JPH0385437A - Biosensor system - Google Patents
Biosensor systemInfo
- Publication number
- JPH0385437A JPH0385437A JP1221776A JP22177689A JPH0385437A JP H0385437 A JPH0385437 A JP H0385437A JP 1221776 A JP1221776 A JP 1221776A JP 22177689 A JP22177689 A JP 22177689A JP H0385437 A JPH0385437 A JP H0385437A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- measured
- column
- oxygen
- inosine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 102000004190 Enzymes Human genes 0.000 claims abstract description 7
- 108090000790 Enzymes Proteins 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims abstract description 5
- 238000001514 detection method Methods 0.000 claims description 10
- 244000005700 microbiome Species 0.000 claims description 4
- 239000000969 carrier Substances 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 abstract description 11
- 239000001301 oxygen Substances 0.000 abstract description 11
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 abstract description 10
- 229930010555 Inosine Natural products 0.000 abstract description 10
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 abstract description 10
- 229960003786 inosine Drugs 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 8
- AUHDWARTFSKSAC-HEIFUQTGSA-N (2S,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-2-(6-oxo-1H-purin-9-yl)oxolane-2-carboxylic acid Chemical compound [C@]1([C@H](O)[C@H](O)[C@@H](CO)O1)(N1C=NC=2C(O)=NC=NC12)C(=O)O AUHDWARTFSKSAC-HEIFUQTGSA-N 0.000 abstract description 6
- GRSZFWQUAKGDAV-UHFFFAOYSA-N Inosinic acid Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(NC=NC2=O)=C2N=C1 GRSZFWQUAKGDAV-UHFFFAOYSA-N 0.000 abstract description 6
- 229940028843 inosinic acid Drugs 0.000 abstract description 6
- 235000013902 inosinic acid Nutrition 0.000 abstract description 6
- 239000004245 inosinic acid Substances 0.000 abstract description 6
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 abstract description 5
- 238000002347 injection Methods 0.000 abstract description 4
- 239000007924 injection Substances 0.000 abstract description 4
- 230000002572 peristaltic effect Effects 0.000 abstract description 3
- 241000251468 Actinopterygii Species 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract description 2
- 235000013372 meat Nutrition 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- 230000003100 immobilizing effect Effects 0.000 abstract 1
- 239000008363 phosphate buffer Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 4
- OQRXBXNATIHDQO-UHFFFAOYSA-N 6-chloropyridine-3,4-diamine Chemical compound NC1=CN=C(Cl)C=C1N OQRXBXNATIHDQO-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 102100036286 Purine nucleoside phosphorylase Human genes 0.000 description 2
- 108010093894 Xanthine oxidase Proteins 0.000 description 2
- 102100033220 Xanthine oxidase Human genes 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 108010009099 nucleoside phosphorylase Proteins 0.000 description 2
- 102000004008 5'-Nucleotidase Human genes 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、食品工業、食品衛生等の分野で使月する同一
試料に含有される複数成分を計測するノイオセンサシス
テムに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a neurosensor system that measures multiple components contained in the same sample used in the food industry, food hygiene, and other fields.
従来、同一試料に含有される複数成分を計測する場合、
それぞれ異なる酵素、微生物等の生体関連化合物を固定
化した不溶性担体を充填した複数のカラムを順次それぞ
れの後に感応電極等の検出部を連結して試料流路に直列
に連結した構成のバイオセンサシステムが使用されてき
た。Conventionally, when measuring multiple components contained in the same sample,
A biosensor system consisting of multiple columns each filled with insoluble carriers immobilized with different enzymes, microorganisms, and other biological compounds, connected in series to a sample flow path by connecting a detection section such as a sensitive electrode after each column. has been used.
従来の上記構成のバイオセンサシステムでは、多数のカ
ラムを直列に連結したため、このカラムによる圧損失の
ために、吐出圧の高いポンプを用いないと、安定した試
料送液が行なえなく、また、生体反応によって生成され
た化学成分が次のカラムで妨害物質として作用すること
があり、さらに、測定試料数に応じた数の感応電極等の
検出部が必要であるという問題があった。In the conventional biosensor system with the above configuration, many columns are connected in series, and due to the pressure loss caused by the columns, stable sample delivery is not possible unless a pump with high discharge pressure is used. There is a problem in that chemical components produced by the reaction may act as interfering substances in the next column, and a number of detection units such as sensitive electrodes are required in proportion to the number of samples to be measured.
本発明は上記の問題を解消するためになされたもので、
圧損失が小さく、カラムが生体反応生成物の妨害を受け
ることなく、さらに複数成分を1つの検出部で計測でき
るシステムを提供することを目的とする。The present invention was made to solve the above problems.
It is an object of the present invention to provide a system in which pressure loss is small, a column is not interfered with by biological reaction products, and multiple components can be measured with one detection unit.
本発明のバイオセンサシステムは、試料流路を分岐し、
それぞれ異なる酵素、微生物等の生体関連化合物を固定
化した不溶性担体を充填した複数のカラムの1つを上記
試料流路の分岐の1つに直接連結し、他のカラムをそれ
ぞれ遅延時間の異なる遅延回路を介して分岐に連結し、
各カラムでの生体反応で生成された化学成分が流れる各
カラムからの流路を合流させ、合流流路に感応電極等の
検出部を設けたものである。The biosensor system of the present invention branches the sample flow path,
One of a plurality of columns each filled with an insoluble carrier immobilized with a different enzyme, microorganism, or other biologically relevant compound is directly connected to one of the branches of the sample flow path, and the other columns are connected to each other with different delay times. Connect to the branch via a circuit,
The flow paths from each column through which chemical components generated by biological reactions in each column flow are merged, and a detection section such as a sensitive electrode is provided in the merged flow path.
上記のように構成すると、系内に注入された試料は、試
料流路に並列に連結された複数のカラムに逐次流入し、
各カラムで生体反応で生成された化学成分が検出部に逐
次達するので、同一試料に含有される複数成分を1つの
検出部で計測することができる。With the above configuration, the sample injected into the system sequentially flows into multiple columns connected in parallel to the sample flow path,
Since chemical components generated by biological reactions in each column reach the detection section one after another, multiple components contained in the same sample can be measured with one detection section.
〔実施例〕 第1図は本発明の一実施例の構成を示す。〔Example〕 FIG. 1 shows the configuration of an embodiment of the present invention.
図において1は試料注入口、2はペリスタポンプ、3−
1はガラスピーズ等の不溶性担体に2種類の酵素、ヌク
レオシドホスホリラーゼ、キサンチンオキシダーゼを固
定化したものを充填したカラム、3−2はガラスピーズ
等の不溶性担体に3種類の酵素、5′−ヌクレオチダー
ゼ、ヌクレオシドホスホリラーゼ、キサンチンオキシダ
ーゼを固定化したものを充填したカラム、4は酸素電極
、5は流路の遅延回路である。In the figure, 1 is a sample injection port, 2 is a peristaltic pump, and 3-
1 is a column packed with two types of enzymes, nucleoside phosphorylase, and xanthine oxidase immobilized on an insoluble carrier such as glass peas, and 3-2 is a column packed with three types of enzymes and 5'-nucleotidase immobilized on an insoluble carrier such as glass peas. , a column filled with immobilized nucleoside phosphorylase and xanthine oxidase, 4 is an oxygen electrode, and 5 is a flow channel delay circuit.
流路にはpH7,8,0,05Mのりん酸緩衝液が流さ
れており、被測定物質であるイノシン酸、イノシン、ヒ
ボキサンチンの混合物を試料注入口1から注入すると、
試料が先ずカラム3−1に達し、ここでイ、ノシン、ヒ
ボキサンチンが反応して酸素を消費し、消費酸素が酸素
電極4で計測され、続いて、カラム3−2でイノシン酸
、イノシン、ヒボキサンチンが反応して消費した酸素が
酸素電極4で計測され、この両者の計測値より、上記試
料の魚肉の鮮度指標であるKi値が計測できる。A phosphate buffer solution with a pH of 7, 8, 0,05M is flowing through the channel, and when a mixture of inosinic acid, inosine, and hyboxanthin, which are the substances to be measured, is injected from the sample injection port 1,
The sample first reaches column 3-1, where inosinic acid, inosine, and hyboxanthin react and consume oxygen, and the consumed oxygen is measured by oxygen electrode 4. Then, inosinic acid, inosine, and hyboxanthin react in column 3-2. The oxygen consumed by the reaction is measured by the oxygen electrode 4, and from these two measured values, the Ki value, which is an index of the freshness of the fish meat of the sample, can be measured.
イノシンロ賃+イノシン+七iキサンチン測定温度30
℃、流速IW17分の場合の応答曲線を第2図(a)に
示す。Inosine + Inosine + 7i xanthine measurement temperature 30
℃ and a flow rate IW of 17 minutes is shown in FIG. 2(a).
同図においてAがイノシン、ヒボキサンチン合計量に相
当するピーク、Bがイノシン酸、イノシン、ヒボキサン
チン合計量に相当するピークである。In the figure, A is a peak corresponding to the total amount of inosine and hypoxanthine, and B is a peak corresponding to the total amount of inosinic acid, inosine, and hypoxanthine.
第2図(b)は遅延回路5をカラム3−2の後に挿入し
た場合の応答曲線である。この場合には、注入試料がカ
ラム3−2内で大きく拡散した後、更に長い遅延回路5
内を進行するため、図!alの場合に比べ試料拡散が著
しく、ピークBの検出感度が低くなる。FIG. 2(b) shows a response curve when the delay circuit 5 is inserted after column 3-2. In this case, after the injected sample has largely diffused within the column 3-2, a longer delay circuit 5
Figure to proceed within! Sample diffusion is significant compared to the case of al, and the detection sensitivity of peak B is lowered.
第3図は本発明の他の実施例を示す。FIG. 3 shows another embodiment of the invention.
図におて1,2.4は第1図の同一符号と同一または相
当するものを示し、3−1.3−2゜3−3.3−4.
3−5はそれぞれ異なる酵素、微生物等の生体関連化合
物を固定化した不溶性担体を充填したカラム、5−1.
5−2.5−3゜5−4はそれぞれ長さが異なる遅延回
路である。In the figures, 1, 2.4 are the same as or correspond to the same reference numerals in FIG.
3-5 is a column filled with an insoluble carrier on which a different enzyme, microorganism, or other biologically related compound is immobilized; 5-1.
5-2, 5-3 and 5-4 are delay circuits having different lengths.
なお、遅延回路は、長さの異なる流路を挿入する方法に
よる以外に、特定の成分のみを吸着するカラムクロマト
用高分子吸着剤などを充填した遅延を目的とした物質に
よることもできる。In addition to the method of inserting flow channels of different lengths, the delay circuit can also be formed of a material for the purpose of delay, such as a polymer adsorbent for column chromatography that adsorbs only a specific component.
以上説明したように、本発明によれば、圧損失が低くな
り、安定した試料送液を容易に行なうことができ、生体
反応化学成分が他のカラムで妨害物質として作用するこ
とがなく、また、複数の成分を1つの検出部で計測でき
るという効果がある。As explained above, according to the present invention, pressure loss is reduced, stable sample liquid transfer can be performed easily, bioreactive chemical components do not act as interfering substances in other columns, and This has the advantage that a plurality of components can be measured with one detection unit.
第1図は本発明の一実施例の構成を示す説明図、第2図
(a)、 (b)はそれぞれ第1図に示すバイオセンサ
システムと遅延回路をカラムの後にした構成における計
測値の応答曲線を示すグラフ、第3図は本発明の他の実
施例を示す説明図である。
1・・・試料注入口、2・・・ペリスタポンプ、3−1
゜3−2.3−3.3−4.3−5・・・カラム、4・
・・酸素電極、5.5−1.5−2.5−3.5−4・
・・遅延回路。
なお図中同一符号は同一または相当するものを示す。FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the present invention, and FIGS. 2(a) and 2(b) show measured values in a configuration in which the biosensor system and delay circuit shown in FIG. 1 are placed after the column, respectively. A graph showing a response curve and FIG. 3 are explanatory diagrams showing another embodiment of the present invention. 1... Sample injection port, 2... Peristaltic pump, 3-1
゜3-2.3-3.3-4.3-5... Column, 4.
・・Oxygen electrode, 5.5-1.5-2.5-3.5-4・
...Delay circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
システムで、それぞれ異なる酵素、微生物等の生体関連
化合物を固定化した不溶性担体を充填した複数のカラム
の1つを試料流路に直接連結し、他のカラムを上記試料
流路にそれぞれ遅延時間の異なる遅延回路を介して並列
に連結し、上記各カラムからの流路を合流させ、合流流
路に感応電極等の検出部を設け、同一試料に含有される
複数成分を同一検出部で逐次計測することを特徴とする
バイオセンサシステム。In a biosensor system that measures multiple components contained in the same sample, one of multiple columns filled with insoluble carriers each immobilized with a different biologically related compound such as an enzyme or microorganism is directly connected to the sample flow path. Other columns are connected to the sample flow path in parallel via delay circuits with different delay times, the flow paths from each of the columns are merged, and a detection section such as a sensitive electrode is provided in the merge flow path. A biosensor system characterized by sequentially measuring multiple components contained in the same detection unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1221776A JPH0385437A (en) | 1989-08-30 | 1989-08-30 | Biosensor system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1221776A JPH0385437A (en) | 1989-08-30 | 1989-08-30 | Biosensor system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0385437A true JPH0385437A (en) | 1991-04-10 |
Family
ID=16772020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1221776A Pending JPH0385437A (en) | 1989-08-30 | 1989-08-30 | Biosensor system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0385437A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010534831A (en) * | 2007-07-26 | 2010-11-11 | アイ−センス インコーポレイテッド | Fine channel type sensor composite structure |
-
1989
- 1989-08-30 JP JP1221776A patent/JPH0385437A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010534831A (en) * | 2007-07-26 | 2010-11-11 | アイ−センス インコーポレイテッド | Fine channel type sensor composite structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Danielsson et al. | Enzyme thermistor devices and their analytical applications | |
Okuma et al. | Flow system for fish freshness determination based on double multi-enzyme reactor electrodes | |
Hansen | Flow-injection enzymatic assays | |
AU677627B2 (en) | Microbiological test method and reagents | |
Thompson et al. | Ion electrode based enzymic analysis of creatinine | |
Xie et al. | Development of an integrated thermal biosensor for the simultaneous determination of multiple analytes | |
Soldatkina et al. | Conductometric biosensor for arginine determination in pharmaceutics | |
Mattiasson et al. | Enzyme thermistor assay of cholesterol, glucose, lactose and uric acid in standard solutions as well as in biological samples | |
Danielsson et al. | Enzyme thermistor analysis in clinical chemistry and biotechnology | |
Lavagnini et al. | Amperometric lysine bioprobes analysis in feeds | |
Solsky et al. | Ion-selective electrodes in biomedical analysis | |
JPH0385437A (en) | Biosensor system | |
Zhang et al. | Simultaneous determination of glucose and sucrose by a dual‐working electrode multienzyme sensor flow‐injection system | |
Nikolelis et al. | Repetitive determinations of amylase, maltose, sucrose, and lactose by sample injection in closed flow-through systems | |
Stiefel et al. | Comparison of human pancreatic and parotid amylase activities on different substrates | |
Barabino et al. | Coupled reactions of immobilized enzymes and immobilized substrates: clinical application as exemplified by amylase assay. | |
Tong et al. | Enzymatic L-arginine and L-lysine determination using a carbonate ion selective membrane electrode | |
Hitzmann et al. | Neural networks as a modeling tool for the evaluation and analysis of FIA signals | |
KR100611510B1 (en) | Test strips and reagents for electrochemical biosensors to measure concentrations of analytes in physiological samples containing blood cells | |
Schwartz et al. | Utilization of automation for studies of enzyme kinetics | |
Wehnert et al. | Application of an enzyme thermistor for the determination of glucose in complex fermentation media | |
Joseph et al. | A stopped-flow clinical analyzer in which immobilized-enzyme reaction loops are used. | |
CN101464459A (en) | Single packaged detection reagent | |
SU1395663A1 (en) | Device for measuring concentration of substrates of fermentative reactions | |
JP2932082B2 (en) | Biosensor system for measuring freshness of meat |