Nothing Special   »   [go: up one dir, main page]

JPH10107317A - Gan element substrate, its manufacturing method and gan element - Google Patents

Gan element substrate, its manufacturing method and gan element

Info

Publication number
JPH10107317A
JPH10107317A JP25622996A JP25622996A JPH10107317A JP H10107317 A JPH10107317 A JP H10107317A JP 25622996 A JP25622996 A JP 25622996A JP 25622996 A JP25622996 A JP 25622996A JP H10107317 A JPH10107317 A JP H10107317A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
gan
crystal layer
metal aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25622996A
Other languages
Japanese (ja)
Other versions
JP3454037B2 (en
Inventor
Masatomo Shibata
真佐知 柴田
Takashi Furuya
貴士 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP25622996A priority Critical patent/JP3454037B2/en
Publication of JPH10107317A publication Critical patent/JPH10107317A/en
Application granted granted Critical
Publication of JP3454037B2 publication Critical patent/JP3454037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve light-emitting efficiency and light-fetching efficiency by constituting a substrate using a single crystal layer, which is expressed as Alx Iny Ga(1-x-y) N (where, 0<=x<1, 0<=y<1, 0<= (x+y)<1) and is grown on a metal aluminum single crystal layer. SOLUTION: The surface of an Al single crystal thin film 7 is nitrided, an Si doped n type GaN layer 6 is grown, and an Si doped n type AlGaN layer 5 is grown. Then, a Zn-doped InGaN layer 4 is grown, then an Mg-doped p-type AlGaN layer 3 is grown again, and an Mg doped p-type GaN layer 2 is grown on the layer 3. At that time, the layer is a single crystal layer expressed as Alx Iny Ga(1-x-y) N (where, 0<=x<1, 0<=y<1, 0<=(x+y)<1). Thus, a high quality GaN crystal is grown, and since an Si substrate is used as a conductive substrate, n-type and p-type electrodes 1 and 9 can be provided on the Si substrate, and light-emitting efficiency and light-etching efficiency are improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、青色発光ダイオ
ード(LED)やレーザダイオード(LD)に用いられ
るGaN系素子用基板及びその製造方法及びGaN系素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for a GaN-based element used for a blue light emitting diode (LED) and a laser diode (LD), a method of manufacturing the same, and a GaN-based element.

【0002】[0002]

【従来の技術】GaN系化合物半導体、例えば窒化ガリ
ウム(GaN)、窒化インジムガリウム(InGa
N)、窒化ガリウムアルミニウム(GaAlN)等は、
青色発光ダイオード(LED)やレーザダイオード(L
D)用として脚光を浴びている。
2. Description of the Related Art GaN-based compound semiconductors such as gallium nitride (GaN) and indium gallium nitride (InGa)
N), gallium aluminum nitride (GaAlN), etc.
Blue light emitting diode (LED) and laser diode (L
D) is in the limelight.

【0003】又、このGaN系化合物半導体は、耐熱性
や耐環境性が良いので光素子以外の電子デバイス用素子
に適用するための開発も行われている。
[0003] Further, since this GaN-based compound semiconductor has good heat resistance and environmental resistance, development for application to electronic device elements other than optical elements is also being conducted.

【0004】ところで、GaN系化合物半導体は、バル
ク結晶成長が難しく、実用化に耐えるGaN基板は、未
だ得られていない。現在、広く実用化されているGaN
成長用の基板は、サファイヤが用いられている。単結晶
サファイヤ基板の上に、例えば、有機金属気相成長法
(MOVPE法)でGaNをエピタキシャル成長させる
方法が一般的である。
Meanwhile, GaN-based compound semiconductors are difficult to grow in bulk crystal, and a GaN substrate that can be put to practical use has not yet been obtained. At present, GaN widely used in practice
Sapphire is used for the growth substrate. Generally, a method of epitaxially growing GaN on a single crystal sapphire substrate by, for example, metal organic chemical vapor deposition (MOVPE) is used.

【0005】サファイヤ基板は、GaNと格子定数が異
なるので、サファイヤ基板上に直接GaNを成長させた
のでは単結晶膜を成長させることはできない。
Since a sapphire substrate has a different lattice constant from GaN, a single crystal film cannot be grown by directly growing GaN on the sapphire substrate.

【0006】このための対策として、特開昭63−18
8983号公報に開示されているようにサファイヤ基板
上に一旦低温でAlNやGaNのバッファ層を成長さ
せ、このバッファ層で格子の歪みを緩和させてから、こ
のバッファ層上にGaNを成長させる方法が知られてい
る。
As a countermeasure for this, Japanese Patent Laid-Open No. 63-18 / 1988
No. 8983, a method of temporarily growing a buffer layer of AlN or GaN on a sapphire substrate at a low temperature, relaxing lattice distortion in the buffer layer, and then growing GaN on the buffer layer It has been known.

【0007】しかしながら、上述したように、低温成長
のバッファ層で格子の歪みを緩和させる方法であっても
厳密には、サファイヤ基板とGaNとの格子定数のずれ
は如何ともし難く、GaNに欠陥部分を生じ製品として
のGaN系レーザダイオード(LD)に障害をもたらす
ことがある。
However, as described above, even in the method of relaxing the lattice distortion in the buffer layer grown at a low temperature, strictly speaking, the deviation of the lattice constant between the sapphire substrate and GaN is hardly at all, and the GaN has a defect. There is a case where a portion is generated and a GaN-based laser diode (LD) as a product is damaged.

【0008】又、サファイヤ基板は、絶縁性であるため
GaN系素子を製作する場合、基板裏面側に電極を取り
付けることができない。このため、例えば青色LEDで
は、GaN結晶表面からサファイヤ基板に近いGaN層
まで掘り下げて、そこに電極を設けている。
Further, since the sapphire substrate is insulative, when manufacturing a GaN-based device, no electrode can be attached to the back surface of the substrate. For this reason, for example, in a blue LED, an electrode is provided by digging down from the GaN crystal surface to the GaN layer near the sapphire substrate.

【0009】しかしながら、サファイヤ基板の表面側に
p側電極とn側電極との2つの電極を設けなければ成ら
ず、電極面積を確保するのに難がある。又、光を取り出
すのに2つの電極が位置的に邪魔になるなどの問題が指
摘されていた。
However, it is necessary to provide two electrodes, a p-side electrode and an n-side electrode, on the surface side of the sapphire substrate, and it is difficult to secure an electrode area. In addition, a problem has been pointed out that two electrodes obstruct the position in extracting light.

【0010】更に、サファイヤ基板には、劈開性がない
ため、GaN系素子のチップ化が難しい。レーザダイオ
ード(LD)を製作する際に、劈開による共振器の製作
が困難である、等の問題がある。
Further, since the sapphire substrate has no cleavage property, it is difficult to form a GaN-based device into chips. When manufacturing a laser diode (LD), there are problems such as difficulty in manufacturing a resonator by cleavage.

【0011】上述の事情に対応して、サファイヤ基板に
代えて、砒化ガリウム(GaAs),シリコン(S
i),三酸化ネオジム・ガリウムNdGaO3 (NG
O)などの基板が検討され、これらの基板に対しても、
低温でAlNやGaNのバッファ層を成長させ、その上
にGaNを成長させる方法が採られている。
In response to the above circumstances, gallium arsenide (GaAs) and silicon (S) are used instead of the sapphire substrate.
i), neodymium gallium trioxide NdGaO 3 (NG
O) and other substrates are being considered.
A method is employed in which a buffer layer of AlN or GaN is grown at a low temperature, and GaN is grown thereon.

【0012】しかしながら、依然として格子定数差の問
題や、成長するGaNの結晶形制御の問題が解決せず、
実用化されていない。
However, the problem of the lattice constant difference and the problem of controlling the crystal shape of the growing GaN still remain.
Not practical.

【0013】次に、具体的な従来例について説明する。Next, a specific conventional example will be described.

【0014】直径2インチのサファイヤc面基板上に、
減圧(0.1atm)MOVPE法でアンドープGaN
結晶を成長させた。基板温度を550℃に設定した後、
トリメチルアルミニウム(TMA)とアンモニア(NH
3 )を原料としてAlNバッファ層を500オングスト
ローム成長させる。
On a 2 inch diameter sapphire c-plane substrate,
Undoped GaN by reduced pressure (0.1atm) MOVPE method
A crystal was grown. After setting the substrate temperature to 550 ° C,
Trimethyl aluminum (TMA) and ammonia (NH
3 ) The AlN buffer layer is grown to a thickness of 500 angstroms using the raw material of 3 ).

【0015】その後、基板温度を900℃まで昇温し、
トリメチルガリウム(TMG)とアンモニア(NH3
を原料としてGaN層を2μm成長させた。
Thereafter, the substrate temperature is raised to 900 ° C.
Trimethylgallium (TMG) and ammonia (NH 3 )
Was used as a raw material to grow a GaN layer by 2 μm.

【0016】この従来例では、成長した結晶の4結晶X
線ロッキングカーブの半値幅は、350arcsecで
あり、TEM観察によるGaN結晶中の転移密度は、8
〜11×108 cm-3であった。
In this conventional example, four crystals X
The half width of the line rocking curve is 350 arcsec, and the transition density in the GaN crystal by TEM observation is 8 arcsec.
1111 × 10 8 cm −3 .

【0017】更に、具体的な他の従来例について図2を
参照して以下に説明する。
Further, another specific conventional example will be described below with reference to FIG.

【0018】サファイア基板を用いたGaN系青色LE
Dを製作した例であり、直径2インチのサファイヤc面
基板11上に、減圧(0.1atm)MOVPE法で次
のような結晶成長を行った。
GaN blue LE using sapphire substrate
In this example, the following crystal was grown on a 2 inch diameter sapphire c-plane substrate 11 by a reduced pressure (0.1 atm) MOVPE method.

【0019】原料は、トリメチルアルミニウム(TM
A),トリメチルガリウム(TMG)、トリメチルイン
ジウム(TMI)及びアンモニア(NH3 )が用いられ
る。
The raw material is trimethylaluminum (TM
A), trimethyl gallium (TMG), trimethyl indium (TMI), and ammonia (NH 3) is used.

【0020】ドーパントは、ジシラン(Si2 6 )、
ジエチル亜鉛(DEZ),ビスシクロペンタジエニルマ
グネシウム(Cp2 Mg)が用いられる。
The dopant is disilane (Si 2 H 6 ),
Diethyl zinc (DEZ) and biscyclopentadienyl magnesium (Cp 2 Mg) are used.

【0021】サファイヤc面基板11の基板温度を55
0℃に設定し、AlNバッファ層10を500オングス
トローム成長させる。その後、基板温度を1000℃ま
で昇温し,Siドープn型GaN層6を4μm成長さ
せ、引き続きSiドープn型AlGaN層5を0.1μ
m成長させた。
The substrate temperature of the sapphire c-plane substrate 11 is 55
The temperature is set to 0 ° C., and the AlN buffer layer 10 is grown by 500 Å. Thereafter, the substrate temperature was raised to 1000 ° C., a 4 μm Si-doped n-type GaN layer 6 was grown, and the Si-doped n-type AlGaN
m.

【0022】次いで、基板温度を700℃まで下げ、Z
nドープInGaN層4を500オングストローム成長
させ、再度、基板温度を1000℃に戻し、Mgドープ
p型AlGaN層3を0.1μm成長させ、その上にM
gドープp型GaN層2を0.2μm成長させた。
Next, the substrate temperature is lowered to 700 ° C.
The n-doped InGaN layer 4 is grown to 500 Å, the substrate temperature is returned to 1000 ° C. again, the Mg-doped p-type AlGaN layer 3 is grown to 0.1 μm, and M
The g-doped p-type GaN layer 2 was grown to 0.2 μm.

【0023】上述のような構成におけるp層を低抵抗化
させるため、窒素雰囲気中で700℃で1時間の熱処理
を施し、最終的に図2に示すようなサファイア基板を用
いたGaN系青色LEDが製作された。
In order to reduce the resistance of the p-layer having the above structure, a heat treatment is performed at 700 ° C. for 1 hour in a nitrogen atmosphere, and finally a GaN blue LED using a sapphire substrate as shown in FIG. Was produced.

【0024】この他の従来例では、基板に絶縁性のサフ
ァイアを用いているので、n側電極をこの基板の裏面に
は設けることができない。このため、図2に示すように
気相エッチング(RIE)装置でGaN結晶の一部をn
型GaN層6が露出するまでエッチングし、露出された
n型GaN層6の上にn側電極9を形成した。
In another conventional example, since an insulating sapphire is used for the substrate, an n-side electrode cannot be provided on the back surface of the substrate. For this reason, as shown in FIG.
Etching was performed until the n-type GaN layer 6 was exposed, and an n-side electrode 9 was formed on the exposed n-type GaN layer 6.

【0025】又、この他の従来例で発光ダイオード(L
ED)をチップとするため、基板の裏側からダイシング
ソーで切り溝を作り分割すると、切り溝以外の部分で割
れが生ずることが多く、チップの歩留まりは40%にも
満たなかった。
In another conventional example, a light emitting diode (L
In order to use ED) as a chip, if a kerf is formed from the back side of the substrate with a dicing saw and divided, cracks often occur in portions other than the kerf, and the chip yield was less than 40%.

【0026】得られたチップをステムに搭載し、通電し
たところ発光波長450nmの青色発光が観察された。こ
の時の発光出力は、20mA通電時で1.5mWであっ
た。
When the obtained chip was mounted on a stem and energized, blue light emission having a light emission wavelength of 450 nm was observed. The emission output at this time was 1.5 mW when 20 mA was applied.

【0027】[0027]

【発明が解決しようとする課題】この発明は、上述した
現状に鑑み、基板を導電性とし、高品質なGaN系結晶
を成長させることができ、構成上、基板の裏面及び表面
のそれぞれにn型及びp型の電極を設けることができ、
電極の配置が要する面積及び光の取り出しに支障を来す
ことがなく、更に、劈開性に優れGaN系素子のチップ
化が容易であり、特にGaN系レーザダイオード(LE
D)では、発光効率、光の取り出し効率の向上が図れる
GaN系素子用基板及びその製造方法及びGaN系素子
を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned situation, the present invention makes it possible to grow a high-quality GaN-based crystal by making a substrate conductive, and in terms of the structure, n is formed on each of the back and front surfaces of the substrate. And p-type electrodes can be provided,
The area required for the arrangement of the electrodes and the light extraction are not hindered, the cleavability is excellent, and the GaN-based device can be easily formed into a chip. In particular, the GaN-based laser diode (LE)
In D), an object is to provide a GaN-based element substrate, a method of manufacturing the same, and a GaN-based element that can improve the light emission efficiency and light extraction efficiency.

【0028】[0028]

【課題を解決しようとする手段】上記目的を達成するた
め、この発明のGaN系素子用基板は、シリコン単結晶
基板と、前記シリコン単結晶基板上に堆積された金属ア
ルミニウム単結晶層と、前記金属アルミニウム単結晶層
上に成長したAlx Iny Ga(1-x-y) N(但し0≦x
<1、0≦y<1,0≦(x+y)<1)で表される単
結晶層と、より構成される。
In order to achieve the above object, a substrate for a GaN-based device according to the present invention comprises: a silicon single crystal substrate; a metal aluminum single crystal layer deposited on the silicon single crystal substrate; Al x In y Ga (1-xy) N grown on a metal aluminum single crystal layer (where 0 ≦ x
<1, 0 ≦ y <1, 0 ≦ (x + y) <1).

【0029】又、この発明のGaN系素子用基板の製造
方法は、シリコン単結晶基板上に金属アルミニウム単結
晶層を堆積する工程と、前記堆積された金属アルミニウ
ム単結晶層を400℃以上であって前記金属アルミニウ
ム単結晶層が融解しない温度の範囲内で加熱する工程
と、前記加熱工程後に前記金属アルミニウム単結晶層の
表面を窒化する工程と、より成る。
Further, in the method of manufacturing a substrate for a GaN-based element according to the present invention, a step of depositing a metal aluminum single crystal layer on a silicon single crystal substrate, and the step of depositing the deposited metal aluminum single crystal layer at 400 ° C. or more. Heating the metal aluminum single crystal layer within a temperature range in which the metal aluminum single crystal layer does not melt, and nitriding the surface of the metal aluminum single crystal layer after the heating step.

【0030】更に、この発明のGaN系素子は、シリコ
ン単結晶基板と、前記シリコン単結晶基板上に堆積され
た金属アルミニウム単結晶層と、前記金属アルミニウム
単結晶層上に成長したAlx Iny Ga(1-x-y) N(但
し0≦x<1、0≦y<1,0≦(x+y)<1)で表
される単結晶層と、前記シリコン単結晶基板及び前記G
aN単結晶層にそれぞれ形成される電極と、より構成さ
れる。
Further, the GaN-based device of the present invention comprises a silicon single crystal substrate, a metal aluminum single crystal layer deposited on the silicon single crystal substrate, and an Al x In y grown on the metal aluminum single crystal layer. A single crystal layer represented by Ga (1-xy) N (0 ≦ x <1, 0 ≦ y <1, 0 ≦ (x + y) <1), the silicon single crystal substrate and the G
an electrode formed on the aN single crystal layer.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0032】第1の実施の形態として、直径2インチの
Si{111}基板上に蒸着装置で金属Al膜を500
オングストローム堆積させ、MOVPE装置にセットす
る。この金属Al膜上に、0.1atmの減圧下でアン
ドープGaN結晶を成長させた。
As a first embodiment, a metal Al film is formed on a 2 inch diameter Si {111} substrate by a vapor deposition apparatus.
Angstrom deposition and set in MOVPE apparatus. An undoped GaN crystal was grown on the metal Al film under a reduced pressure of 0.1 atm.

【0033】具体的には、金属Al膜を堆積したSi基
板を窒素雰囲気中で、500℃で5分間保持した後、基
板温度を600℃にした雰囲気中にアンモニア(N
3 )を流し、10分間、Al表面を窒化させた。
More specifically, after the Si substrate on which the metal Al film is deposited is kept at 500 ° C. for 5 minutes in a nitrogen atmosphere, ammonia (N
H 3 ) was flowed, and the Al surface was nitrided for 10 minutes.

【0034】更に、その後、基板温度を900℃まで昇
温し、トリメチルガリウム(TMG)とアンモニア(N
3 )を原料としてGaN層を2μm成長させた。
Thereafter, the substrate temperature was raised to 900 ° C., and trimethylgallium (TMG) and ammonia (N
A GaN layer was grown at 2 μm using H 3 ) as a raw material.

【0035】上述した本発明の第1の実施の形態では、
成長した結晶の4結晶X線ロッキングカーブの半値幅
は、120arcsecであり、TEM観察によるGa
N結晶中の転移密度は、4〜6×106 cm-3であった。
In the above-described first embodiment of the present invention,
The half width of the four crystal X-ray rocking curve of the grown crystal is 120 arcsec, and Ga
The transition density in the N crystal was 4 to 6 × 10 6 cm -3 .

【0036】本発明の第2の実施の形態として、GaN
系素子としてのGaN系青色LEDを製作する例につい
て図1を参照して説明する。
As a second embodiment of the present invention, GaN
An example of manufacturing a GaN blue LED as a system element will be described with reference to FIG.

【0037】従来との比較をするため、製作に使用する
装置、原料及びドーパントは、他の従来例で説明したも
のと同一のものを用い、その説明は省略する。
For comparison with the prior art, the same equipment, raw materials and dopants as those used in the other conventional examples are used, and the explanation is omitted.

【0038】使用した基板8は、直径2インチのSi
{111}基板であり、pドープn型で、キャリア濃度
は、5×1018cm-3である。
The substrate 8 used is a 2 inch diameter Si.
It is a {111} substrate, p-doped n-type, and has a carrier concentration of 5 × 10 18 cm −3 .

【0039】この基板をMOVPE装置セットし、基板
温度を550℃に保持して、トリメチルアルミニウム
(TMA)だけを供給する。このため、トリメチルアル
ミニウム(TMA)がSi基板8上で熱分解して、Al
単結晶薄膜7が成長する。
The substrate is set in a MOVPE apparatus, the substrate temperature is maintained at 550 ° C., and only trimethyl aluminum (TMA) is supplied. For this reason, trimethyl aluminum (TMA) is thermally decomposed on the Si substrate 8 and Al
A single crystal thin film 7 grows.

【0040】Al単結晶薄膜7が、400オングストロ
ームの厚さに成長したところでトリメチルアルミニウム
(TMA)の供給を止め、次いでアンモニア(NH3
を供給し、Al単結晶薄膜7の表面を10分間窒化処理
する。
When the Al single crystal thin film 7 has grown to a thickness of 400 Å, supply of trimethyl aluminum (TMA) is stopped, and then ammonia (NH 3 )
Is supplied, and the surface of the Al single crystal thin film 7 is subjected to nitriding treatment for 10 minutes.

【0041】その後、基板温度を1000℃まで上げ、
Siドープn型GaN層6を4μm成長させ、引き続き
Siドープn型AlGaN層5を0.1μm成長させ
た。
Thereafter, the substrate temperature is raised to 1000 ° C.
The Si-doped n-type GaN layer 6 was grown to 4 μm, and subsequently the Si-doped n-type AlGaN layer 5 was grown to 0.1 μm.

【0042】次いで、基板温度を700℃まで下げ、Z
nドープInGaN層4を500オングストローム成長
させ、再度、基板温度を1000℃に戻し、Mgドープ
p型AlGaN層3を0.1μm成長させ、その上にM
gドープp型GaN層2を0.2μm成長させた。
Next, the substrate temperature was lowered to 700 ° C.
The n-doped InGaN layer 4 is grown to 500 Å, the substrate temperature is returned to 1000 ° C. again, the Mg-doped p-type AlGaN layer 3 is grown to 0.1 μm, and M
The g-doped p-type GaN layer 2 was grown to 0.2 μm.

【0043】Mgドープp型GaN層2の上にはp側電
極1が設けられ、Si基板8の裏面には、n側電極9が
設けられる。
The p-side electrode 1 is provided on the Mg-doped p-type GaN layer 2, and the n-side electrode 9 is provided on the back surface of the Si substrate 8.

【0044】上述のような構成におけるp層を低抵抗化
させるため、窒素雰囲気中で700℃で1時間の熱処理
を施し、最終的に図1に示すようなSi基板を用いたG
aN系素子、例えばGaN系青色LEDが製作された。
In order to lower the resistance of the p-layer having the above-described structure, a heat treatment is performed at 700 ° C. for 1 hour in a nitrogen atmosphere, and finally a G layer using a Si substrate as shown in FIG.
An aN-based device, for example, a GaN-based blue LED was manufactured.

【0045】上述のようにして得られたチップをシステ
ムに搭載し、通電したところ発光波長450nmの青色発
光が観察された。その時の発光出力は20mA通電時に
2.2mWであった。
When the chip obtained as described above was mounted on a system and energized, blue light emission with an emission wavelength of 450 nm was observed. The emission output at that time was 2.2 mW when 20 mA was applied.

【0046】上述の第1及び第2の実施形態によれば、
高品質なGaN系結晶を成長させることができ、導電性
基板としてSi基板を用いているため、Si基板の裏面
及び表面のそれぞれにn型及びp型の電極を設けること
ができ、電極の配置が要する面積及び光の取り出しに支
障を来すことがなく、製造工程上も従来の電極を設ける
ためのRIEによるGaN系結晶のエッチング作業が不
要となる。
According to the first and second embodiments described above,
Since a high-quality GaN-based crystal can be grown and a Si substrate is used as a conductive substrate, n-type and p-type electrodes can be provided on the back and front surfaces of the Si substrate, respectively. This does not hinder the required area and light extraction, and eliminates the need for conventional RIE-based etching of GaN-based crystals to provide electrodes in the manufacturing process.

【0047】又、電極を作るためのフォトリソグラフィ
工程が大幅に簡略化できる。更に、Si基板の裏側から
ダイシングソーで切り溝を入れて分割しても、切り溝以
外のところで割れることはなかった。このため、チップ
の歩留まりは、90%以上の高率となった。
Further, the photolithography process for forming the electrodes can be greatly simplified. Further, even if a dicing saw was used to cut a groove from the back side of the Si substrate and divided, there was no crack other than at the groove. For this reason, the yield of chips was as high as 90% or more.

【0048】尚、上述の第1及び第2の実施形態によれ
ば、金属Al膜、又はAl単結晶薄膜を加熱する温度を
500℃、又は550℃としたが、単相のAlが得ら
れ、その上にGaNを成長させたときに、良好な結晶性
が確保できる400℃以上で、且つAl膜が融解しない
温度の範囲内であれば良い。
According to the above-described first and second embodiments, the temperature for heating the metal Al film or the Al single crystal thin film is set at 500 ° C. or 550 ° C., but single-phase Al can be obtained. The temperature may be 400 ° C. or higher at which good crystallinity can be secured when GaN is grown thereon and within a temperature range at which the Al film does not melt.

【0049】従って、Alの融点660℃以上であって
も、Alと基板のSiとが固相反応を起こして合金化し
融解しない場合には800℃で加熱しても構わない。こ
のように、Al膜が融解しない温度は、Al膜の厚さ
や、堆積条件によって決まるので特定されない。
Therefore, even if the melting point of Al is 660 ° C. or higher, heating may be performed at 800 ° C. if the solid phase reaction between Al and Si causes alloying and does not melt. As described above, the temperature at which the Al film does not melt is not specified because it is determined by the thickness of the Al film and the deposition conditions.

【0050】又、上述の第1及び第2の実施の形態によ
れば、窒化処理したAl膜の表面にGaN層を成長させ
たが、この窒化処理したAl膜の表面に低温でAlNや
GaN層を成長させた後、その上にGaN層を成長させ
ても良い。このバッファ層で格子の歪みを緩和させるこ
とができる。
According to the first and second embodiments, the GaN layer is grown on the surface of the nitrided Al film. After growing the layer, a GaN layer may be grown thereon. With this buffer layer, lattice distortion can be reduced.

【0051】又、上述の製造方法の実施の形態において
は、Al膜の表面を窒化処理する工程を採用したが、A
l膜の表面をあえて窒化処理しなくともGaNを成長さ
せるために流すN原料とAlとの反応とによって、Al
膜の表面が自然と窒化されることがあるので、強制的に
窒化処理することなく、その工程を省くこともできる。
In the above embodiment of the manufacturing method, the step of nitriding the surface of the Al film is employed.
The reaction between Al and the N source flowing to grow GaN without intentionally nitriding the surface of the
Since the surface of the film may be naturally nitrided, the process can be omitted without forcibly performing the nitriding treatment.

【0052】尚、上述の実施の形態は、GaN系素子、
例えばGaN系青色LEDについて説明したが、レーザ
ダイオード(LD)や受光素子、又はGaN系材料の耐
熱性、耐環境性、その他物性を活かした電子デバイス用
素子や、SAWフィルタ等、GaN系材料を用いる素子
に広く用いることができる。
In the above-described embodiment, a GaN-based device,
For example, a GaN-based blue LED has been described, but a GaN-based material such as a laser diode (LD) or a light-receiving element, an electronic device element utilizing the heat resistance, environmental resistance, and other physical properties of the GaN-based material, a SAW filter, or the like. It can be widely used for an element to be used.

【0053】[0053]

【発明の効果】上述した本発明のGaN系素子用基板及
びその製造方法及びGaN系素子によれば、基板にSi
半導体結晶を用いているため、従来のサファイア基板で
はできなかった裏面電極を設けることができる。これに
より、GaN系素子の製作が容易になるばかりでなく、
構造設計に裕度が生まれる。又、裏面電極の採用が可能
になることからGaN系素子を作成した時に、光取り出
し面を高率良く設けることができ、発光素子の輝度向上
が図れる。
According to the above-described substrate for a GaN-based device, the method of manufacturing the same, and the GaN-based device of the present invention, the substrate is made of Si.
Since a semiconductor crystal is used, a back electrode that cannot be provided by a conventional sapphire substrate can be provided. This not only facilitates the manufacture of GaN-based devices, but also
More room for structural design. In addition, since the back electrode can be employed, a light extraction surface can be provided at a high efficiency when a GaN-based device is manufactured, and the luminance of the light-emitting device can be improved.

【0054】GaN結晶の結晶性が向上し、欠陥密度が
減ることから、GaN系素子の特性が向上する。発光ダ
イオード(LED)では輝度が向上し、レーザダイオー
ド(LD)では、寿命が延び、信頼性が増す。
Since the crystallinity of the GaN crystal is improved and the defect density is reduced, the characteristics of the GaN-based device are improved. Light emitting diodes (LEDs) increase brightness, and laser diodes (LDs) increase life and reliability.

【0055】又、サファイア基板では、困難であった基
板の機械加工が容易となり、素子のチップ化歩留まりが
向上する。特に、結晶の劈開が可能となることから、レ
ーザダイオード(LD)の共振器の作成が容易となる。
In the case of a sapphire substrate, machining of the substrate, which has been difficult, is facilitated, and the yield of device chips is improved. In particular, since it becomes possible to cleave a crystal, it becomes easy to form a resonator of a laser diode (LD).

【0056】又、Si基板は、サファイア基板に比べて
安価であることから、素子作成のプロセスの簡略化の効
果と合せて、GaN系素子の製造コストを低減できる。
Since the Si substrate is inexpensive as compared with the sapphire substrate, the manufacturing cost of the GaN-based device can be reduced in addition to the effect of simplifying the device manufacturing process.

【0057】更に、全ての材料、装置が従来のGaN系
結晶の製造プロセスと同一のものを使用できるので、経
済的効果が高く、高品質なGaN系結晶に基づくGaN
系素子用基板及びその製造方法、及びGaN系素子を得
ることができる。
Further, since all the materials and devices can be the same as those used in the conventional GaN-based crystal manufacturing process, the GaN-based crystal based on the high-quality GaN-based crystal has a high economic effect.
A substrate for a system element, a method for manufacturing the same, and a GaN element can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示すGaN系青色発光
ダイオード(LED)の概略断面図。
FIG. 1 is a schematic cross-sectional view of a GaN-based blue light emitting diode (LED) showing an embodiment of the present invention.

【図2】従来のGaN系青色発光ダイオード(LED)
の概略断面図。
FIG. 2 shows a conventional GaN-based blue light emitting diode (LED)
FIG.

【符号の説明】[Explanation of symbols]

1 p側電極 2 p型GaN層 3 p型AlGaN層 4 InGaN層 5 n型AlGaN層 6 n型GaN層 7 金属Al層 8 シリコン基板 9 n側電極 Reference Signs List 1 p-side electrode 2 p-type GaN layer 3 p-type AlGaN layer 4 InGaN layer 5 n-type AlGaN layer 6 n-type GaN layer 7 metal Al layer 8 silicon substrate 9 n-side electrode

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】シリコン単結晶基板と、前記シリコン単結
晶基板上に堆積された金属アルミニウム単結晶層と、前
記金属アルミニウム単結晶層上に成長したAlx Iny
Ga(1-x-y) N(但し0≦x<1、0≦y<1,0≦
(x+y)<1)で表される単結晶層と、より成るGa
N系素子用基板。
1. A silicon single crystal substrate, a metal aluminum single crystal layer deposited on the silicon single crystal substrate, and an Al x In y grown on the metal aluminum single crystal layer.
Ga (1-xy) N (where 0 ≦ x <1, 0 ≦ y <1, 0 ≦
A single crystal layer represented by (x + y) <1)
Substrate for N-based devices.
【請求項2】シリコン単結晶基板と、前記シリコン単結
晶基板上に堆積された表面を窒化した金属アルミニウム
単結晶とより成るGaN系素子用基板。
2. A GaN-based element substrate comprising a silicon single crystal substrate and a metal aluminum single crystal whose surface is nitrided and deposited on the silicon single crystal substrate.
【請求項3】シリコン単結晶基板と、前記シリコン単結
晶基板上に堆積された表面を窒化した金属アルミニウム
単結晶と、前記金属アルミニウム単結晶層上に成長した
Alx Iny Ga(1-x-y) N(但し0≦x<1、0≦y
<1,0≦(x+y)<1)で表される単結晶層と、よ
り成るGaN系素子用基板。
3. A silicon single crystal substrate; a metal aluminum single crystal deposited on the silicon single crystal substrate, the surface of which is nitrided; and Al x In y Ga (1-xy) grown on the metal aluminum single crystal layer. ) N (where 0 ≦ x <1, 0 ≦ y
And a single crystal layer represented by <1,0 ≦ (x + y) <1) and a GaN-based element substrate.
【請求項4】前記シリコン単結晶基板は、Si{11
1}基板であることを特徴とする請求項1ないし3のい
ずれかに記載のGaN系素子用基板。
4. The method according to claim 1, wherein the silicon single crystal substrate is Si {11.
4. The GaN-based element substrate according to claim 1, wherein the substrate is a 1 ° substrate.
【請求項5】シリコン単結晶基板と、前記シリコン単結
晶基板上に堆積された表面を窒化した金属アルミニウム
単結晶と、前記金属アルミニウム単結晶の表面に低温で
成長されたAlN又はGaNより成るバッファ層と、前
記バッファ層上に成長したAlx Iny Ga(1-x-y)
(但し0≦x<1、0≦y<1,0≦(x+y)<1)
で表される単結晶層と、より成るGaN系素子用基板。
5. A buffer comprising a silicon single crystal substrate, a metal aluminum single crystal deposited on the silicon single crystal substrate, the surface of which is nitrided, and an AlN or GaN grown on the surface of the metal aluminum single crystal at a low temperature. Layer and Al x In y Ga (1-xy) N grown on the buffer layer
(However, 0 ≦ x <1, 0 ≦ y <1, 0 ≦ (x + y) <1)
And a single crystal layer represented by the following formula:
【請求項6】前記シリコン単結晶基板は、Si{11
1}基板であることを特徴とする請求項5に記載のGa
N系素子用基板。
6. The silicon single crystal substrate is made of Si 単 11.
The Ga according to claim 5, wherein the Ga substrate is a 1} substrate.
Substrate for N-based devices.
【請求項7】シリコン単結晶基板上に金属アルミニウム
単結晶層を堆積する工程と、前記堆積された金属アルミ
ニウム単結晶層を400℃以上であって前記金属アルミ
ニウム単結晶層が融解しない温度の範囲内で加熱する工
程と、前記加熱工程後に前記金属アルミニウム単結晶層
の表面を窒化する工程と、より成るGaN系素子用基板
の製造方法。
7. A step of depositing a metal aluminum single crystal layer on a silicon single crystal substrate, and a temperature range in which the deposited metal aluminum single crystal layer is at 400 ° C. or higher and the metal aluminum single crystal layer is not melted. And a step of nitriding the surface of the metal aluminum single crystal layer after the heating step.
【請求項8】シリコン単結晶基板上に金属アルミニウム
単結晶層を堆積する工程と、前記堆積された金属アルミ
ニウム単結晶層を400℃以上であって前記金属アルミ
ニウム単結晶層が融解しない温度の範囲内で加熱する工
程と、前記加熱工程後に前記金属アルミニウム単結晶層
の表面を窒化する工程と、前記窒化された前記金属アル
ミニウム単結晶層の表面上に、Alx Iny Ga
(1-x-y) N(但し0≦x<1,0≦y<1,0≦(x+
y)<1)で表される単結晶層を成長させる工程と、よ
り成るGaN系素子用基板の製造方法。
8. A step of depositing a metal aluminum single crystal layer on a silicon single crystal substrate, and a temperature range in which the deposited metal aluminum single crystal layer is heated to 400 ° C. or higher and the metal aluminum single crystal layer is not melted. Heating the metal aluminum single crystal layer after the heating step; and nitriding the surface of the metal aluminum single crystal layer after the heating step; and forming an Al x In y Ga on the surface of the nitrided metal aluminum single crystal layer.
(1-xy) N (where 0 ≦ x <1, 0 ≦ y <1, 0 ≦ (x +
y) a step of growing a single crystal layer represented by <1), and a method of manufacturing a GaN-based element substrate.
【請求項9】シリコン単結晶基板上に金属アルミニウム
単結晶層を400℃以上であって前記金属アルミニウム
単結晶層が融解しない温度の範囲内で加熱しながら堆積
する工程と、前記堆積された前記金属アルミニウム単結
晶層の表面を窒化する工程と、前記窒化された前記金属
アルミニウム単結晶層の表面上に、Alx Iny Ga
(1-x-y) N(但し0≦x<1、0≦y<1,0≦(x+
y)<1)で表される単結晶層を成長させる工程と、よ
り成るGaN系素子用基板の製造方法。
9. A step of depositing a metal aluminum single crystal layer on a silicon single crystal substrate while heating the metal aluminum single crystal layer at a temperature of 400 ° C. or more and not melting the metal aluminum single crystal layer; Nitriding the surface of the metal aluminum single crystal layer; and forming Al x In y Ga on the surface of the nitrided metal aluminum single crystal layer.
(1-xy) N (where 0 ≦ x <1, 0 ≦ y <1, 0 ≦ (x +
y) a step of growing a single crystal layer represented by <1), and a method of manufacturing a GaN-based element substrate.
【請求項10】シリコン単結晶基板上に金属アルミニウ
ム単結晶層を堆積する工程と、前記堆積された金属アル
ミニウム単結晶層を400℃以上であって前記金属アル
ミニウム単結晶層が融解しない温度の範囲内で加熱する
工程と、前記金属アルミニウム単結晶層の表面上に、A
x Iny Ga(1-x-y) N(但し0≦x<1、0≦y<
1,0≦(x+y)<1)で表される単結晶層を成長さ
せる工程と、より成るGaN系素子用基板の製造方法。
10. A step of depositing a metal aluminum single crystal layer on a silicon single crystal substrate, and a temperature range in which the deposited metal aluminum single crystal layer is at least 400 ° C. and at which the metal aluminum single crystal layer does not melt. And heating the aluminum aluminum single crystal layer on the surface of the metal aluminum single crystal layer.
l x In y Ga (1-xy) N (where 0 ≦ x <1, 0 ≦ y <
Growing a single crystal layer represented by 1,0 ≦ (x + y) <1), and a method for manufacturing a GaN-based element substrate.
【請求項11】前記シリコン単結晶基板は、Si{11
1}基板であることを特徴とする請求項7ないし10の
いずれかに記載のGaN系素子用基板の製造方法。
11. The silicon single crystal substrate is made of Si {11
The method for manufacturing a GaN-based element substrate according to any one of claims 7 to 10, wherein the substrate is a 1} substrate.
【請求項12】シリコン単結晶基板と、前記シリコン単
結晶基板上に堆積された金属アルミニウム単結晶層と、
前記金属アルミニウム単結晶層上に成長したAlx In
y Ga(1-x-y) N(但し0≦x<1、0≦y<1,0≦
(x+y)<1)で表される単結晶層と、前記シリコン
単結晶基板及び前記GaN単結晶層にそれぞれ形成され
る電極と、より成るGaN系素子。
12. A silicon single crystal substrate, a metal aluminum single crystal layer deposited on the silicon single crystal substrate,
Al x In grown on the metal aluminum single crystal layer
y Ga (1-xy) N (where 0 ≦ x <1, 0 ≦ y <1, 0 ≦
A GaN-based device comprising: a single crystal layer represented by (x + y) <1); and electrodes respectively formed on the silicon single crystal substrate and the GaN single crystal layer.
【請求項13】シリコン単結晶基板と、前記シリコン単
結晶基板上に堆積された表面を窒化した金属アルミニウ
ム単結晶と、前記金属アルミニウム単結晶層上に成長し
たAlx Iny Ga(1-x-y) N(但し0≦x<1、0≦
y<1,0≦(x+y)<1)で表される単結晶層と、
前記シリコン単結晶基板及び前記GaN単結晶層にそれ
ぞれ形成される電極と、より成るGaN系素子。
13. A silicon single crystal substrate, a metal aluminum single crystal deposited on the silicon single crystal substrate, the surface of which is nitrided, and an Al x In y Ga (1-xy) grown on the metal aluminum single crystal layer. ) N (where 0 ≦ x <1, 0 ≦
a single crystal layer represented by y <1, 0 ≦ (x + y) <1);
A GaN-based device comprising: the silicon single crystal substrate and electrodes formed on the GaN single crystal layer, respectively.
【請求項14】前記シリコン単結晶基板は、Si{11
1}基板であることを特徴とする請求項12又は13に
記載のGaN系素子。
14. The silicon single crystal substrate is made of Si {11.
The GaN-based device according to claim 12, wherein the GaN-based device is a 1 ° substrate.
JP25622996A 1996-09-27 1996-09-27 GaN-based element substrate, method of manufacturing the same, and GaN-based element Expired - Fee Related JP3454037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25622996A JP3454037B2 (en) 1996-09-27 1996-09-27 GaN-based element substrate, method of manufacturing the same, and GaN-based element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25622996A JP3454037B2 (en) 1996-09-27 1996-09-27 GaN-based element substrate, method of manufacturing the same, and GaN-based element

