1997-01-17 1998-08-07 Toyoda Gosei Co Ltd Manufacturing method of gallium nitride compound semiconductor and device
JPH10341039A (en) * 1997-04-10 1998-12-22 Toshiba Corp Semiconductor light emitting element and fabrication thereof
JPH11186605A (en) * 1997-12-18 1999-07-09 Toyoda Gosei Co Ltd Electrode forming method of gallium nitride based compound semiconductor and manufacture of element
DE19934031B4 (en) * 1998-10-26 2008-12-11 Industrial Technology Research Institute, Chutung Ohmic contact to semiconductor devices and a method of making the same
DE19934031B8 (en) * 1998-10-26 2009-04-16 Epistar Corp. Ohmic contact to semiconductor devices and a method of making the same
DE19964499B4 (en) * 1998-10-26 2011-02-03 Epistar Corp. Ohmic contact to semiconductor devices and a method of making same
US6287947B1 (en) 1999-06-08 2001-09-11 Lumileds Lighting, U.S. Llc Method of forming transparent contacts to a p-type GaN layer
DE10017758B4 (en) * 1999-06-08 2007-02-08 LumiLeds Lighting, U.S., LLC, San Jose A method of forming transparent contacts on a p-type GaN layer
JP2012142616A (en) * 1999-06-08 2012-07-26 Philips Lumileds Lightng Co Llc METHOD OF FORMING TRANSLUCENT CONTACT PART IN P-TYPE GaN LAYER
US6649440B1 (en) 1999-06-08 2003-11-18 Lumileds Lighting U.S., Llc Aluminum indium gallium nitride-based LED having thick epitaxial layer for improved light extraction
US6943128B2 (en) 2000-08-24 2005-09-13 Toyoda Gosei Co., Ltd. Method for reducing semiconductor resistance, device for reducing semiconductor resistance and semiconductor element
WO2002017371A1 (en) * 2000-08-24 2002-02-28 Toyoda Gosei Co., Ltd. Method for reducing semiconductor resistance, device for reducing semiconductor resistance and semiconductor element
US7462877B2 (en) * 2003-08-25 2008-12-09 Samsung Electronics Co., Ltd. Nitride-based light emitting device, and method of manufacturing the same
WO2005029598A1 (en) * 2003-09-22 2005-03-31 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device and electrode for the same
US7402841B2 (en) 2003-09-22 2008-07-22 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device and electrode for the same
JP2009535802A (en) * 2006-04-25 2009-10-01 ソウル オプト デバイス カンパニー リミテッド Metal electrode formation method, semiconductor light emitting device manufacturing method, and nitride compound semiconductor light emitting device
US9219198B2 (en) 2006-04-25 2015-12-22 Seoul Viosys Co., Ltd. Method for forming metal electrode, method for manufacturing semiconductor light emitting elements and nitride based compound semiconductor light emitting elements
JP2007317783A (en) * 2006-05-24 2007-12-06 Toyoda Gosei Co Ltd Method of forming electrode, light emitting element, and its manufacturing method
JP2007173854A (en) * 2007-01-29 2007-07-05 Sony Corp Method of heat treating nitride compound semiconductor layer, and method of manufacturing semiconductor element
JP2011517064A (en) * 2008-03-31 2011-05-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor chip and manufacturing method thereof
US8928052B2 (en) 2008-03-31 2015-01-06 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing same
JP2010245109A (en) * 2009-04-01 2010-10-28 Sumitomo Electric Ind Ltd Group iii nitride based semiconductor element, and method of producing electrode
JP2014082461A (en) * 2012-10-17 2014-05-08 Cree Inc Using stress reduction barrier sub-layers in semiconductor die
US9269662B2 (en) 2012-10-17 2016-02-23 Cree, Inc. Using stress reduction barrier sub-layers in a semiconductor die
WO2020049835A1 (en) 2018-09-07 2020-03-12 住友重機械工業株式会社 Semiconductor manufacture method and semiconductor manufacture device

Also Published As

Publication number Publication date
JP3499385B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
JP3620926B2 (en) P-conducting group III nitride semiconductor electrode, electrode forming method and device
JPH10135515A (en) Electrode formation of group-iii nitride semiconductor
JP3292044B2 (en) P-conductivity group III nitride semiconductor electrode pad, device having the same, and device manufacturing method
JP3344257B2 (en) Gallium nitride based compound semiconductor and device manufacturing method
US6121127A (en) Methods and devices related to electrodes for p-type group III nitride compound semiconductors
JP3239774B2 (en) Substrate separation method for group III nitride semiconductor light emitting device
JP3365607B2 (en) GaN-based compound semiconductor device and method of manufacturing the same
JP3705016B2 (en) Translucent electrode film and group III nitride compound semiconductor device
JPH11177134A (en) Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element
JPH11145518A (en) Manufacture of gallium nitride compound semiconductor
JP3309756B2 (en) Gallium nitride based compound semiconductor device
JP3154364B2 (en) Electrode of n-type gallium nitride-based compound semiconductor layer and method of forming the same
JPH10335705A (en) Nitride gallium based compound semiconductor element and its manufacturing method
JP3836245B2 (en) Gallium nitride compound semiconductor device
US7452740B2 (en) Gallium nitride-based compound semiconductor light-emitting device and negative electrode thereof
JPH1041254A (en) Ohmic electrode and forming method thereof
JP3239350B2 (en) Electrode of n-type nitride semiconductor layer
JP3555419B2 (en) Gallium nitride based compound semiconductor electrode forming method and device manufacturing method
CN112002790B (en) Light emitting diode chip and manufacturing method thereof
JP3309745B2 (en) GaN-based compound semiconductor light emitting device and method of manufacturing the same
JP2959493B2 (en) Semiconductor light emitting device
JP2000091630A (en) Gallium nitride-based compound semiconductor light emitting element
KR100293467B1 (en) blue emitting device and method for fabricating the same
JP3303718B2 (en) Gallium nitride based compound semiconductor device
JPH10270758A (en) Gallium nitride compound semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees