JPH10102160A - Production of cobalt triantimonide type composite material - Google Patents
Production of cobalt triantimonide type composite materialInfo
- Publication number
- JPH10102160A JPH10102160A JP8277615A JP27761596A JPH10102160A JP H10102160 A JPH10102160 A JP H10102160A JP 8277615 A JP8277615 A JP 8277615A JP 27761596 A JP27761596 A JP 27761596A JP H10102160 A JPH10102160 A JP H10102160A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- cobalt
- atoms
- composite material
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims description 55
- 229910017052 cobalt Inorganic materials 0.000 title claims description 50
- 239000010941 cobalt Substances 0.000 title claims description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000843 powder Substances 0.000 claims abstract description 39
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 38
- 239000000956 alloy Substances 0.000 claims abstract description 26
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 238000005245 sintering Methods 0.000 claims abstract description 11
- 239000000155 melt Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 15
- 239000011148 porous material Substances 0.000 abstract description 15
- 229910052718 tin Inorganic materials 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 9
- 238000001816 cooling Methods 0.000 abstract description 8
- 229910052797 bismuth Inorganic materials 0.000 abstract description 4
- 229910052745 lead Inorganic materials 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- 229910052721 tungsten Inorganic materials 0.000 abstract description 2
- 229910018985 CoSb3 Inorganic materials 0.000 abstract 3
- 238000003825 pressing Methods 0.000 abstract 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 28
- 125000004429 atom Chemical group 0.000 description 21
- 239000010453 quartz Substances 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 15
- 229910018989 CoSb Inorganic materials 0.000 description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000011812 mixed powder Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000000634 powder X-ray diffraction Methods 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、熱電変換機能を有
する三アンチモン化コバルト系複合材料の製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cobalt triantimonide composite material having a thermoelectric conversion function.
【0002】[0002]
【従来技術とその問題点】ペルチェ効果やゼーベック効
果により熱電特性を有することが知られている熱電材料
の熱電特性の優劣は、一般に性能指数Z(K-1)で表さ
れ、Zが大きいほど熱電材料としての特性が優れてい
る。(Z=α2/(ρ・κ) 但し、αは熱電能、ρは
電気抵抗率、κは熱伝導率。)一方、温度依存性が比較
的小さく、低温領域から中温領域の幅広い温度域におい
て優れた熱電特性を示す材料として、Coの一部をN
i,Fe等で置換した、或いは、Sbの一部をSnやT
e等で置換したスクッテルダイト型構造のCoSb3系
半導体材料が知られている。またスクッテルダイト型の
CoSb3では格子の中央部に大きな空孔が存在する。
該空孔に異原子を侵入させると空孔侵入原子の熱振動に
よりフォノンが散乱され、その結果熱伝導率が減少す
る。またその空孔よりも大きい原子、即ち原子半径1.
4オングストローム以上の原子を空孔内に充填すると、
空孔充填原子の熱振動によりフォノンが散乱されるとと
もに、スクッテルダイト型構造の格子定数が増大して原
構造からの歪みが生じ、この歪みがフォノンの散乱を一
層助長する為、電気抵抗を殆ど上昇させることなく熱伝
導率を著しく減少させることが可能になり、歪みが大き
いほどより優れた熱電特性を発現することができる。更
にこのような異原子を空孔内に充填するに加えてCoS
b3のコバルトサイトのCoの一部又はアンチモンサイ
トのSbの一部をCo及びSb以外の金属で置換して半
導体化しキャリア濃度を調整することにより熱伝導率減
少効果に加えて電気抵抗も低減させることができ、性能
指数を大幅に向上させることができる。2. Description of the Related Art The thermoelectric properties of thermoelectric materials, which are known to have thermoelectric properties due to the Peltier effect or the Seebeck effect, are generally expressed by a figure of merit Z (K -1 ). Excellent properties as thermoelectric material. (Z = α 2 / (ρ · κ) where α is thermoelectric power, ρ is electrical resistivity, κ is thermal conductivity.) On the other hand, the temperature dependence is relatively small, and a wide temperature range from a low temperature range to a medium temperature range. As a material exhibiting excellent thermoelectric properties, some of Co
i or Fe, or a part of Sb is replaced with Sn or T
CoSb 3 based semiconductor material skutterudite structure obtained by substituting e, etc. are known. In the skutterudite-type CoSb 3 , large holes exist in the center of the lattice.
When foreign atoms enter the vacancies, phonons are scattered by the thermal vibration of the vacant atoms, and as a result, the thermal conductivity decreases. An atom larger than the vacancy, that is, an atomic radius of 1.
When more than 4 angstroms of atoms are filled into the vacancy,
The phonons are scattered by the thermal vibration of the vacancy-filled atoms, and the lattice constant of the skutterudite structure is increased to cause distortion from the original structure. The thermal conductivity can be significantly reduced with almost no increase, and the higher the strain, the better thermoelectric properties can be exhibited. Further, in addition to filling such foreign atoms into the holes, CoS
b 3 Cobalt of cobalt site or Sb of antimony site is replaced with a metal other than Co and Sb to form a semiconductor and adjust the carrier concentration to reduce the electrical resistance in addition to the effect of reducing thermal conductivity. And the figure of merit can be greatly improved.
【0003】このような優れた性状を有する異原子侵入
型のスクッテルダイト型の三アンチモン化コバルト系複
合材料は、以下のような公知技術に基づいて製造するこ
とができる。 (1)所望の組成比のコバルトとアンチモンの混合物を
溶融後冷却して得られた合金インゴットを粉砕し、この
粉砕合金に所望の異原子Mの粉末を組成比(モル比換
算)がM:Co:Sb=X:4:12、但し0<X≦1
となるよう混合せしめたものを常圧で焼結する方法。 (2)所望の組成比のコバルトとアンチモンの混合物を
溶融後冷却して得られた合金インゴットを粉砕し、この
粉砕合金に所望の異原子粉末を組成比(モル比換算)が
M:Co:Sb=X:4:12、但し0<X≦1となる
よう混合せしめたものをホットプレス法で焼結する方
法。[0003] The heteroatomic penetration type skutterudite-type cobalt triantimonide composite material having such excellent properties can be produced based on the following known techniques. (1) An alloy ingot obtained by melting and cooling a mixture of cobalt and antimony having a desired composition ratio is pulverized, and a powder of a desired heteroatom M in the pulverized alloy has a composition ratio (in terms of molar ratio) of M: Co: Sb = X: 4: 12, where 0 <X ≦ 1
A method of sintering a mixture mixed under normal pressure. (2) An alloy ingot obtained by melting and cooling a mixture of cobalt and antimony having a desired composition ratio is pulverized, and a desired heteroatomic powder is added to the pulverized alloy in a composition ratio (molar ratio conversion) of M: Co: Sb = X: 4:12, provided that 0 <X ≦ 1 is mixed and sintered by hot pressing.
【0004】しかるに、前記(1)の方法では、常圧焼
結法を用いるので特に複合体では残存気孔が焼結体に存
在し易く、該気孔が抵抗となり電気抵抗が増大すること
もあるので、必ずしも期待通りの熱電特性を示すものに
はならない。また前記(2)の方法では、高緻密で配向
性を有する焼結体が容易に得られるものの一般的なホッ
トプレス法(熱間加圧法)は装置の制約上、数十MPa
程度の加圧力しか発生できず、100MPa以上の圧力
発生は無理である。この為、CoSb3のスクッテルダ
イト型構造の空孔内に異原子が侵入しても、空孔径より
も大きな原子の場合は空孔内に完全に納まるには至らな
い。完全に納まるには結晶格子がかなり変形することに
なり、その為にはかなりのエネルギーを要し、数十〜1
00MPa程度の加圧力では不足である。このようにホ
ットプレス法では焼結材料の熱伝導率を大幅に低減させ
るには至らない。However, in the method (1), since the normal pressure sintering method is used, particularly in the case of a composite, residual pores are likely to be present in the sintered body, and the pores become a resistance, which may increase the electric resistance. However, it does not always show the expected thermoelectric characteristics. In the method (2), a high-density sintered body having a high degree of orientation can be easily obtained. However, a general hot press method (hot press method) has several tens MPa
A pressure of only about a degree can be generated, and it is impossible to generate a pressure of 100 MPa or more. For this reason, even if foreign atoms intrude into the vacancy of the skutterudite structure of CoSb 3 , atoms that are larger than the vacancy diameter will not completely fit in the vacancy. In order to completely fit, the crystal lattice is considerably deformed, which requires considerable energy, and several tens to one
A pressure of about 00 MPa is insufficient. As described above, the hot press method does not significantly reduce the thermal conductivity of the sintered material.
【0005】[0005]
【発明が解決しようとする課題】本発明は、高密度で残
存気孔が殆ど存在せず、高度の配向性を有し、スクッテ
ルダイト型のCoSb3に存在する空孔径よりも大きな
原子が該空孔内に完全に充填されたスクッテルダイト型
の三アンチモン化コバルト系複合材料、及び前記固溶体
のコバルトサイトのCo又はアンチモンサイトのSbの
一部がCo及びSb以外の金属原子で置換された三アン
チモン化コバルト系複合材料の製造方法を提供すること
を目的とする。SUMMARY OF THE INVENTION According to the present invention, an atom having a high density and almost no residual pores, a high degree of orientation, and an atom larger than the pore diameter present in skutterudite-type CoSb 3 is formed. A skutterudite-type cobalt triantimonide-based composite material completely filled in pores, and Co of the cobalt site of the solid solution or a part of Sb of the antimony site was replaced by a metal atom other than Co and Sb. An object of the present invention is to provide a method for producing a cobalt triantimonide-based composite material.
【0006】[0006]
【課題を解決するための手段】本発明者らは、スクッテ
ルダイト型構造の異原子侵入型三アンチモン化コバルト
固溶体のCoSb3合金粉末と空孔に侵入する異原子か
らなる粉末との混合物を焼結する工程に於いて、極めて
高い圧力を加熱と同時に加える、即ち1GPa以上で加
圧焼結することにより、高密度で残存気孔が存在せず、
スクッテルダイト型CoSb3格子内中央に存在する空
孔よりも大きな原子半径1.4オングストローム以上の
原子を該空孔内に完全に充填することができ、優れた熱
電特性を示す異原子侵入型三アンチモン化コバルト固溶
体が製造できることを見出した。Means for Solving the Problems The present inventors have prepared a mixture of a CoSb 3 alloy powder of a heteroatom-incorporated cobalt triantimonide solid solution having a skutterudite structure and a powder of a heteroatom penetrating into vacancies. In the sintering step, an extremely high pressure is applied at the same time as the heating, that is, by sintering at a pressure of 1 GPa or more, there is no residual pore at high density
An atom having an atomic radius of 1.4 angstroms or more, which is larger than the hole present in the center of the skutterudite-type CoSb 3 lattice, can be completely filled in the hole, and the heteroatom penetration type exhibiting excellent thermoelectric properties It has been found that a cobalt triantimonide solid solution can be produced.
【0007】即ち本発明は、CoとSbのモル比を1:
3にせしめた組成の混合物を加熱溶融し、該溶融物を徐
冷してなる三アンチモン化コバルト合金を粉砕し、該粉
砕物4モルに原子半径1.4オングストローム以上の原
子からなる粉末を最大1モルまで加えて混合し、この混
合物を1GPa以上の圧力にて加圧焼結することを特徴
とする三アンチモン化コバルト系複合材料の製造方法で
ある。That is, according to the present invention, the molar ratio of Co to Sb is set to 1:
3 is heated and melted, and the melt is slowly cooled to pulverize the cobalt triantimonide alloy. A powder consisting of atoms having an atomic radius of 1.4 angstroms or more per 4 moles of the pulverized material is maximally dispersed. A method for producing a cobalt triantimonide-based composite material, characterized by adding and mixing up to 1 mol, and sintering the mixture under a pressure of 1 GPa or more.
【0008】また本発明は、前記のCoとSbのモル比
を1:3にせしめた組成の混合物に於いて、Coの一部
又はSbの一部を、Co及びSb以外の金属で置換する
ことを特徴とする三アンチモン化コバルト系複合材料の
製造方法である。In the present invention, in a mixture having a composition in which the molar ratio of Co to Sb is 1: 3, a part of Co or a part of Sb is replaced with a metal other than Co and Sb. A method for producing a cobalt triantimonide-based composite material, characterized in that:
【0009】[0009]
【発明の実施の形態】本発明で製造対象とする三アンチ
モン化コバルト系複合材料は、スクッテルダイト型構造
の三アンチモン化コバルト(CoSb3)或いは該三ア
ンチモン化コバルトのコバルトサイトのCoの一部又は
アンチモンサイトのSbの一部がCo及びSb以外の金
属で置換されたもの(Co1-XMXSb3又はCoSb3-Y
MY但し、Mは置換金属、0<X<1又は0<Y<3)
の空孔に原子半径1.4オングストローム以上の任意の
原子が充填された構造を有するものである。BEST MODE FOR CARRYING OUT THE INVENTION The cobalt triantimonide composite material to be produced in the present invention is cobalt triantimonide (CoSb 3 ) having a skutterudite-type structure or one of Co at the cobalt site of the cobalt triantimonide. parts or those part of Sb antimony site is replaced by a metal other than Co and Sb (Co 1-X M X Sb 3 or CoSb 3-Y
M Y where M is a substituted metal, 0 <X <1 or 0 <Y <3)
Have a structure in which arbitrary atoms having an atomic radius of 1.4 angstroms or more are filled in the vacancies.
【0010】以下、本発明に於ける三アンチモン化コバ
ルト系複合材料の詳細な製造方法を記す。市販の高純度
(純度99.99%)コバルト粉末と高純度(純度9
9.99%)アンチモン粉末を用いこれをCoとSbの
モル比が1:3になるように混合する。或いは市販の高
純度CoSb3粉末、又は高純度CoSb3塊(焼結物)
を望ましくは粒径100ミクロン程度以下となるように
粉砕したものを用い、これを非酸化性雰囲気、望ましく
は不活性雰囲気又は真空中で約1250℃で溶融する。
次いで該溶融物を室温近傍迄徐冷(自然放冷)又は急冷
して得られた合金塊(インゴット)を粉砕し、該粉砕物
3モルに対し、原子半径1.4オングストローム以上の
例えばSn、Pb、Ti、W、Bi等から選ばれた1種
類の原子からなる粉末、望ましくはSn、Pb、Biの
何れかの粉末を最大1モルまで加えて混合し、これを例
えばピストンシリンダー型高圧装置等を用いて約600
℃で1GPa以上の条件で熱間加圧を行うことによりス
クッテルダイト型構造の空孔内に異原子が完全に充填さ
れた三アンチモン化コバルト系複合材料を製造すること
ができる。Hereinafter, a detailed method for producing the cobalt triantimonide-based composite material according to the present invention will be described. Commercially available high purity (purity 99.99%) cobalt powder and high purity (purity 9)
(9.99%) Antimony powder is used and mixed so that the molar ratio of Co and Sb becomes 1: 3. Alternatively, a commercially available high-purity CoSb 3 powder or a high-purity CoSb 3 lump (sinter)
Is desirably pulverized to a particle size of about 100 microns or less, and melted at about 1250 ° C. in a non-oxidizing atmosphere, preferably an inert atmosphere or vacuum.
Next, the melt is slowly cooled (naturally cooled) or rapidly cooled to near room temperature to obtain an alloy lump (ingot), which is then pulverized. A powder consisting of one kind of atom selected from Pb, Ti, W, Bi and the like, desirably any powder of Sn, Pb and Bi is added and mixed up to a maximum of 1 mol, and this is added to, for example, a piston-cylinder high-pressure device. About 600 using
By performing hot pressing at a temperature of 1 GPa or more at a temperature of 1 ° C., a cobalt triantimonide-based composite material in which foreign atoms are completely filled in holes having a skutterudite structure can be produced.
【0011】また本発明の製造方法は市販の高純度(純
度99.99%)コバルト粉末と高純度(純度99.9
9%)アンチモン粉末及び、コバルト又はアンチモン以
外の所望の金属Mからなる高純度粉末(少なくとも純度
99.9%以上)を用い、コバルトの一部を所望の金属
Mで置換する場合は、各粉末のモル比がCo:Sb:M
=1−X:3:X(但し、0<X<1)になるように配
合して混合し、或いはアンチモンの一部を所望の金属M
で置換する場合は、各粉末のモル比がCo:Sb:M=
1:3−Y:Y(但し、0<Y<3)になるように配合
して混合し、該混合物を非酸化性雰囲気、望ましくは不
活性雰囲気又は真空中で約1250℃で溶融する。次い
で該溶融物を室温近傍迄徐冷(自然放冷)又は急冷して
得られた合金塊(インゴット)を粉砕し、該粉砕物3モ
ル相当に対し、原子半径1.4オングストローム以上の
例えばSn、Pb、Bi等から選ばれた1種類の原子か
らなる粉末を最大1モルまで加えて混合し、これを例え
ばピストンシリンダー型高圧装置等の装置を用いて約6
00℃で圧力1GPa以上の条件で熱間加圧を行うこと
によりスクッテルダイト型構造の空孔内に異原子が完全
に充填され、コバルトサイトのCo又はアンチモンサイ
トのSbの一部がCo及びSb以外の金属原子Mで置換
された三アンチモン化コバルト系複合材料を製造するこ
とができる。Further, the production method of the present invention comprises a commercially available high-purity (purity 99.99%) cobalt powder and a high-purity (purity 99.9%).
9%) When using high-purity powder (at least 99.9% or more purity) of antimony powder and a desired metal M other than cobalt or antimony, and replacing a part of cobalt with the desired metal M, each powder is used. Is molar ratio of Co: Sb: M
= 1−X: 3: X (provided that 0 <X <1), and a part of antimony is mixed with a desired metal M
In the case of substituting by the formula, the molar ratio of each powder is Co: Sb: M =
1: 3-Y: Y (where 0 <Y <3) is blended and mixed, and the mixture is melted at about 1250 ° C. in a non-oxidizing atmosphere, preferably an inert atmosphere or vacuum. Then, the melt is slowly cooled (naturally cooled) to near room temperature or quenched to pulverize an alloy ingot (ingot), and for example, Sn having an atomic radius of 1.4 angstroms or more per 3 moles of the pulverized material. , Pb, Bi and the like, a powder consisting of one kind of atom selected from a maximum of 1 mol is added and mixed.
By performing hot pressing at a temperature of 00 ° C. and a pressure of 1 GPa or more, foreign atoms are completely filled in the holes of the skutterudite structure, and Co of cobalt site or Sb of antimony site is partially Co and A cobalt triantimonide-based composite material substituted with a metal atom M other than Sb can be produced.
【0012】[0012]
[実施例1] コバルトとアンチモンのモル比が1:1
になるようにコバルト粉末((株)高純度化学研究所、
純度99.9%)とアンチモン粉末(住友金属鉱山
(株)、純度99.999%)を混合したものをアルゴ
ンガスを充填させた石英管内に封入した。この石英管を
電気炉にて約1250℃で24時間加熱処理し、炉内放
冷後の石英管内の合金塊を取り出し、これを粉砕して合
金粉末を得た。該合金粉末及び錫粉末及びアンチモン粉
末を用い、コバルトと錫とアンチモンのモル比が4:
1:12になる混合粉末を作製した。次いで該混合粉末
をピストンシリンダー型高圧装置を用い、圧力約1GP
a、温度約600℃で1時間加圧焼結した。焼結体は粉
末X線回折により錫が空孔に侵入したスクッテルダイト
型構造の三アンチモン化コバルトであることを確認し、
その格子定数は9.05であった。また、この三アンチ
モン化コバルト系材料の熱伝導率は静的比較法による測
定の結果、3.5W/mKであった。[Example 1] The molar ratio of cobalt to antimony was 1: 1.
Become a cobalt powder (High Purity Chemical Laboratory, Inc.)
A mixture of 99.9% purity and antimony powder (Sumitomo Metal Mining Co., Ltd., 99.999% purity) was sealed in a quartz tube filled with argon gas. The quartz tube was heated in an electric furnace at about 1250 ° C. for 24 hours, and after cooling in the furnace, an alloy lump in the quartz tube was taken out and pulverized to obtain an alloy powder. Using the alloy powder, tin powder and antimony powder, the molar ratio of cobalt, tin and antimony was 4:
A mixed powder of 1:12 was prepared. Then, the mixed powder was subjected to a pressure of about 1 GP using a piston cylinder type high pressure device.
a, Pressure sintering was performed at a temperature of about 600 ° C. for 1 hour. The sintered body was confirmed by powder X-ray diffraction to be cobalt triantimonide having a skutterudite structure in which tin had penetrated the pores,
Its lattice constant was 9.05. The thermal conductivity of the cobalt triantimonide-based material was 3.5 W / mK as a result of measurement by a static comparison method.
【0013】[実施例2] 前記実施例1に於いて、錫
粉末の代わりに鉛粉末を用いる以外は全て実施例1と同
様の方法で、コバルトと鉛とアンチモンのモル比が、
4:1:12になる混合粉末を作製した。該混合粉末を
ベルト型高圧装置を用い、圧力約5GPa、温度約60
0℃で1時間加圧焼結した。得られた焼結体はX線回折
により、鉛が空孔に侵入したスクッテルダイト型構造の
三アンチモン化コバルトであることを確認し、その格子
定数と静的比較法により測定した熱伝導率は、格子定数
9.12で熱伝導率2.5W/mKであった。[Example 2] In the same manner as in Example 1 except that lead powder was used instead of tin powder, the molar ratio of cobalt, lead and antimony was changed to
A mixed powder of 4: 1: 12 was prepared. Using a belt-type high-pressure device, the mixed powder was subjected to a pressure of about 5 GPa and a temperature of about 60 GPa.
Pressure sintering was performed at 0 ° C. for 1 hour. The obtained sintered body was confirmed by X-ray diffraction to be a skutterudite-type cobalt triantimonide structure in which lead had penetrated the pores, and its lattice constant and thermal conductivity measured by a static comparison method Had a thermal conductivity of 2.5 W / mK with a lattice constant of 9.12.
【0014】[実施例3] 実施例1と同様のコバルト
とアンチモンとニッケルの各粉末を用い、ニッケルで2
モル%のコバルトを置換してCo0.98Ni0.02Sbの組
成になるように秤量した混合粉末をアルゴンガスを充填
させた石英管内に封入し、この石英管を電気炉にて約1
250℃で24時間加熱処理し、炉内放冷後の石英管内
の合金塊を取り出し、これを粉砕して合金粉末を得た。
該合金粉末及び錫粉末及びアンチモン粉末を用い、Co
0.98Ni0.02と錫とアンチモンのモル比が4:1:12
になる混合粉末を作製した。次いで該混合粉末を、ベル
ト型高圧装置を用い、圧力約5GPa、温度約600℃
で1時間加圧焼結した。該焼結体は粉末X線回折により
錫が空孔に侵入したスクッテルダイト型構造のCoの一
部がNiで置換されたn型の三アンチモン化コバルトで
あることを確認し、その格子定数は9.08であり、ま
た、熱伝導率を静的比較法により測定した結果、2.0
W/mKであった。Example 3 The same powder of cobalt, antimony and nickel as used in Example 1 was used.
A mixed powder weighed so as to have a composition of Co 0.98 Ni 0.02 Sb by substituting mol% of cobalt was sealed in a quartz tube filled with argon gas, and this quartz tube was placed in an electric furnace for about 1 hour.
Heat treatment was performed at 250 ° C. for 24 hours, and after cooling in the furnace, an alloy lump in the quartz tube was taken out and pulverized to obtain an alloy powder.
Using the alloy powder, tin powder and antimony powder, Co
0.98 Ni 0.02 , tin: antimony molar ratio of 4: 1: 12
Was prepared. Next, the mixed powder was subjected to a pressure of about 5 GPa and a temperature of about 600 ° C. using a belt-type high-pressure device.
For 1 hour under pressure. The sintered body was confirmed by powder X-ray diffraction to be n-type cobalt triantimonide in which part of Co having a skutterudite structure in which tin had penetrated pores was replaced with Ni, and its lattice constant was confirmed. Was 9.08, and the thermal conductivity was measured by a static comparison method.
W / mK.
【0015】[実施例4] 実施例1と同様のコバルト
とアンチモンと錫の各粉末を用い、錫で0.15モル%
のアンチモンを置換して CoSb2.9985Sn0.0015に
なるように秤量した混合粉末をアルゴンガスを充填させ
た石英管内に封入し、この石英管を電気炉にて約125
0℃で24時間加熱処理し、炉内放冷後の石英管内の合
金塊を取り出し、これを粉砕して合金粉末を得た。該合
金粉末及び錫粉末及びアンチモン粉末を用い、コバルト
と錫とSb2.9985Sn0.0015のモル比が4:0.5:1
2になる混合粉末を作製した。次いで該混合粉末を、ベ
ルト型高圧装置を用い、圧力約5GPa、温度約600
℃で1時間加圧焼結した。該焼結体は粉末X線回折によ
り錫が空孔に侵入したスクッテルダイト型構造のSbの
一部がSnで置換されたp型の三アンチモン化コバルト
であることを確認し、その格子定数は9.06であり、
また、熱伝導率を静的比較法により測定した結果、2.
1W/mKであった。Example 4 The same powder of cobalt, antimony and tin as used in Example 1 was used, and 0.15 mol% of tin was used.
The mixed powder weighed so that the antimony is replaced with CoSb 2.9985 Sn 0.0015 is sealed in a quartz tube filled with argon gas, and this quartz tube is placed in an electric furnace for about 125.
Heat treatment was performed at 0 ° C. for 24 hours, and an alloy lump in the quartz tube after cooling in the furnace was taken out and pulverized to obtain an alloy powder. Using the alloy powder, tin powder and antimony powder, the molar ratio of cobalt, tin and Sb 2.9985 Sn 0.0015 was 4: 0.5: 1.
2 was prepared. Next, the mixed powder was subjected to a pressure of about 5 GPa and a temperature of about 600 using a belt-type high-pressure device.
Pressure sintering was performed at 1 ° C. for 1 hour. The sintered body was confirmed by powder X-ray diffraction to be a p-type cobalt triantimonide in which a part of Sb of the skutterudite structure in which tin had penetrated the pores was replaced with Sn, and its lattice constant was confirmed. Is 9.06,
In addition, as a result of measuring the thermal conductivity by a static comparison method, 2.
It was 1 W / mK.
【0016】[比較例1] コバルトとアンチモンのモ
ル比が1:3になるようにコバルト粉末((株)高純度
化学研究所、純度99.9%)とアンチモン粉末(住友
金属鉱山(株)、純度99.999%)を混合したもの
をアルゴンガスを充填させた石英管内に封入した。この
石英管を電気炉にて約1250℃で24時間加熱処理
し、炉内放冷後の石英管内の合金塊を取り出した。該合
金塊は粉末X線回折による定性分析から空孔内に原子を
含まないスクッテルダイト型構造の三アンチモン化コバ
ルト(CoSb3)であることを確認した。また、この
三アンチモン化コバルトの熱伝導率を静的比較法で測定
したところ、4.1W/mKであった。Comparative Example 1 Cobalt powder (High Purity Chemical Laboratory Co., Ltd., purity 99.9%) and antimony powder (Sumitomo Metal Mining Co., Ltd.) so that the molar ratio of cobalt to antimony was 1: 3. , Purity 99.999%) was sealed in a quartz tube filled with argon gas. This quartz tube was subjected to heat treatment in an electric furnace at about 1250 ° C. for 24 hours, and an alloy lump in the quartz tube after cooling in the furnace was taken out. Qualitative analysis by powder X-ray diffraction confirmed that the alloy mass was cobalt triantimonide (CoSb 3 ) having a skutterudite-type structure containing no atoms in the pores. The thermal conductivity of the cobalt triantimonide measured by a static comparison method was 4.1 W / mK.
【0017】[比較例2] 実施例1と同様のコバルト
とアンチモンとニッケルの各粉末を用い、コバルトとア
ンチモンのモル比が1:1になるようにコバルト粉末
((株)高純度化学研究所、純度99.9%)とアンチ
モン粉末(住友金属鉱山(株)、純度99.999%)
を混合したものをアルゴンガスを充填させた石英管内に
封入した。この石英管を電気炉にて約1250℃で24
時間加熱処理し、炉内放冷後の石英管内の合金塊を取り
出し、これを粉砕して合金粉末を得た。該合金粉末及び
錫粉末及びアンチモン粉末を用い、コバルトと錫とアン
チモンのモル比が1:4:18になる混合粉末を作製し
た。次いで該混合粉末をアルゴンガスを充填させた石英
管内に封入した。この石英管を電気炉にて約1250℃
で24時間常圧加熱処理し、炉内放冷した後、石英管内
の焼成物を取り出した。該焼成物は粉末X線回折による
定性分析から錫を空孔に含むスクッテルダイト型構造の
三アンチモン化コバルト(CoSb3)であることを確
認し、その格子定数は9.03であった。また、この三
アンチモン化コバルトの熱伝導率を静的比較法で測定し
たところ、5.0W/mKであった。Comparative Example 2 Using the same powder of cobalt, antimony, and nickel as in Example 1, cobalt powder (manufactured by Kojundo Chemical Laboratory Co., Ltd.) so that the molar ratio of cobalt to antimony was 1: 1. , Purity 99.9%) and antimony powder (Sumitomo Metal Mining Co., Ltd., purity 99.999%)
Was sealed in a quartz tube filled with argon gas. This quartz tube is heated in an electric furnace at about 1250 ° C. for 24 hours.
After heating for a period of time, the alloy lump in the quartz tube after cooling in the furnace was taken out and pulverized to obtain an alloy powder. Using the alloy powder, tin powder, and antimony powder, a mixed powder having a molar ratio of cobalt, tin, and antimony of 1: 4: 18 was prepared. Next, the mixed powder was sealed in a quartz tube filled with argon gas. This quartz tube is heated at about 1250 ° C in an electric furnace.
For 24 hours under normal pressure and allowed to cool in the furnace, and then the fired product in the quartz tube was taken out. Qualitative analysis by powder X-ray diffraction confirmed that the fired product was a skutterudite-type cobalt triantimonide (CoSb 3 ) having tin in its pores, and its lattice constant was 9.03. The thermal conductivity of the cobalt triantimonide measured by a static comparison method was 5.0 W / mK.
【0018】[0018]
【発明の効果】本発明による製造方法により、極めて高
緻密化された三アンチモン化コバルト系複合材料を比較
的容易に作製できる。このことはCoSb3の格子内空
孔、即ちスクッテルダイト型構造の対心位置に該空孔の
大きさをかなり上回る大きさの侵入原子も十分充填する
ことが可能な為、スクッテルダイト型格子をかなり歪ま
せたものを製造することができる。その結果、熱伝導率
を著しく低減させることができ、極めて高い性能指数を
有する三アンチモン化コバルト系複合材料を得ることが
できる。According to the production method of the present invention, a very high-density cobalt triantimonide composite material can be produced relatively easily. This is because the vacancy in the lattice of CoSb 3 , that is, the interpositional position of the skutterudite structure can be sufficiently filled with interpenetrating atoms having a size considerably larger than the size of the vacancy, so that the skutterudite structure Significantly distorted gratings can be produced. As a result, the thermal conductivity can be significantly reduced, and a cobalt triantimonide-based composite material having an extremely high figure of merit can be obtained.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 滝沢 博胤 宮城県仙台市太白区富沢4丁目8番50号 コ−ポしらかば102 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirotane Takizawa 4-8-50 Tomizawa, Tashiro-ku, Sendai City, Miyagi Prefecture
Claims (2)
組成の混合物を加熱溶融し、該溶融物を徐冷してなる三
アンチモン化コバルト合金を粉砕し、該粉砕物4モルに
原子半径1.4オングストローム以上の原子からなる粉
末を最大1モルまで加えて混合し、この混合物を1GP
a以上の圧力にて加圧焼結することを特徴とする三アン
チモン化コバルト系複合材料の製造方法。1. A mixture having a composition in which the molar ratio of Co and Sb is set to 1: 3 is heated and melted, and the melt is gradually cooled to pulverize a cobalt triantimonide alloy. A powder consisting of atoms having an atomic radius of 1.4 angstroms or more is added to a maximum of 1 mol and mixed.
A method for producing a cobalt triantimonide-based composite material, comprising sintering under a pressure of at least a.
1:3にせしめた組成の混合物に於いて、Coの一部又
はSbの一部を、Co及びSb以外の金属で置換するこ
とを特徴とする三アンチモン化コバルト系複合材料の製
造方法。2. In the mixture according to claim 1, wherein the molar ratio of Co to Sb is 1: 3, part of Co or part of Sb is replaced by a metal other than Co and Sb. A method for producing a cobalt triantimonide-based composite material, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8277615A JPH10102160A (en) | 1996-09-27 | 1996-09-27 | Production of cobalt triantimonide type composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8277615A JPH10102160A (en) | 1996-09-27 | 1996-09-27 | Production of cobalt triantimonide type composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10102160A true JPH10102160A (en) | 1998-04-21 |
Family
ID=17585891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8277615A Pending JPH10102160A (en) | 1996-09-27 | 1996-09-27 | Production of cobalt triantimonide type composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10102160A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0948061A2 (en) * | 1998-03-16 | 1999-10-06 | Ngk Insulators, Ltd. | P-type thermoelectric converting substance and method of manufacturing the same |
CN100344546C (en) * | 2005-09-21 | 2007-10-24 | 武汉理工大学 | Skutterudite thermoelectric chemical compound nanopowder cross co-precipitation preparation method |
JP2012514867A (en) * | 2009-01-09 | 2012-06-28 | ダイヤモンド イノベイションズ インコーポレーテッド | Influence of thermoelectric figure of merit (ZT) by high pressure and high temperature sintering |
JP2014087953A (en) * | 2012-10-30 | 2014-05-15 | Pentel Corp | Ball for ballpoint pen |
JP2014148084A (en) * | 2013-01-31 | 2014-08-21 | Pentel Corp | Ball for ball-point pen |
JP2014220506A (en) * | 2014-06-17 | 2014-11-20 | ダイヤモンドイノベイションズ インコーポレーテッド | Effect of thermoelectric figure of merit (zt) by high pressure and high temperature sintering |
-
1996
- 1996-09-27 JP JP8277615A patent/JPH10102160A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0948061A2 (en) * | 1998-03-16 | 1999-10-06 | Ngk Insulators, Ltd. | P-type thermoelectric converting substance and method of manufacturing the same |
EP0948061A3 (en) * | 1998-03-16 | 1999-12-29 | Ngk Insulators, Ltd. | P-type thermoelectric converting substance and method of manufacturing the same |
CN100344546C (en) * | 2005-09-21 | 2007-10-24 | 武汉理工大学 | Skutterudite thermoelectric chemical compound nanopowder cross co-precipitation preparation method |
JP2012514867A (en) * | 2009-01-09 | 2012-06-28 | ダイヤモンド イノベイションズ インコーポレーテッド | Influence of thermoelectric figure of merit (ZT) by high pressure and high temperature sintering |
JP2014087953A (en) * | 2012-10-30 | 2014-05-15 | Pentel Corp | Ball for ballpoint pen |
JP2014148084A (en) * | 2013-01-31 | 2014-08-21 | Pentel Corp | Ball for ball-point pen |
JP2014220506A (en) * | 2014-06-17 | 2014-11-20 | ダイヤモンドイノベイションズ インコーポレーテッド | Effect of thermoelectric figure of merit (zt) by high pressure and high temperature sintering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6440768B1 (en) | Thermoelectric semiconductor material and method of manufacturing the same | |
KR102165812B1 (en) | Method for preparing famatinite-based thermoelectric materials | |
JP2016529699A (en) | Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric elements | |
JP7344531B2 (en) | Thermoelectric conversion material and its manufacturing method | |
JPH08111546A (en) | Thermoelectric material and thermoelectric transducer | |
CN101549405A (en) | High-pressure sintering preparation method of high-densification high-performance nano crystal block thermoelectric material | |
US20090229647A1 (en) | P-Type Thermoelectric Materials, a Process for Their Manufacture and Uses Thereof | |
KR20060125789A (en) | A method of preparation for the high performance thermoelectric material indium-cobalt-antimony | |
JPH0316281A (en) | Thermoelectric semiconductor material and manufacture thereof | |
KR102399079B1 (en) | Half-heusler type thermoelectric material, method for manufacturing the same, thermoelectric element comprising the same | |
KR20130078478A (en) | Fabrication method for te-based thermoelectric materials containing twins formed by addition of dopant and nano particle sintering | |
JP2000106460A (en) | Thermoelectric semiconductor material and manufacture thereof | |
US6403875B1 (en) | Process for producing thermoelectric material | |
JPH10102160A (en) | Production of cobalt triantimonide type composite material | |
JP2004134673A (en) | N-type thermoelectric transduction material and manufacturing method thereof | |
JPWO2018225388A1 (en) | Thermoelectric conversion material, thermoelectric conversion element, and method of manufacturing thermoelectric conversion material | |
KR20110078316A (en) | Fabrication method of thermoelectric materials containing nano-dot made by external generation and inclusion | |
EP3575452B1 (en) | Chalcogen compound, method for preparing same, and thermoelectric element comprising the compound | |
US3285019A (en) | Two-phase thermoelectric body comprising a lead-tellurium matrix | |
CN111162160B (en) | P-type cubic phase Ge-Se-based thermoelectric material and preparation method thereof | |
CN107195768A (en) | Thermo-electric converting material and its manufacture method | |
CN111304492A (en) | Low-temperature n-type thermoelectric material and preparation method thereof | |
JP3541549B2 (en) | Thermoelectric material for high temperature and method for producing the same | |
TWI417248B (en) | Thermoelectric material, method for fabricating the same, and thermoelectric module employing the same | |
JPH1060563A (en) | Cobalt triantimonide series composite material |