Publications (2)

Publication Number Publication Date
JPH10107317A true JPH10107317A (en) 1998-04-24
JP3454037B2 JP3454037B2 (en) 2003-10-06

Family

ID=17289732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25622996A Expired - Fee Related JP3454037B2 (en) 1996-09-27 1996-09-27 GaN-based element substrate, method of manufacturing the same, and GaN-based element

Country Status (1)

Country Link
JP (1) JP3454037B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940098B1 (en) * 1999-03-17 2005-09-06 Mitsubishi Cable Industries, Ltd. Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
WO2007036163A1 (en) * 2005-09-30 2007-04-05 Lattice Power (Jiangxi) Corporation Method for manufacturing indium gallium aluminium nitride thin film on silicon substrate
JP2008159980A (en) * 2006-12-26 2008-07-10 Kyocera Corp Light-emitting element and lighting device
US7674643B2 (en) 2003-12-24 2010-03-09 Samsung Electro-Mechanics Co., Ltd. Gallium nitride semiconductor light emitting device and method of manufacturing the same
US8076694B2 (en) 2005-05-02 2011-12-13 Nichia Corporation Nitride semiconductor element having a silicon substrate and a current passing region

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940098B1 (en) * 1999-03-17 2005-09-06 Mitsubishi Cable Industries, Ltd. Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US7115486B2 (en) 1999-03-17 2006-10-03 Mitsubishi Cable Industries Ltd. Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US7504324B2 (en) 1999-03-17 2009-03-17 Mitsubishi Chemical Corporation Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US7589001B2 (en) 1999-03-17 2009-09-15 Mitsubishi Chemical Corporation Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
US7674643B2 (en) 2003-12-24 2010-03-09 Samsung Electro-Mechanics Co., Ltd. Gallium nitride semiconductor light emitting device and method of manufacturing the same
US8076694B2 (en) 2005-05-02 2011-12-13 Nichia Corporation Nitride semiconductor element having a silicon substrate and a current passing region
WO2007036163A1 (en) * 2005-09-30 2007-04-05 Lattice Power (Jiangxi) Corporation Method for manufacturing indium gallium aluminium nitride thin film on silicon substrate
JP2008159980A (en) * 2006-12-26 2008-07-10 Kyocera Corp Light-emitting element and lighting device

Also Published As

Publication number Publication date
JP3454037B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
EP2383846B1 (en) Light emitting device and manufacturing method thereof
JP3282174B2 (en) Nitride semiconductor light emitting device
JPH06177423A (en) Blue light emitting element
JP3269344B2 (en) Crystal growth method and semiconductor light emitting device
JP3740744B2 (en) Semiconductor growth method
JP2000150959A (en) Gallium nitride compound semiconductor light emitting element
JPH10145006A (en) Compound semiconductor device
JPH10341060A (en) Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode
JP2003023179A (en) p-TYPE III NITRIDE SEMICONDUCTOR, ITS MANUFACTURING METHOD, SEMICONDUCTOR DEVICE, AND ITS MANUFACTURING METHOD
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP4698053B2 (en) Method for producing group III nitride compound semiconductor
EP1869717B1 (en) Production method of group iii nitride semioconductor element
JPH0864866A (en) Manufacture of semiconductor light emitting device
JP3454037B2 (en) GaN-based element substrate, method of manufacturing the same, and GaN-based element
JP3753948B2 (en) Group III nitride compound semiconductor manufacturing method and group III nitride compound semiconductor device
JP3371830B2 (en) Nitride semiconductor light emitting device
JP4631214B2 (en) Manufacturing method of nitride semiconductor film
CN101147303A (en) Gallium nitride compound semiconductor laser element and manufacturing method therefor
JPH09116130A (en) Iii-v compound semiconductor and its manufacture and light emitting device
JP2002094113A (en) Method for fabricating iii-v nitride-based semiconductor light emitting device
JP3543628B2 (en) Method for growing nitride III-V compound semiconductor and method for manufacturing semiconductor light emitting device
JP3344189B2 (en) Semiconductor device having distributed Bragg reflection mirror multilayer film
JP4333092B2 (en) Manufacturing method of nitride semiconductor
JP2000101140A (en) Manufacture of gallium nitride compound semiconductor light emitting element
JP2003218468A (en) Semiconductor laser element and manufacturing method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030624

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees