JPH10128510A - Method for continuously casting steel - Google Patents
Method for continuously casting steelInfo
- Publication number
- JPH10128510A JPH10128510A JP28080696A JP28080696A JPH10128510A JP H10128510 A JPH10128510 A JP H10128510A JP 28080696 A JP28080696 A JP 28080696A JP 28080696 A JP28080696 A JP 28080696A JP H10128510 A JPH10128510 A JP H10128510A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- mold
- cooling zone
- secondary cooling
- cast billet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は高合金鋼及びステン
レス鋼等の継目無鋼管素材として最適の丸ビレットを得
るための鋼の連続鋳造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel for obtaining an optimum round billet as a material for a seamless steel pipe such as high alloy steel and stainless steel.
【0002】[0002]
【従来の技術】継目無鋼管の製造方法の一つとして丸断
面の連続鋳造鋳片をマンネスマン・マンドレルミル方式
やマンネスマン・プラグミル方式等の穿孔機を使って製
造する方法が行われている。これらのマンネスマン方式
による継目無鋼管の製造方法は、加熱炉で所定の圧延温
度に加熱した素材(丸ビレット)を穿孔機で穿孔圧延し
た後、その中空素管をマンドレルミルやプラグミル等の
延伸圧延機で拡管して肉厚を減じた後、そのストレッチ
レデューサやサイザ等の絞り圧延機で外径を絞り製品鋼
管に仕上げるものである。2. Description of the Related Art As one method of manufacturing a seamless steel pipe, a method of manufacturing a continuously cast slab having a round cross section using a drilling machine such as a Mannesmann mandrel mill system or a Mannesmann plug mill system has been performed. The method of manufacturing a seamless steel pipe by the Mannesmann method is that a material (round billet) heated to a predetermined rolling temperature in a heating furnace is pierced and rolled by a piercing machine, and then the hollow shell is drawn and rolled by a mandrel mill or a plug mill. After reducing the wall thickness by a pipe mill, the outer diameter is reduced by a rolling mill such as a stretch reducer or a sizer to finish the product steel pipe.
【0003】継目無鋼管は使用する素材の内質部が管の
内表面となるため、素材の外表面のみならず内質部での
健全性が要求されている。[0003] In a seamless steel pipe, since the inner part of the material used is the inner surface of the pipe, soundness is required not only on the outer surface of the material but also on the inner part.
【0004】ところで、連続鋳造された鋳片は、鋳造時
の最終凝固位置に相当する鋳片の横断面(引抜き方向に
対して直角方向の断面)中心部に、軸方向に不連続の内
部空隙が存在する。この内部空隙が穿孔圧延時に十分に
圧着されないで、管内面に露出して管内面疵となる場合
がある。[0004] By the way, a continuously cast slab has an axially discontinuous internal void at the center of the cross section (cross section perpendicular to the drawing direction) of the slab corresponding to the final solidification position during casting. Exists. This internal void may not be sufficiently pressed during piercing and rolling, and may be exposed on the inner surface of the pipe to become a flaw on the inner surface of the pipe.
【0005】この内部空隙に起因する管内面疵の発生を
防止する方法として特開平8−52555号公報(以下
引用例1という)が開示されている。この方法は角また
は丸ビレットの連続鋳造方法において、二次冷却帯で鋳
片の周方向の冷却強度を変化させることで鋳片の最終凝
固位置を鋳片の中心から外側にずらすものである。Japanese Patent Laid-Open Publication No. 8-52555 (hereinafter referred to as Reference 1) discloses a method for preventing the occurrence of flaws on the inner surface of a pipe due to the internal space. This method shifts the final solidification position of the slab outward from the center of the slab by changing the cooling strength in the circumferential direction of the slab in the secondary cooling zone in the continuous casting method of the square or round billet.
【0006】[0006]
【発明が解決しようとする課題】引用例1に開示された
連続鋳造鋳片の製造方法は最終凝固位置を鋳片中心より
鋳片径の最大3%を限界としてずらすことにより内部空
隙に起因する管内面疵の発生を防止している。このよう
に引用例1で最大3%としているのは、それ以上に偏心
率を上げようとすると、上下の冷却速度差を大きくする
必要があり、その結果鋳片の曲がりが発生するからであ
る。The method for producing a continuous cast slab disclosed in Reference 1 is caused by internal voids by shifting the final solidification position from the center of the slab by a maximum of 3% of the slab diameter. The occurrence of flaws on the inner surface of the pipe is prevented. The reason why the maximum eccentricity is set to 3% in the cited reference 1 is that if the eccentricity is further increased, the difference between the upper and lower cooling rates must be increased, and as a result, the slab is bent. .
【0007】本発明は従来の課題を解決し、鋳造した後
の鋳片の曲がり発生が無く、穿孔圧延後に管内面疵が発
生しない鋼の連続鋳造方法を提供することを目的とす
る。SUMMARY OF THE INVENTION It is an object of the present invention to provide a continuous casting method for steel which solves the conventional problems and does not cause bending of the cast slab after casting and does not cause any flaws in the pipe inner surface after piercing and rolling.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
めの鋼の連続鋳造方法は、丸型状鋳型で鋳片を引き抜き
溶鋼を連続鋳造する方法において、鋳型直下から鋳片が
完全凝固に至る間の二次冷却帯で、鋳片周方向の冷却水
の水量密度を上半周より下半周を大きくして冷却すると
ともに、二次冷却帯の中間部以降で電磁攪拌を行い、鋳
片の最終凝固位置を鋳片中心より偏心させることを特徴
とするものである。In order to solve the above-mentioned problems, a continuous casting method of steel is a method of drawing a slab with a round mold and continuously casting molten steel. In the secondary cooling zone during the cooling, the water density of the cooling water in the slab circumferential direction is increased by increasing the lower half circumference from the upper half circumference and cooled, and electromagnetic stirring is performed from the middle part of the secondary cooling zone and thereafter, The final solidification position is eccentric from the slab center.
【0009】一般に、連続鋳造では、鋳型を出た鋳片は
スプレー水または放冷により冷却され、鋳片表面から凝
固潜熱に相当する熱を奪われて溶鋼が凝固し、凝固シェ
ルを発達させながら軸心方向へ順次凝固してゆく。この
際、鋳片の周方向の冷却が均等であれば、凝固シェルの
発達速度は、鋳片の全周にわたりほぼ同等であり、鋳片
横断面のほぼ中心が最終凝固位置となる。Generally, in continuous casting, the slab that has left the mold is cooled by spray water or cooling, and the heat corresponding to the latent heat of solidification is removed from the surface of the slab to solidify the molten steel and develop a solidified shell. Solidifies sequentially in the axial direction. At this time, if the cooling of the slab is uniform in the circumferential direction, the speed of development of the solidified shell is almost the same over the entire circumference of the slab, and the center of the slab cross section is the final solidification position.
【0010】また、鋳片の内部空隙は溶鋼流動性が低下
した最終凝固段階において発生するもので、鋳片周方向
の冷却が均等であれば鋳片のほぼ軸心部(引抜き方向に
対し直角方向の横断面の中心部)に発生する。The internal voids of the slab are generated in the final solidification stage where the fluidity of the molten steel is reduced. If the cooling in the circumferential direction of the slab is uniform, the inner space of the slab is almost at the axial center (at right angles to the drawing direction). At the center of the cross section in the direction).
【0011】本願発明は、連続鋳造鋳片の最終凝固位置
に発生する内部空隙を鋳片横断面の軸心部からずらし、
継目無鋼管の内質を向上させ、かつ鋳造した後の曲がり
を防止することを目的に、後述の2つの手段を組み合わ
せることで大きな効果を引き出したものである。According to the present invention, an internal void generated at a final solidification position of a continuous cast slab is shifted from an axial center of a slab cross section,
For the purpose of improving the inner quality of the seamless steel pipe and preventing bending after casting, a great effect is obtained by combining the following two means.
【0012】二次冷却帯における鋳片周方向の冷却水量
の分布を変えることにより、周方向の冷却強度を変化さ
せる。これにより、冷却強度の大きな半周部では残りの
冷却強度の小さな半周部より凝固シェルの成長が優先的
に発達する。By changing the distribution of the cooling water amount in the circumferential direction of the slab in the secondary cooling zone, the cooling intensity in the circumferential direction is changed. As a result, the growth of the solidified shell develops preferentially in the semi-peripheral part having the higher cooling strength than in the remaining semi-peripheral part having the lower cooling strength.
【0013】そしてさらに、二次冷却帯の中間部以降に
電磁攪拌を行なうと、その場所における凝固シェル先端
が溶鋼の攪拌により洗浄されて凝固シェル先端の結晶が
遊離し、鋳片の上面側では結晶が下方に落下・離脱し、
その結晶が鋳片の下面側の凝固シェル上に堆積される。
その結果、鋳片の上面側の凝固シェルの成長が遅れ鋳片
の下面側の凝固シェルの成長が促進され、鋳片の上面側
より下面側の凝固シェルの厚みが大きくなる。Further, when electromagnetic stirring is performed after the middle part of the secondary cooling zone, the tip of the solidified shell at that location is washed by stirring the molten steel, and the crystal at the tip of the solidified shell is liberated, and on the upper surface side of the slab, The crystals fall and fall down,
The crystals are deposited on the solidified shell on the underside of the slab.
As a result, the growth of the solidified shell on the upper surface side of the slab is delayed, and the growth of the solidified shell on the lower surface side of the slab is promoted, so that the thickness of the solidified shell on the lower surface side of the slab becomes larger than the upper surface side.
【0014】なお、このように二次冷却帯の中間部以降
に電磁攪拌を行うのは、二次冷却帯の中間部以前で電磁
攪拌を行うと、その部分の溶鋼の過熱度が高いために凝
固シェル先端から遊離した結晶が再溶解して、鋳片下面
側の凝固シェル上に堆積する量が少なくなり、電磁攪拌
の効果が十分に期待できないためである。The reason why the electromagnetic stirring is performed after the middle part of the secondary cooling zone is that if the electromagnetic stirring is performed before the middle part of the secondary cooling zone, the superheat degree of the molten steel in that part is high. This is because the amount of the crystals released from the solidified shell tip redissolved and deposited on the solidified shell on the lower side of the slab is reduced, and the effect of electromagnetic stirring cannot be sufficiently expected.
【0015】このように二次冷却帯での差冷却に加え、
二次冷却帯の中間部以降に電磁攪拌を行なうことにより
結晶の移動・堆積現象を相乗的に作用させることで上下
での鋳片の凝固速度が大きく異なり、最終凝固位置が軸
心から偏心し、その結果内部空隙も鋳片中心から外れた
位置に形成されることになる。Thus, in addition to the differential cooling in the secondary cooling zone,
The solidification speed of the slab is significantly different between the upper and lower parts by causing the crystal movement and accumulation phenomenon to act synergistically by performing electromagnetic stirring after the middle part of the secondary cooling zone, and the final solidification position is eccentric from the axis. As a result, internal voids are formed at positions off the center of the slab.
【0016】また、二次冷却帯内の電磁攪拌力の印加に
より最終凝固部には十分な等軸晶帯が形成され、内部空
隙を小径化、かつ分散させることもできる。Further, by applying an electromagnetic stirring force in the secondary cooling zone, a sufficient equiaxed zone is formed in the final solidified portion, and the internal voids can be reduced in size and dispersed.
【0017】[0017]
【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。Embodiments of the present invention will be described with reference to the drawings.
【0018】図1は、本発明の実施の形態の丸鋳片製造
用の湾曲型連続鋳造機の概念図である。FIG. 1 is a conceptual diagram of a curved continuous casting machine for producing a round slab according to an embodiment of the present invention.
【0019】図面の符号で、1は取鍋、2はタンディシ
ュ、3は溶鋼、4は鋳型、5は鋳型の電磁攪拌装置、6
は二次冷却帯、7は凝固シェル、8は鋳片、9は二次冷
却帯の電磁攪拌装置、10はスプレー、11はピンチロ
ールである。In the drawings, reference numeral 1 denotes a ladle, 2 denotes a tundish, 3 denotes molten steel, 4 denotes a mold, 5 denotes an electromagnetic stirring device for the mold, 6
Is a secondary cooling zone, 7 is a solidified shell, 8 is a slab, 9 is an electromagnetic stirring device for the secondary cooling zone, 10 is a spray, and 11 is a pinch roll.
【0020】図1に示す丸鋳片製造用の湾曲型連続鋳造
機により、鋳造鋼種として内部空隙が発生しやすい13
%Cr鋼で、直径210mmの丸ビレットを連続鋳造し
た。ここで取鍋1からタンディッシュ2を経由して鋳型
4に注入された溶鋼3は鋳型4で冷却され凝固シェル7
を生成しながら、鋳型内側の溶鋼3は鋳型の電磁攪拌装
置5により溶鋼3が攪拌され、等軸晶源となる結晶核を
分離させて下方(二次冷却帯側)に沈殿する。With the curved continuous caster for producing round slabs shown in FIG.
A round billet having a diameter of 210 mm was continuously cast from a% Cr steel. Here, the molten steel 3 injected into the mold 4 from the ladle 1 via the tundish 2 is cooled by the mold 4 and solidified shell 7.
The molten steel 3 inside the mold is stirred by the electromagnetic stirring device 5 of the mold to separate the crystal nuclei serving as the equiaxed crystal source and precipitate downward (to the side of the secondary cooling zone).
【0021】中心部が未凝固の溶鋼3は鋳型4を出た
後、鋳片8は二次冷却帯6で鋳型直下から冷却され凝固
シェル7が次第に成長しながら凝固が進み、二次冷却帯
中間部近傍で電磁攪拌力を掛けられてビンチロール11
により丸鋳片として引き出されつつ、凝固が完了する。After the molten steel 3 whose center is unsolidified exits the mold 4, the slab 8 is cooled from immediately below the mold in the secondary cooling zone 6 and solidification proceeds while the solidified shell 7 gradually grows, and the solidification proceeds. A magnetic stir force is applied near the intermediate portion to cause the
Thus, the solidification is completed while being drawn out as a round slab.
【0022】二次冷却帯6は鋳型直下より20mの位置
まで設けた。この二次冷却帯6におけるスプレー10は
スケア型水スプレーとし、図2に示すように鋳片8を取
り囲んで円周方向に4個のノズル、鋳造方向に200m
m間隔でノズルを配置した。各スプレー10は10個の
スプレーを配設した。各スプレー10は、上面側と下面
側でそれぞれスプレー水量を変更できるようにした。The secondary cooling zone 6 was provided up to a position 20 m below the mold. The spray 10 in the secondary cooling zone 6 is a scare type water spray, which surrounds the slab 8 as shown in FIG. 2 and has four nozzles in the circumferential direction and 200 m in the casting direction.
Nozzles were arranged at m intervals. Each spray 10 provided 10 sprays. Each spray 10 was configured such that the amount of spray water could be changed on the upper surface side and the lower surface side.
【0023】二次冷却帯6では鋳型直下〜2mまでは均
等冷却後、2m超え〜20m位置までの範囲では、鋳片
の周方向の上半周(連続鋳造機の反基準側、又は天側)
と下半周(連続鋳造機の基準側、又は地側)の水量密度
を違えて冷却した。In the secondary cooling zone 6, after being uniformly cooled from below the mold to 2m, the upper half of the slab in the circumferential direction of the slab (from the non-reference side or the top side of the continuous casting machine) from 2m to 20m.
And the lower half circumference (reference side or ground side of the continuous casting machine) was cooled with different water density.
【0024】実施例においては、二次冷却帯6の鋳型直
下から2m位置までの範囲は円周方向の4個のスプレー
水量を同一にして鋳片8を全周均等冷却した。In the embodiment, the slab 8 was uniformly cooled over the entire circumference of the secondary cooling zone 6 in a range from immediately below the mold to a position 2 m from the secondary cooling zone 6 with the same amount of four spray waters in the circumferential direction.
【0025】その理由は鋳型直下の凝固シェル7の薄い
部分で不均一に冷却すると、鋳片周方向に引張応力が生
じ、凝固シェルの破断を招く恐れがあるからである。The reason is that if the solidified shell 7 is cooled unevenly in the thin portion immediately below the mold, tensile stress is generated in the circumferential direction of the slab, which may cause the solidified shell to break.
【0026】この範囲では、水量密度は50l/m2・
minで冷却した。このように鋳型直下から2mまでの
範囲を比較的強く鋳片8の全周均等冷却することによ
り、それ以降の強弱不均等冷却の際に凝固シェルの破断
を生じないように、凝固シェルの強度を確保した。な
お、前記鋳型直下の均等冷却長さは、鋳片の断面の大き
さに応じて多少変化させることができる。In this range, the water density is 50 l / m 2 ·
Cooled in min. As described above, by uniformly cooling the entire circumference of the slab 8 from the area immediately below the mold to 2 m relatively strongly, the strength of the solidified shell is controlled so that the solidified shell does not break at the time of subsequent uneven cooling. Was secured. The uniform cooling length immediately below the mold can be changed slightly depending on the cross-sectional size of the slab.
【0027】鋳型直下2m超え〜20m位置までの範囲
では鋳片周方向の上半周(連続鋳造機の反基準側、又は
天側)と下半周(連続鋳造機の基準側、又は地側)の水
量密度を違えて不均一冷却を行った。この場合鋳片周方
向の上半周の水量密度は10l/m2・min、鋳片周
方向の下半周の水量密度は50l/m2・min(実施
例1)、75l/m2・min(実施例2)、100l
/m2・min(実施例3)の3水準で行った。In the range from more than 2 m immediately below the mold to a position of 20 m below, the upper half circumference (the opposite side of the continuous casting machine or the top side) and the lower half circumference (the reference side or the ground side of the continuous casting machine) in the circumferential direction of the slab. Uneven cooling was performed with different water density. In this case, the water density of the upper half of the slab circumferential direction is 10 l / m 2 · min, the water density of the lower half of the slab circumferential direction is 50 l / m 2 · min (Example 1), and 75 l / m 2 · min ( Example 2), 100 l
/ M 2 · min (Example 3).
【0028】連鋳機で製造された丸ビレットを加熱炉で
1200℃で加熱した後、穿孔機により穿孔圧延し、外
径180mm、肉厚8mmの中空素管14を製造した。
その製管状態を図3に示す。図面において12は上下に
傾斜配置された2個対をなす鼓型ロールで、この上下ロ
ールとその上下ロール間にプラグ13とにより、スパイ
ラル状に回転前進する中実丸ビレット14を穿孔圧延し
て中空素管15に仕上げる。この時、中実丸ビレット1
4の中心から外方へずれて存在する内部空隙16は中空
素管15の内表面に露出することなく、管の肉厚内にあ
って圧延時の圧下により内部空隙16は圧着される。The round billet produced by the continuous casting machine was heated at 1200 ° C. in a heating furnace and then pierced and rolled by a piercing machine to produce a hollow shell 14 having an outer diameter of 180 mm and a wall thickness of 8 mm.
FIG. 3 shows the pipe production state. In the drawing, reference numeral 12 denotes a pair of drum-shaped rolls which are vertically inclined and are pierced and rolled by the upper and lower rolls and a plug 13 between the upper and lower rolls to rotate and advance a solid round billet 14 in a spiral shape. The hollow shell 15 is finished. At this time, solid round billet 1
The internal space 16 that is shifted outward from the center of 4 is not exposed on the inner surface of the hollow shell 15 and is within the thickness of the tube, and the internal space 16 is pressed by rolling during rolling.
【0029】得られた中空素管については、超音波探傷
装置を用い管肉厚中間部の割れ及び管内面疵を調べた。
その結果をビレットごとの疵発生総個数として図4に示
す。With respect to the obtained hollow shell, cracks in the middle part of the pipe wall and flaws on the inner surface of the pipe were examined using an ultrasonic flaw detector.
The result is shown in FIG. 4 as the total number of flaws generated for each billet.
【0030】[0030]
(実施例1)鋳型直下2m超え〜20m位置までの範囲
では鋳片上半周の水量密度は10l/m2・min、鋳
片下半周の水量密度を50l/m2・minの不均一冷
却とした実施例1の鋳片横断面でみた内部空隙の発生位
置の中心からのずれ(内部空隙の偏心率という)を図5
に示す。実施例1では、内部空隙の発生位置は鋳片の中
心から上半周側に12.6mm外れた位置にある。内部
空隙の偏心率は6%であった。(Example 1) In the range from more than 2 m immediately below the mold to the position of 20 m, the water density in the upper half of the slab was 10 l / m 2 · min, and the water density in the lower half of the slab was 50 l / m 2 · min. FIG. 5 shows the deviation (referred to as the eccentricity of the internal void) from the center of the position where the internal void is generated as viewed from the cross section of the slab of Example 1.
Shown in In Example 1, the position at which the internal voids were generated was 12.6 mm away from the center of the slab toward the upper half circumference. The eccentricity of the internal void was 6%.
【0031】(実施例2)鋳型直下2m超え〜20m位
置までの範囲では鋳片上半周の水量密度は10l/m2
・min、鋳片下半周の水量密度を75l/m2・mi
nの不均一冷却とした実施例1の鋳片横断面でみた内部
空隙の発生位置の中心からのずれ(内部空隙の偏心率と
いう)を図3に示す。実施例2では、内部空隙の発生位
置は鋳片の中心から上半周側に14.7mm外れた位置
にある。内部空隙の偏心率は7%であった。(Example 2) The water density of the upper half of the slab is 10 l / m 2 in the range from more than 2 m immediately below the mold to the position of 20 m.
Min, the water density of the lower half of the slab is 75 l / m 2
FIG. 3 shows the deviation (referred to as eccentricity of the internal gap) from the center of the position where the internal gap is generated as viewed from the cross section of the slab of Example 1 in which n was unevenly cooled. In Example 2, the position at which the internal void was generated was a position 14.7 mm away from the center of the slab toward the upper half circumference. The eccentricity of the internal void was 7%.
【0032】(実施例3)鋳型直下2m超え〜20m位
置までの範囲では鋳片上半周の水量密度は10l/m2
・min、鋳片下半周の水量密度を100l/m2・m
inの不均一冷却とした実施例3の鋳片横断面でみた内
部空隙の発生位置の中心からのずれ(内部空隙の偏心率
という)を図3に示す。実施例3では、内部空隙の発生
位置は鋳片の中心から上半周側に16.8mm外れた位
置にある。内部空隙の偏心率は8%であった。(Example 3) In a range from more than 2 m immediately below the mold to a position of 20 m below, the water density of the upper half circumference of the slab is 10 l / m 2.
· Min, the water density of the lower half of the slab is 100 l / m 2 · m
FIG. 3 shows the deviation (referred to as eccentricity of the internal void) from the center of the position where the internal void was generated as viewed from the cross section of the slab of Example 3 in which the cooling was performed non-uniformly. In the third embodiment, the position at which the internal void is generated is a position 16.8 mm away from the center of the slab toward the upper half circumference. The eccentricity of the internal void was 8%.
【0033】(比較例1)比較例1は従来技術で、二次
冷却帯のスプレー水量密度を均一にして鋳片を均等冷却
した。即ち、鋳型内電磁攪拌も二次冷却内電磁攪拌も印
加しないで、鋳片を製造した。この場合、鋳型直下より
2m位置までの冷却は本発明の実施例と同一のスプレー
条件で均等冷却し、鋳型直下の均等冷却後の2m超えか
ら20mの位置までの範囲でも、鋳片周方向上半周と下
半周の水量密度に差を付けることなく、水量密度50l
/m2・minの条件で鋳片を均等冷却を施した。内部
空隙の偏心率は0%であった。Comparative Example 1 Comparative Example 1 is a conventional technique, in which the slabs were uniformly cooled by making the spray water amount density in the secondary cooling zone uniform. That is, a cast slab was produced without applying any electromagnetic stirring in the mold or electromagnetic stirring in the secondary cooling. In this case, the cooling from the position immediately below the mold to the position 2 m is uniformly cooled under the same spraying conditions as in the embodiment of the present invention. The water density is 50 l without any difference in the water density between the half circumference and the lower half.
/ M 2 · min, the slab was uniformly cooled. The eccentricity of the internal void was 0%.
【0034】(比較例2)比較例2は引用例1の技術
で、二次冷却帯に電磁攪拌を行なわないで鋳片を製造し
た。この場合、鋳型直下より2m位置までの冷却は本発
明の実施例と同一のスプレー条件で均等冷却し、鋳型直
下の均等冷却後の2m超えから20mの位置までの範囲
で、鋳片周方向上半周と下半周の水量密度に差を付け、
鋳片周方向上半周の水量密度は水量密度30l/m2・
minの条件で、鋳片周方向の下半周の水量密度は50
l/m2・minの条件で鋳片を差冷却を施した。Comparative Example 2 In Comparative Example 2, a slab was produced using the technique of Reference Example 1 without performing electromagnetic stirring in the secondary cooling zone. In this case, the cooling from the position immediately below the mold to the position 2 m is uniformly cooled under the same spraying conditions as in the embodiment of the present invention. Differentiate the water density between the half lap and the lower lap,
The water density in the upper half of the slab circumferential direction is 30 l / m 2
min, the water density in the lower half of the slab circumferential direction is 50
The cast slab was subjected to differential cooling under the condition of 1 / m 2 · min.
【0035】図4に示すように本願発明の実施例と比較
例2の内部空隙16は同等の大きさであるが、その発生
位置は比較例1では鋳片中心であるに対し、比較例2は
鋳片の上半周側4.2mm外れた位置にある。内部空隙
の偏心率は2.1%であった。As shown in FIG. 4, the internal voids 16 of the embodiment of the present invention and the comparative example 2 are of the same size. Is located 4.2 mm off the upper half circumferential side of the slab. The eccentricity of the internal void was 2.1%.
【0036】なお、図4に示すように比較例1の場合
は、疵発生個数は36個発生している。一方、比較例2
の内部空隙の偏心率が2.0%の場合には管内面疵発生
個数は半減しているが完全ではない。As shown in FIG. 4, in the case of Comparative Example 1, 36 flaws were generated. On the other hand, Comparative Example 2
In the case where the eccentricity of the internal voids is 2.0%, the number of occurrences of flaws on the inner surface of the pipe is reduced by half, but not completely.
【0037】これに対して本願発明の実施例による内部
空隙の偏心率5%以上とした場合(図4、図5では偏心
率6.0%、7.0%、8.0%の3例を示す)には、
いずれも疵の発生個数もほとんど差が見られず、低減効
果の著しいことがわかる。なお、図4から明らかなよう
に偏心率7.0%と8.0%では疵の低減効果には差が
見られず偏心率が8%で飽和していることがわかる。On the other hand, when the eccentricity of the internal gap is set to 5% or more according to the embodiment of the present invention (in FIGS. 4 and 5, the eccentricity is 6.0%, 7.0%, and 8.0%). To indicate)
In each case, there was almost no difference in the number of generated flaws, indicating that the reduction effect was remarkable. In addition, as is clear from FIG. 4, there is no difference in the effect of reducing flaws at the eccentricity of 7.0% and 8.0%, and it is understood that the eccentricity is saturated at 8%.
【0038】[0038]
【発明の効果】本発明により、鋳片周方向の上半周と下
半周の差冷却並びに二次冷却帯の中間部以降に電磁攪拌
を行い、連続鋳造鋳片の最終凝固位置に発生する内部空
隙を鋳片横断面の中心から外方へ大きくずらすので、穿
孔圧延時に管内面疵が発生しない継目無鋼管素材用の連
続鋳造鋳片を提供することができる。According to the present invention, differential cooling between the upper half circumference and the lower half circumference in the slab circumferential direction and electromagnetic stirring are performed in the middle part of the secondary cooling zone and thereafter, and the internal void generated at the final solidification position of the continuous cast slab. Is greatly shifted outward from the center of the cross section of the slab, so that it is possible to provide a continuous cast slab for a seamless steel pipe material that does not cause any flaws on the inner surface of the pipe during piercing and rolling.
【図1】 本発明の実施の形態の丸ビレット製造用の湾
曲型連続鋳造機の概要断面図である。FIG. 1 is a schematic sectional view of a curved continuous casting machine for producing a round billet according to an embodiment of the present invention.
【図2】 本発明の実施例の二次冷却帯スプレー装置の
スプレーの状況を示す概略断面図で、(a)は鋳型直下
から二次冷却帯の2m迄のスプレーの状況を示す図で、
(b)は二次冷却帯の2m超えから二次冷却帯の最終ま
でのスプレーの状況を示す図である。FIG. 2 is a schematic sectional view showing a state of spraying of a secondary cooling zone spraying device according to an embodiment of the present invention, and FIG. 2 (a) is a diagram showing a state of spraying from immediately below a mold to 2m of a secondary cooling zone.
(B) is a figure which shows the situation of the spray from over 2 m of a secondary cooling zone to the end of a secondary cooling zone.
【図3】 本発明の実施例により偏心凝固連続鋳造した
丸ビレットを穿孔圧延する際の加工状態を示す説明図で
ある。FIG. 3 is an explanatory view showing a processing state when piercing and rolling a round billet continuously cast by eccentric solidification according to an embodiment of the present invention.
【図4】 本発明の実施例及び比較例により製造された
中空素管の疵発生状況を示す図である。FIG. 4 is a diagram showing the state of occurrence of flaws in hollow shells manufactured according to the example of the present invention and the comparative example.
【図5】 実施例と比較例により鋳造された鋳片の内部
空隙の状況を示す説明図である。FIG. 5 is an explanatory diagram showing a state of internal voids of a slab cast according to an example and a comparative example.
1 取鍋 2 タンディシュ 3 溶鋼 4 鋳型 5 鋳型の電磁攪拌装置 6 二次冷却帯 7 凝固シェル 8 鋳片 9 二次冷却帯の電磁攪拌装置 10 スプレー 11 ピンチロール 12 鼓型ロール 13 プラグ 14 中実丸ビレット 15 中空素管 16 内部空隙 DESCRIPTION OF SYMBOLS 1 Ladle 2 Tundish 3 Molten steel 4 Mold 5 Mold electromagnetic stirring device 6 Secondary cooling zone 7 Solidified shell 8 Cast piece 9 Electromagnetic stirring device for secondary cooling zone 10 Spray 11 Pinch roll 12 Hour roll 13 Plug 14 Solid round Billet 15 Hollow shell 16 Internal gap
Claims (1)
いて、鋳型直下から鋳片が完全凝固に至る間の二次冷却
帯で、鋳片周方向の冷却水の水量密度を上半周より下半
周を大きくするとともに、二次冷却帯の中間部以降で電
磁攪拌を行い、鋳片の最終凝固位置を鋳片中心より偏心
させることを特徴とする鋼の連続鋳造方法。In a method for continuously casting molten steel into a round-section slab, the water density of cooling water in the circumferential direction of the slab is increased from the upper half circumference in a secondary cooling zone from immediately below the mold until the slab completely solidifies. A continuous casting method for steel, comprising enlarging a lower half circumference, performing electromagnetic stirring in an intermediate portion of a secondary cooling zone and thereafter, and decentering a final solidification position of a slab from a center of the slab.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28080696A JPH10128510A (en) | 1996-10-23 | 1996-10-23 | Method for continuously casting steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28080696A JPH10128510A (en) | 1996-10-23 | 1996-10-23 | Method for continuously casting steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10128510A true JPH10128510A (en) | 1998-05-19 |
Family
ID=17630242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28080696A Pending JPH10128510A (en) | 1996-10-23 | 1996-10-23 | Method for continuously casting steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10128510A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002224711A (en) * | 2001-01-31 | 2002-08-13 | Kawasaki Steel Corp | Manufacturing method of seamless pipe |
JP2007262485A (en) * | 2006-03-28 | 2007-10-11 | Sumitomo Metal Ind Ltd | Continuous casting slab and its continuous casting method |
JP2009006367A (en) * | 2007-06-28 | 2009-01-15 | Sumitomo Metal Ind Ltd | Continuous casting method for small section billet |
CN110548843A (en) * | 2019-09-20 | 2019-12-10 | 江苏科技大学 | Electromagnetic stirring device for continuous casting machine |
CN115301908A (en) * | 2022-08-11 | 2022-11-08 | 包头钢铁(集团)有限责任公司 | Method for improving internal structure of round billet by adopting tail end electromagnetic stirring |
-
1996
- 1996-10-23 JP JP28080696A patent/JPH10128510A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002224711A (en) * | 2001-01-31 | 2002-08-13 | Kawasaki Steel Corp | Manufacturing method of seamless pipe |
JP4734724B2 (en) * | 2001-01-31 | 2011-07-27 | Jfeスチール株式会社 | Seamless steel pipe manufacturing method |
JP2007262485A (en) * | 2006-03-28 | 2007-10-11 | Sumitomo Metal Ind Ltd | Continuous casting slab and its continuous casting method |
JP2009006367A (en) * | 2007-06-28 | 2009-01-15 | Sumitomo Metal Ind Ltd | Continuous casting method for small section billet |
CN110548843A (en) * | 2019-09-20 | 2019-12-10 | 江苏科技大学 | Electromagnetic stirring device for continuous casting machine |
CN115301908A (en) * | 2022-08-11 | 2022-11-08 | 包头钢铁(集团)有限责任公司 | Method for improving internal structure of round billet by adopting tail end electromagnetic stirring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1284167A1 (en) | Method for manufacturing seamless steel pipe | |
JPH10128510A (en) | Method for continuously casting steel | |
US5832984A (en) | Method of producing long steel products | |
JPH09508070A (en) | Thin slab manufacturing method and continuous casting apparatus | |
JP3401785B2 (en) | Cooling method of slab in continuous casting | |
JP4301133B2 (en) | Method for continuous casting of round slab, method for making round slab and seamless pipe | |
JP5157664B2 (en) | Continuous casting method of round slabs for seamless steel pipes | |
JP6036125B2 (en) | Steel continuous casting method | |
JP2983152B2 (en) | Continuous casting method and continuous casting equipment | |
JP2947098B2 (en) | Manufacturing method of continuous cast slab for seamless steel pipe material | |
JP3033446B2 (en) | Eccentric solidification continuous casting method of seamless steel pipe material and method of manufacturing seamless steel pipe | |
JP2000326060A (en) | Method and apparatus for producing continuously cast steel material | |
JP3405490B2 (en) | Method for improving slab quality in continuous casting | |
JPH10156495A (en) | Continuous casting method for billet slabs with round sections | |
JP3228212B2 (en) | Method and apparatus for producing round billet slabs by continuous casting | |
JP2520534B2 (en) | Continuous casting method | |
JPH01162551A (en) | Method for continuously casting round shape billet | |
JP3402250B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JP2019076931A (en) | Continuous casting method for slab for seamless steel pipe | |
JP2000094101A (en) | Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate | |
JP2004090088A (en) | Method for producing round billet for steel pipe, and round billet for steel pipe | |
JP3348667B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JP3463556B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JPH05285620A (en) | Apparatus for manufacturing centrifugal casting roll | |
JP3317260B2 (en) | Manufacturing method of round billet slab by continuous casting |