JPH10122842A - Method for measuring flatness of steel plate - Google Patents
Method for measuring flatness of steel plateInfo
- Publication number
- JPH10122842A JPH10122842A JP8293324A JP29332496A JPH10122842A JP H10122842 A JPH10122842 A JP H10122842A JP 8293324 A JP8293324 A JP 8293324A JP 29332496 A JP29332496 A JP 29332496A JP H10122842 A JPH10122842 A JP H10122842A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- laser
- steel sheet
- dimensional ccd
- spot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋼板の平坦度測定
方法に関し、詳しくは、特に走行する熱延鋼板の平坦度
を簡易な装置構成で精度良く測定する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring flatness of a steel sheet, and more particularly to a method for accurately measuring the flatness of a traveling hot-rolled steel sheet with a simple apparatus configuration.
【0002】[0002]
【従来の技術】走行する熱延鋼板の形状、特に平坦度を
精度良く測定することは、鋼板材料の形状、品質を改善
する上で重要なことである。従来、鋼板の形状を測定す
る方法としては、例えば照射されたスポットレーザ光の
位置を互いに異なる位置に配置された2台のカメラで三
角測量方式で求める方法(特開平7-77414号公報)、光
線走査手段における走査1周期内での走査速度不均一性
等による測定誤差を軽減する方法(特開平7-243820号公
報)及び被検査物からの反射光のほぼ全体を集光レンズ
に入射し、フォトダイオード等により光量を検出するこ
とにより被検査物の欠陥を精度よく検出する方法(特開
平7-270336号公報)等が提案されている。しかしなが
ら、これらは、冷間圧延鋼材の測定にはよいが熱延鋼板
材には不向きであったり、装置が大がかりで精度が悪い
等の問題がある。2. Description of the Related Art It is important to accurately measure the shape, particularly the flatness, of a traveling hot-rolled steel sheet in order to improve the shape and quality of a steel sheet material. Conventionally, as a method of measuring the shape of a steel sheet, for example, a method of determining the position of an irradiated spot laser beam by a triangulation method using two cameras arranged at different positions (Japanese Patent Laid-Open No. 7-77414), A method (Japanese Patent Laid-Open No. 7-243820) for reducing a measurement error due to a scanning speed non-uniformity in one scanning cycle in a light beam scanning unit, and a method in which almost entire reflected light from an object to be inspected is incident on a condenser lens. There has been proposed a method of accurately detecting a defect of an object to be inspected by detecting the amount of light with a photodiode or the like (JP-A-7-270336). However, these are good for measurement of cold-rolled steel materials, but are not suitable for hot-rolled steel materials, and have problems such as a large-scale apparatus and poor accuracy.
【0003】また、熱延鋼板の形状測定方法としては、
レーザ利用の三角測量方式を採用した光切断法(松井等
「住友金属」vol.41, 69頁 (1989))、格子とレーザを利
用したレーザモアレ法「松尾等「材料とプロセス」vol.
1, 1581頁 (1983))及びレーザ光を回転面鏡と放物面鏡
により鋼板表面に照射し、反射光を受光装置で電気信号
に変換し、反射光の強度等を求める方法(特開昭60-695
03号公報)等が提案されている。しかしながら、光切断
法やレーザモアレ法は形状の変化量を絶対値では測定出
来ず、予め補正方式を定めて実測値を補正する相対測定
方式のため精度維持に問題があり装置も複雑である。ま
た、回転面鏡と放物面鏡を組み合わせる方法は、装置が
複雑になるという問題がある。[0003] As a method for measuring the shape of a hot-rolled steel sheet,
Optical cutting method using laser-based triangulation (Matsui et al., "Sumitomo Metals" vol. 41, p. 69 (1989)), and laser moire method using grating and laser, "Matsuo et al.," Materials and Processes "vol.
1, pp. 1581 (1983)) and a method of irradiating a laser beam to a steel sheet surface with a rotating mirror and a parabolic mirror, converting reflected light into an electric signal by a light receiving device, and calculating the intensity of the reflected light (Japanese Patent Laid-Open No. 60-6095
No. 03 gazette) has been proposed. However, the optical cutting method and the laser moiré method cannot measure the amount of change of the shape in absolute value, and have a problem in maintaining accuracy due to a relative measurement method in which a correction method is determined in advance and an actual measurement value is corrected, and the apparatus is complicated. Further, the method of combining the rotating mirror and the parabolic mirror has a problem that the device becomes complicated.
【0004】[0004]
【発明が解決しようとする課題】従って、本発明の目的
は、走行する鋼板、特に熱延鋼板の平坦度を簡易な装置
構成で精度良く測定する方法を提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for accurately measuring the flatness of a running steel sheet, particularly a hot-rolled steel sheet, with a simple apparatus configuration.
【0005】[0005]
【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果本発明を完成するに至っ
た。すなわち、本発明はモーターの回転軸先端に45度
傾けて取付けられたハーフミラーにレーザ光を入射さ
せ、その反射光を走行する鋼板上に斜めに照射して二本
のレーザスポットの軌跡を形成させ、次いで上記鋼板の
走行方向に対し直角かつ上方に位置する二次元CCDカ
メラで上記鋼板上の二点のレーザスポットを検出し、ス
ポット軌跡の垂直方向の直線からの変位を測定すること
を特徴とする鋼板の平坦度測定方法を提供するものであ
る。Under such circumstances, the present inventors have made intensive studies and completed the present invention. That is, according to the present invention, a laser beam is made incident on a half mirror mounted at a 45-degree angle to the tip of the rotating shaft of a motor, and the reflected light is emitted obliquely onto a traveling steel plate to form a locus of two laser spots. Then, two laser spots on the steel plate are detected with a two-dimensional CCD camera positioned perpendicularly and upward to the running direction of the steel plate, and the displacement of the spot trajectory from a vertical straight line is measured. And a method for measuring the flatness of a steel sheet.
【0006】[0006]
【発明の実施の形態】本発明の実施の形態を図1〜図7
を参照して説明する。図1は本発明の測定方法の主要部
であるダブルビームの形成方法を示す図である。図2は
走行する鋼板上のレーザスポットの軌跡と二次元CCD
カメラの位置関係を示す図である。図3はダブルビーム
スキャナーと走行する鋼板の位置関係を示す図である。
図4はダブルビームを形成する光学スキャナーの平面図
を示す図である。図5は二次元CCDカメラによるビー
ムスポットの軌跡観測画面例を示す図である。図6は鋼
板上のレーザスポットの相互位置関係を示す図である。
図7は画像処理装置での信号処理フローを示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 1 is a diagram showing a method of forming a double beam, which is a main part of the measuring method of the present invention. Figure 2 shows the trajectory of a laser spot on a running steel plate and a two-dimensional CCD.
FIG. 3 is a diagram illustrating a positional relationship between cameras. FIG. 3 is a diagram showing a positional relationship between a double beam scanner and a traveling steel plate.
FIG. 4 is a plan view of an optical scanner that forms a double beam. FIG. 5 is a diagram showing an example of a beam spot trajectory observation screen using a two-dimensional CCD camera. FIG. 6 is a diagram showing a mutual positional relationship between laser spots on a steel plate.
FIG. 7 shows a signal processing flow in the image processing apparatus.
【0007】図1に示すように、モーター1の回転軸先
端10に45度傾けて取付けられたハーフミラー2に前
面よりレーザビーム4を入射させる。ハーフミラー2は
表面と裏面で二回反射するように表面処理されたものを
用いる。該ハーフミラーの厚みとしては、特に制限され
ないが約1.0cmとするのが好ましい。また、図1では
モーター軸の前面にレーザ発生装置(レーザ光源)3を
備えるが、図4に示すようにミラー11、12の使用に
よりレーザビームが正面より入射するのであればモータ
ー1とレーザ発生装置3の位置関係は制限されない。モ
ータ1の回転によりハーフミラー2が回転すると、ハー
フミラー3により反射された2本の反射ビーム21、2
2は、その間隔d0 を保ちレーザビームの入射に対し直
交した平面上を回転する。As shown in FIG. 1, a laser beam 4 is made incident on a half mirror 2 attached to a rotating shaft tip 10 of a motor 1 at an angle of 45 degrees from a front surface. The half mirror 2 has been subjected to a surface treatment so as to reflect twice on the front surface and the back surface. The thickness of the half mirror is not particularly limited, but is preferably about 1.0 cm. In FIG. 1, a laser generator (laser light source) 3 is provided in front of the motor shaft. If the laser beam is incident from the front by using mirrors 11 and 12 as shown in FIG. The positional relationship of the device 3 is not limited. When the half mirror 2 rotates by the rotation of the motor 1, the two reflected beams 21 and 2 reflected by the half mirror 3
2 rotates on a plane perpendicular to the incidence of the laser beam while maintaining the distance d 0 .
【0008】図2及び図3に示すように、走行する鋼板
5の上部に位置し、モーター、ハーフミラー及びレーザ
発生装置より成る光学スキャナー7から発生する反射ビ
ーム21、22を、走行する鋼板5上に投射すると鋼板
上に二本のレーザスポットの軌跡6が形成される。該反
射ビーム21、22は走行する鋼板5に対し斜めに投射
される。その好ましい投射角(入射角θ)としては、3
0度〜60度であり、特に45度とすることが測定精度
を高める点で好ましい。As shown in FIG. 2 and FIG. 3, the reflected beams 21 and 22 generated from the optical scanner 7 including a motor, a half mirror, and a laser generator are positioned above the traveling steel plate 5 and are reflected by the traveling steel plate 5. When projected upward, a locus 6 of two laser spots is formed on the steel plate. The reflected beams 21 and 22 are projected obliquely to the traveling steel plate 5. The preferable projection angle (incident angle θ) is 3
It is 0 ° to 60 °, and it is particularly preferable to set it to 45 ° from the viewpoint of increasing the measurement accuracy.
【0009】本発明において、二次元CCDカメラ8は
鋼板の走行方向に対し直角、かつ斜め上に位置する。該
カメラ8の方向と鋼板上のレーザスポットの軌跡線から
形成される撮影角(δ)は、特に制限されないが、20
度〜50度とするのが好ましい。このように撮影角を設
ける理由は、例えば、鋼板の幅が1m、上下方向の変位
を1cmとすればレーザスポットの変化範囲もほぼ同じ程
度に変化する。従って測定視野は1m×1cmとなって極
端に細長い視野になる。これをカメラで測定するとレー
ザスポット軌跡の変化量が小さいため分解能が非常に悪
くなるということを避けるためであり、これにより長手
方向を圧縮した細かいレーザスポットの軌跡の変化が拡
大された画面で得ることができる。また、図1に示すよ
うに、二点のレーザスポット間隔は常にd0 であり、こ
れを基準にして鋼板のうねり(変位)を求めればよい。In the present invention, the two-dimensional CCD camera 8 is located at a right angle and obliquely to the running direction of the steel plate. The shooting angle (δ) formed from the direction of the camera 8 and the trajectory line of the laser spot on the steel plate is not particularly limited.
Degrees to 50 degrees is preferred. The reason for setting the photographing angle in this way is that, for example, if the width of the steel plate is 1 m and the displacement in the vertical direction is 1 cm, the change range of the laser spot also changes to almost the same extent. Therefore, the measurement visual field is 1 m × 1 cm, which is an extremely elongated visual field. When this is measured with a camera, the change in the laser spot trajectory is small, so that the resolution is not significantly deteriorated, so that the change in the trajectory of the fine laser spot compressed in the longitudinal direction can be obtained on an enlarged screen. be able to. In addition, as shown in FIG. 1, the interval between the two laser spots is always d 0 , and the swell (displacement) of the steel sheet may be obtained based on this.
【0010】本発明の方法おいて、鋼板上のレーザスポ
ットの軌跡を二次元CCDカメラで測定して得られる画
面は図5のようになる。鋼板が平坦であればレーザスポ
ットは二本の直線上を動く(図5(a))。鋼板が上下
すると該軌跡は直線のまま左右に移動する(図5
(b))。一方平坦でない鋼板に対してはレーザスポッ
トの軌跡は直線からずれて鋼板のうねりに対応した曲線
を示す(図5(c))。このように鋼板のうねりはレー
ザスポットの直線からのずれとして測定できる。In the method of the present invention, a screen obtained by measuring the trajectory of the laser spot on the steel plate with the two-dimensional CCD camera is as shown in FIG. If the steel plate is flat, the laser spot moves on two straight lines (FIG. 5A). When the steel plate moves up and down, the trajectory moves left and right while keeping a straight line (FIG. 5).
(B)). On the other hand, for a non-flat steel plate, the trajectory of the laser spot deviates from a straight line and shows a curve corresponding to the undulation of the steel plate (FIG. 5C). Thus, the undulation of the steel sheet can be measured as a deviation of the laser spot from the straight line.
【0011】次に本発明方法の測定原理について説明す
る。図6に示すように鋼板が基準位置からdだけ上下に
ずれた場合には、レーザスポットは基準位置からuだけ
左右に移動し、移動距離は次の(1)式で表される。 u=d× tanθ (1) (式中、θは反射ビームの照射角を示す。) また、ビーム間隔u0 は次の(2)式で表される。 u0 =d0 /cos θ (2) ここでuとu0 の比を求めると鋼板の上下移動距離(平
坦度)dは次の(3)式で表される。 d=(u/u0 )×(d0 /sin θ) (3) (3)式から、カメラの視差に影響されず常に正確にd
が測定できることがわかる。また、式(1)及び式
(2)から明らかなように照射角度が水平に近くなるほ
ど移動距離u、u0 は大きくなり測定精度が上がる。Next, the measurement principle of the method of the present invention will be described. As shown in FIG. 6, when the steel plate shifts up and down by d from the reference position, the laser spot moves right and left by u from the reference position, and the movement distance is expressed by the following equation (1). u = d × tan θ (1) (where, θ represents the irradiation angle of the reflected beam.) The beam interval u 0 is expressed by the following equation (2). u 0 = d 0 / cos θ (2) Here, when the ratio between u and u 0 is obtained , the vertical movement distance (flatness) d of the steel sheet is expressed by the following equation (3). d = (u / u 0 ) × (d 0 / sin θ) (3) From the expression (3), d is always accurate without being affected by the parallax of the camera.
It can be seen that can be measured. Further, as is clear from the equations (1) and (2), the closer the irradiation angle is to the horizontal, the larger the moving distances u and u 0 are, and the higher the measurement accuracy is.
【0012】本発明の方法において、ハーフミラーの回
転周期と二次元CCDカメラの走査周期を一致させるこ
とが、レーザスポットが常に安定に画面に映し出される
ことから好ましい。In the method of the present invention, it is preferable to make the rotation cycle of the half mirror coincide with the scanning cycle of the two-dimensional CCD camera, since the laser spot is always stably displayed on the screen.
【0013】また、本発明の方法において、レーザの波
長を紫外線領域にとり、カメラにレーザの波長範囲の紫
外線領域の光線のみを透過させるフィルターを装着すれ
ば、鋼板が1000℃以上に赤熱されていても鋼板の熱
放射光を除去して鮮明なレーザスポットがカメラで検出
できる。該紫外線領域の波長は、0.3μm以下とする
のが好ましい。Further, in the method of the present invention, if the wavelength of the laser is in the ultraviolet region and the camera is equipped with a filter that transmits only the light in the ultraviolet region of the laser wavelength range, the steel plate is glowed to 1000 ° C. or more. In addition, a clear laser spot can be detected by the camera by removing the heat radiation of the steel plate. The wavelength in the ultraviolet region is preferably 0.3 μm or less.
【0014】本発明において、二次元CCDカメラの出
力は画像処理装置に入力される。図7に示すように画像
処理装置では、先ず二値化処理でレーザスポットのみを
検出する。次いで、スポット映像の重心を計算してこの
位置をレーザスポット位置とする。レーザスポットの軌
跡が重心の軌跡として検出される。画面上で垂直方向に
基準線をとり、この基準線からのずれを求め、ずれの平
均値は鋼板の上下動として無視し、平均値からのずれを
平坦度を示す変位とする。画面上の変位量は二点のレー
ザスポット間隔から視差を補正するために両者の比をと
り、前記(3)式から実効変位量dを求めればよい。In the present invention, the output of the two-dimensional CCD camera is input to an image processing device. As shown in FIG. 7, the image processing apparatus first detects only a laser spot by a binarization process. Next, the center of gravity of the spot image is calculated, and this position is set as a laser spot position. The locus of the laser spot is detected as the locus of the center of gravity. A reference line is set in the vertical direction on the screen, and a deviation from the reference line is determined. The average value of the deviation is ignored as the vertical movement of the steel sheet, and the deviation from the average value is regarded as a displacement indicating flatness. The amount of displacement on the screen may be obtained by taking the ratio between the two laser spots in order to correct the parallax from the distance between the two laser spots, and calculating the effective amount of displacement d from equation (3).
【0015】本発明において、前記鋼板としては、特に
制限されず熱延鋼板の他、例えば冷延鋼板、紙、プラス
チック、繊維材料等の平板が挙げられる。In the present invention, the steel sheet is not particularly limited, and may be, for example, a cold-rolled steel sheet, a flat plate of paper, plastic, fiber material, or the like, in addition to a hot-rolled steel sheet.
【0016】また、鋼板は静止状態でも走行状態でもよ
い。カメラの走査周期とハーフミラーの回転速度との同
期時間を選択することにより必要とする測定密度が得ら
れ、例えば、2m/秒の走行鋼板を1/60秒で同期す
ると2/60mの測定密度となる。The steel sheet may be in a stationary state or a running state. The required measurement density can be obtained by selecting the synchronization time between the scanning cycle of the camera and the rotation speed of the half mirror. For example, when a traveling steel plate of 2 m / sec is synchronized in 1/60 sec, the measurement density of 2/60 m is obtained. Becomes
【0017】[0017]
【実施例】次に実施例を挙げて本発明をさらに具体的に
説明するが、これは単に例示であって、本発明を制限す
るものではない。The present invention will be described in more detail with reference to the following examples, which are merely illustrative and do not limit the present invention.
【0018】(ダミー鋼板の平坦度の測定)鋼板の幅が
500mmで、5mm毎に10段階に厚みを変化させたダミ
ー鋼板を測定した。レーザビームスキャナの構成は図3
及び図4に示すとおりとした。レーザ光源としては出力
50mW、波長488nmの空冷型アルゴンレーザを用い
た。ハーフミラーをモータ軸の先端に45度の角度で回
転可能に取り付けた。照射角度45度、カメラの走査周
期1/60秒、ハーフミラーの回転速度は60r.p.s とし
た。(Measurement of Flatness of Dummy Steel Plate) A dummy steel plate having a width of 500 mm and a thickness changed in 10 steps every 5 mm was measured. Fig. 3 shows the configuration of the laser beam scanner.
And as shown in FIG. An air-cooled argon laser having an output of 50 mW and a wavelength of 488 nm was used as a laser light source. A half mirror was attached to the tip of the motor shaft so as to be rotatable at a 45 degree angle. The irradiation angle was 45 degrees, the scanning cycle of the camera was 1/60 sec, and the rotation speed of the half mirror was 60 r.ps.
【0019】また、アルゴンレーザの波長のみを透過す
る干渉フィルターをとりつけた二次元CCDカメラを鋼
板の横に直角の視野がとれるようにし、撮影角45度で
設置した。また、カメラの走査線の方向と鋼板の走行方
向を一致させた。従って、uの変位方向はカメラの走査
方向と一致することとなる。なお、二次元CCDカメラ
の出力は、画像処理装置にとり込み、前記画像処理方法
と同様に行い、実効変位量d(平坦度)を求めた。結果
を表1に示した。なお、d0 =10mm、lはカメラから
測定点までの距離、uは変位量、u0 は基準のスポット
間隔である。A two-dimensional CCD camera equipped with an interference filter that transmits only the wavelength of the argon laser was set at a photographing angle of 45 degrees so that a field of view could be taken at right angles beside the steel plate. In addition, the direction of the scanning line of the camera and the traveling direction of the steel plate were matched. Therefore, the displacement direction of u coincides with the scanning direction of the camera. The output of the two-dimensional CCD camera was taken into an image processing apparatus and performed in the same manner as in the above-mentioned image processing method, and the effective displacement d (flatness) was obtained. The results are shown in Table 1. Note that d 0 = 10 mm, l is the distance from the camera to the measurement point, u is the displacement, and u 0 is the reference spot interval.
【0020】[0020]
【表1】 [Table 1]
【0021】表1より明らかなように、本発明方法によ
ればダミー鋼板の平坦度の測定において±2mm以内の精
度を示した。As apparent from Table 1, according to the method of the present invention, the accuracy of the flatness of the dummy steel plate was measured within ± 2 mm.
【0022】(熱延鋼板の平坦度の測定)鋼板として鋼
板表面温度1100℃、鋼板移動速度1.5m/sec、カ
メラから鋼板のセンタラインまでの距離2.5mとした
以外はダミー鋼板の平坦度の測定方法と同様の方法で行
った。得られた結果は、鋼板のセンタライン上を接触式
変位計で測定した結果と比較した。結果を図8に示し
た。測定精度は、±3mm以内の高い精度を示した。(Measurement of flatness of hot-rolled steel sheet) The flatness of the dummy steel sheet was changed except that the steel sheet surface temperature was 1100 ° C., the moving speed of the steel sheet was 1.5 m / sec, and the distance from the camera to the center line of the steel sheet was 2.5 m. The measurement was carried out in the same manner as the degree measurement method. The obtained results were compared with the results obtained by measuring the center line of a steel sheet with a contact displacement meter. The results are shown in FIG. The measurement accuracy showed a high accuracy within ± 3 mm.
【0023】[0023]
【発明の効果】本発明の方法によれば、走行する鋼板の
平坦度を簡易な装置構成で精度良く測定できる。また、
本方法は二次元CCDカメラを斜め上から配置し、基準
長さで補正するため距離(鋼板幅)の影響を受けずに画
面上の寸法を鋼板上の寸法に換算出来る。また、本方法
では鋼板の幅が変化しても自動的に端部を検出し、幅方
向の測定位置を決定できるため、例えば幅方向に5点等
分割した点の平坦度を検出することもできる。According to the method of the present invention, the flatness of a running steel plate can be accurately measured with a simple apparatus configuration. Also,
In this method, a two-dimensional CCD camera is arranged obliquely from above and corrected by the reference length, so that dimensions on the screen can be converted to dimensions on the steel sheet without being affected by the distance (steel width). In addition, in the present method, even if the width of the steel plate changes, the end portion is automatically detected, and the measurement position in the width direction can be determined. it can.
【図1】本発明の測定方法の主要部であるダブルビーム
の形成方法を示す図である。FIG. 1 is a diagram showing a method of forming a double beam, which is a main part of a measurement method of the present invention.
【図2】本発明の走行する鋼板上のビームスポットの軌
跡と二次元CCDカメラの位置関係を示す図である。FIG. 2 is a diagram showing a locus of a beam spot on a running steel plate according to the present invention and a positional relationship of a two-dimensional CCD camera.
【図3】本発明のダブルスキャナーと走行する鋼板の位
置関係を示す図である。FIG. 3 is a diagram showing a positional relationship between the double scanner of the present invention and a running steel plate.
【図4】本発明のダブルビームを形成する光学スキャナ
ーの平面図を示す図である。FIG. 4 is a plan view showing an optical scanner for forming a double beam according to the present invention.
【図5】本発明の鋼板上のレーザスポットの相互位置関
係を示す図である。FIG. 5 is a diagram showing a mutual positional relationship between laser spots on a steel plate according to the present invention.
【図6】本発明の二次元CCDカメラによるレーザスポ
ットの軌跡観測画面例を示す図である。FIG. 6 is a diagram illustrating an example of a locus observation screen of a laser spot by the two-dimensional CCD camera of the present invention.
【図7】本発明の二次元CCDカメラによる画像処理装
置での信号処理フローを示す図である。FIG. 7 is a diagram showing a signal processing flow in an image processing apparatus using a two-dimensional CCD camera of the present invention.
【図8】本発明の測定方法と接触式変位計による測定方
法の相関図である。FIG. 8 is a correlation diagram between the measurement method of the present invention and a measurement method using a contact displacement meter.
1 モーター 2 ハーフミラー 3 レーザ光源 5 鋼板 8 二次元CCDカメラ Reference Signs List 1 motor 2 half mirror 3 laser light source 5 steel plate 8 two-dimensional CCD camera
Claims (3)
付けられたハーフミラーにレーザ光を入射させ、その反
射光を走行する鋼板上に斜めに照射して二本のレーザス
ポットの軌跡を形成させ、次いで上記鋼板の走行方向に
対し直角かつ上方に位置する二次元CCDカメラで上記
鋼板上の二点のレーザスポットを検出し、スポット軌跡
の垂直方向の直線からの変位を測定することを特徴とす
る鋼板の平坦度測定方法。1. A laser beam is made incident on a half mirror mounted at a 45-degree angle to the tip of a rotating shaft of a motor, and the reflected light is radiated obliquely on a traveling steel plate to form a trajectory of two laser spots. Then, two laser spots on the steel plate are detected with a two-dimensional CCD camera positioned perpendicularly and upward to the running direction of the steel plate, and the displacement of the spot trajectory from a vertical straight line is measured. The method for measuring flatness of a steel sheet.
元CCDカメラの走査周期を一致させ、前記二点のレー
ザスポットを検出する請求項1記載の鋼板の平坦度測定
方法。2. The method for measuring flatness of a steel sheet according to claim 1, wherein the rotation cycle of the half mirror and the scanning cycle of the two-dimensional CCD camera are made coincident to detect the two laser spots.
カメラの検出波長を紫外線領域とし、赤熱する鋼板の熱
放射光を除去してレーザスポットを検出する請求項1又
は2記載の鋼板の平坦度測定方法。3. The wavelength of the laser beam and the two-dimensional CCD.
3. The method for measuring flatness of a steel sheet according to claim 1, wherein a detection wavelength of the camera is in an ultraviolet region, and a laser spot is detected by removing thermal radiation light of the steel sheet that glows red.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8293324A JPH10122842A (en) | 1996-10-15 | 1996-10-15 | Method for measuring flatness of steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8293324A JPH10122842A (en) | 1996-10-15 | 1996-10-15 | Method for measuring flatness of steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10122842A true JPH10122842A (en) | 1998-05-15 |
Family
ID=17793362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8293324A Pending JPH10122842A (en) | 1996-10-15 | 1996-10-15 | Method for measuring flatness of steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10122842A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011220683A (en) * | 2010-04-02 | 2011-11-04 | Bridgestone Corp | Method for producing lengthy goods and visual inspection device |
CN103983218A (en) * | 2014-03-26 | 2014-08-13 | 东莞市天勤仪器有限公司 | Multi-laser flatness measuring instrument |
JP2016140898A (en) * | 2015-02-04 | 2016-08-08 | Jfeスチール株式会社 | Flat shape measuring method of steel strip, and measuring equipment |
CN107702664A (en) * | 2017-10-24 | 2018-02-16 | 北京信息科技大学 | A kind of reflective system for detecting verticality and method based on semiconductor laser alignment |
CN107826350A (en) * | 2017-10-20 | 2018-03-23 | 国网山东省电力公司桓台县供电公司 | Examine leveling device and the gentle sorting technique of inspection |
CN107983782A (en) * | 2017-11-24 | 2018-05-04 | 山西太钢不锈钢股份有限公司 | The online quick method for checking lower surface quality on frame-type roller-way |
KR20210026034A (en) * | 2019-08-29 | 2021-03-10 | 김남우 | System for inspecting appearance of rolled plate and method of inspecting appearance of rolled plate using the same |
CN113198854A (en) * | 2021-04-23 | 2021-08-03 | 北京科技大学 | Machine vision-based hot-rolled strip steel optimized shearing method |
CN114522983A (en) * | 2022-02-05 | 2022-05-24 | 上海研视信息科技有限公司 | Belt head guiding and detecting system based on machine vision |
-
1996
- 1996-10-15 JP JP8293324A patent/JPH10122842A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011220683A (en) * | 2010-04-02 | 2011-11-04 | Bridgestone Corp | Method for producing lengthy goods and visual inspection device |
CN103983218A (en) * | 2014-03-26 | 2014-08-13 | 东莞市天勤仪器有限公司 | Multi-laser flatness measuring instrument |
JP2016140898A (en) * | 2015-02-04 | 2016-08-08 | Jfeスチール株式会社 | Flat shape measuring method of steel strip, and measuring equipment |
CN107826350A (en) * | 2017-10-20 | 2018-03-23 | 国网山东省电力公司桓台县供电公司 | Examine leveling device and the gentle sorting technique of inspection |
CN107702664A (en) * | 2017-10-24 | 2018-02-16 | 北京信息科技大学 | A kind of reflective system for detecting verticality and method based on semiconductor laser alignment |
CN107983782A (en) * | 2017-11-24 | 2018-05-04 | 山西太钢不锈钢股份有限公司 | The online quick method for checking lower surface quality on frame-type roller-way |
KR20210026034A (en) * | 2019-08-29 | 2021-03-10 | 김남우 | System for inspecting appearance of rolled plate and method of inspecting appearance of rolled plate using the same |
CN113198854A (en) * | 2021-04-23 | 2021-08-03 | 北京科技大学 | Machine vision-based hot-rolled strip steel optimized shearing method |
CN114522983A (en) * | 2022-02-05 | 2022-05-24 | 上海研视信息科技有限公司 | Belt head guiding and detecting system based on machine vision |
CN114522983B (en) * | 2022-02-05 | 2023-07-21 | 上海研视信息科技有限公司 | Belt head guide detection system based on machine vision |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4787934B2 (en) | Alignment method and alignment apparatus for superimposing X-ray images and video images | |
KR20130095211A (en) | Device for noncontact determination of edge profile at a thin disk-shaped object | |
JP2006189389A (en) | Optical thickness measuring method and device | |
JPH10122842A (en) | Method for measuring flatness of steel plate | |
JPS6249562B2 (en) | ||
JP2501498B2 (en) | Camber measuring device for rolled steel sheets | |
JP2005134362A (en) | Inspection method and inspection device for surface irregularity | |
JP2793461B2 (en) | Surface temperature measuring device for high-temperature moving materials | |
JP3322606B2 (en) | Plate width and meandering detection method and device | |
JPH08323477A (en) | Device for detecting seam center in manufacturing welded tube and manufacture of welded tube | |
KR102062641B1 (en) | Apparatus for measuring width of rolled steel plate | |
JP2828145B2 (en) | Optical section microscope apparatus and method for aligning optical means thereof | |
JP2597711B2 (en) | 3D position measuring device | |
JP2004286533A (en) | Height measuring method and its apparatus | |
JPS62502421A (en) | Equipment for orienting, inspecting and/or measuring two-dimensional objects | |
JP2006189390A (en) | Optical displacement measuring method and device | |
JPH06147845A (en) | Edge detector and depth measuring equipment for tapered hole | |
JP2011117793A (en) | Method and device for measuring surface properties | |
JPH076776B2 (en) | Hot coil winding shape detector | |
JPS6166155A (en) | Optical surface flaw-detector of continuously cast piece | |
JPS58204348A (en) | Method for detecting flaw on surface of metallic object | |
JP4031124B2 (en) | Optical hole shape measuring method and measuring apparatus | |
JPH08166209A (en) | Polygon mirror evaluating device | |
JPH0821711A (en) | Waviness detector for surface of sheet board | |
JPH11281473A (en) | M2 measuring device |