JPH0378157B2 - - Google Patents
Info
- Publication number
- JPH0378157B2 JPH0378157B2 JP16803186A JP16803186A JPH0378157B2 JP H0378157 B2 JPH0378157 B2 JP H0378157B2 JP 16803186 A JP16803186 A JP 16803186A JP 16803186 A JP16803186 A JP 16803186A JP H0378157 B2 JPH0378157 B2 JP H0378157B2
- Authority
- JP
- Japan
- Prior art keywords
- contact material
- porous
- tank
- water
- wastewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 52
- 239000002351 wastewater Substances 0.000 claims description 36
- 238000011282 treatment Methods 0.000 claims description 27
- 239000002994 raw material Substances 0.000 claims description 20
- 238000000746 purification Methods 0.000 claims description 19
- 239000000378 calcium silicate Substances 0.000 claims description 17
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 17
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims description 17
- 244000005700 microbiome Species 0.000 claims description 14
- 239000004088 foaming agent Substances 0.000 claims description 13
- 239000002002 slurry Substances 0.000 claims description 13
- MKTRXTLKNXLULX-UHFFFAOYSA-P pentacalcium;dioxido(oxo)silane;hydron;tetrahydrate Chemical compound [H+].[H+].O.O.O.O.[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O MKTRXTLKNXLULX-UHFFFAOYSA-P 0.000 claims description 10
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000005187 foaming Methods 0.000 claims description 5
- UGGQKDBXXFIWJD-UHFFFAOYSA-N calcium;dihydroxy(oxo)silane;hydrate Chemical compound O.[Ca].O[Si](O)=O UGGQKDBXXFIWJD-UHFFFAOYSA-N 0.000 claims description 4
- 239000000852 hydrogen donor Substances 0.000 claims description 4
- 229910017464 nitrogen compound Inorganic materials 0.000 claims description 4
- 150000002830 nitrogen compounds Chemical class 0.000 claims description 4
- 150000003018 phosphorus compounds Chemical class 0.000 claims description 4
- 239000010865 sewage Substances 0.000 description 29
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 15
- 239000005416 organic matter Substances 0.000 description 15
- 229910052698 phosphorus Inorganic materials 0.000 description 15
- 239000011574 phosphorus Substances 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000000292 calcium oxide Substances 0.000 description 8
- 235000012255 calcium oxide Nutrition 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 238000005273 aeration Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 210000002700 urine Anatomy 0.000 description 6
- 239000011575 calcium Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- 241000282898 Sus scrofa Species 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 3
- 239000003830 anthracite Substances 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000006114 decarboxylation reaction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 244000144972 livestock Species 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000012851 eutrophication Methods 0.000 description 2
- -1 ferrosilicon dust Chemical compound 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 235000017709 saponins Nutrition 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
<産業上の利用分野>
本発明は、家畜尿汚水、生活雑廃水、下水等の
リン化合物、窒素化合物及び有機物を含む有機性
汚水を浄化処理することができる水浄化材及びそ
れを使用した有機性汚水の処理方法に関し、さら
に詳言するとSS(浮遊物質)及びBOD(生物化学
的酸素要求)の除去はもちろん脱リン及び脱窒素
をも単純な工程で容易に且つ効率よく行うように
工夫したものである。
<従来の技術及びその課題>
家畜尿汚水、生活雑廃水、下水等の有機性汚水
は、湖沼、内海での「あおこ」、「赤潮」を誘引す
る富栄養化の原因となる。従来、このような有機
性汚水の処理には活性汚泥法、散水床法、回転
円板接触法等種々あるが、設置面積、処理効率、
維持管理など多くの点から浸漬床法が採用され
ることが多々ある。この浸漬床法は好気性床
槽に接触材を充填し、そこに汚水を流入して曝気
することで接触材表面に生物膜を生じさせ、この
生物膜の微生物の働きにより汚水を浄化するとい
うものである。また、この浸漬床法に用いる接
触材としては砂利、プラスチツク片、ハニカムチ
ユーブなどが用いられている。
しかしながら、上述の浸漬床法では、有機物
は除去できるが、窒素化合物及びリン酸及びリン
酸塩などのリン化合物(以下、リンという)が十
分には除去できないので、その処理水を閉鎖系水
域に放流した場合には富栄養化をもたらし、水産
漁業などに大きな被害を与えている。よつて有機
性汚水を浸漬床法で処理する場合には別途、脱
窒素及び脱リンを行う必要がある。
そこで、一般には浸漬床法とともに生物学的
脱窒素法が行われている。この生物学的脱窒素法
は、浸漬床法における好気性床槽の後に嫌気
性床槽を設け、好気性床槽にて亜硝酸菌、硝
酸菌によつて酸化されてNH+ 4−Nから変化した
NO- 2−N、NO- 3−Nを、嫌気性床槽にて脱窒
菌により無酸素条件下で還元してN2ガスとする
というものである。しかし、この脱窒素を十分行
うには、浸漬床法における好気性床槽にて
NH+ 4−NのNO- 2−N、NO- 3−Nへの酸化、すな
わち硝化を十分行わなければならないが、硝化を
進行とともにPHが低下してしまうので好気性床
槽にてのアルカリ剤による中和処理が必要とな
り、管理及び設備が複雑になるという問題がある
とともに薬品使用による経済的負担も大きい。
そして、従来においては、このような脱窒素の
後脱リンが行われている。脱リンの方法としては
カルシウム塩、アルミ、鉄などの金属塩との反応
によりリン酸塩として沈澱除去する方法と、カル
シウムの存在下のアルカリ領域でヒドロキシアパ
タイトとして晶析脱リンする方法とがあるが、何
れの方法においても脱リン装置あるいは脱リン槽
という設備が別途必要になる。また、前者の沈澱
除去法においては、汚泥発生が多く、しかも難脱
水性であるので処理が大変であり、且つ薬品使用
による経済的負担が大きいという問題があり、後
者の晶析脱リン法においては汚泥の発生量及び薬
品の使用量は小さいが、カルシウム濃度調整、PH
調整、脱炭酸など晶析を進行させる条件を作り出
す前処理工程の制御が難しく、管理及び設備が複
雑になるという問題がある。
何れにしても有機性汚水を処理する場合には、
現状では有機物除去(浸漬床法)、脱窒素及び
脱リンという三工程が必須となる。ここで、この
ような有機性汚水の処理工程の一例を第8図を参
照しながら説明する。同図に示すように、有機性
汚水をスクリーン沈砂池1及び振動篩2により一
次処理して浮遊物及び沈澱物を除去した後、希釈
槽3にて水で希釈し、次いで浸漬床法に好気槽
4にて有機物除去を行うとともにアルカリ剤によ
るPHを調整しながら硝化を十分行う。次に、撹拌
槽5にてメタノールを添加して撹拌した後嫌気槽
6にて脱窒素を行い、再び再好気槽7にて有機物
除去を行い、脱リン工程へ送る。脱リン工程は脱
炭酸槽8にて硫酸を添加しての脱炭酸、PH調整層
9にて石膏及び消石灰を添加してPH調整、及び
CaCO3などを沈澱槽10にて沈澱する工程から
なる前処理工程として脱リン槽11にてヒドロキ
シアパタイトとしてリンを除去する晶析脱リンと
からなり、この脱リン工程を経た処理水は消毒槽
12にて消毒された後排水される。
このように、従来において有機性汚水を処理す
る場合には、多くの設備と高度な運転管理が必要
であつた。
本発明はこのような事情に鑑み、有機物除去、
脱窒素及び脱リンを単純な工程で容易に且つ効率
よく行うことができる水浄化材及びそれを使用し
た有機性汚水の処理方法を提供することを目的と
する。
<課題を解決するための手段>
本発明者らは、前記目的を達成するために種々
検討を重ねた結果、珪酸カルシウム水和物からな
るある種の構成物が、有機生汚水の生物膜法によ
る処理において微生物の生息に良好な環境を作り
出すとともにリン酸イオンを晶析除去し、且つ硝
化に好適なPHを維持することを知見し、本発明を
完成させた。
本発明に係る水浄化材は、珪酸質原料と石灰質
原料とからなる水スラリーを気泡剤の存在下で発
泡させると共に硬化させて得た発泡硬化物を水熱
反応処理して得られ且つ50〜90%の空〓率を有す
る多孔質珪酸カルシウム水和物を主成分とする多
孔質接触材の表面に、微生物を生息させてなるこ
とを特徴とし、
また、本発明に係る有機性汚水の処理方法は、
リン化合物、窒素化合物及び有機物を含む有機性
汚水の処理方法において、多孔質接触材が含まれ
る好気性領域へ上記有機性汚水及び/又は嫌気性
処理水を通して空気存在下で当該多孔質接触材に
接触させ、好気性処理水とする工程と、上記好気
性処理水を実質的に空気不存在下で水素供与体と
接触させて嫌気性処理水とする工程とを含み、上
記多孔質接触材が、珪酸質原料と石灰質原料とか
らなる水スラリーを気泡剤の存在下で発泡させる
と共に硬化させて得た発泡硬化物を水熱反応処理
して得られ且つ50〜90%の空〓率を有する多孔質
珪酸カルシウム水和物を主成分とするものである
ことを特徴とする。
以下に本発明の構成を詳述する。
本発明に係る水浄化材は、特定の多孔質接触材
の表面に微生物を生息させたものであるが、予め
微生物を生息させる処理をしたものでもよいし、
有機性汚水の処理を行うことによりその初期段階
で微生物を生息させるようにしたものでもよい。
本発明に係る水浄化材の母体となる多孔質接触
材について具体的に説明する。この多孔質接触材
は、例えば、珪酸質原料と石灰質原料とを主原料
とする水スラリーにアルミニウム粉末などの起泡
剤を添加して高温高圧下で水熱反応処理して得ら
れる珪酸カルシウム水和物からなる成形物、ある
いはこの成形物を破砕して得られる破砕物で空〓
率が50〜90%のもの、又は珪酸質原料と石灰質原
料とを主原料とする水スラリーを高温高圧下で水
熱反応処理後粉砕して得られる粉状物に気泡を入
れて造粒あるいは成形した珪酸カルシウム水和物
からなる造粒物あるいは成形物で空〓率が50〜90
%のものである。
ここで、珪酸カルシウム水和物は珪酸質原料と
石灰質原料とを所定のCaO/SiO2モル比(0.5〜
2.0程度)で常法に従つてオートクレーブにて所
要の圧力・温度下で高温高圧養生することによつ
て得られるものであり、珪酸質原料としては珪
石、珪砂、クリストバライト、無定形シリカ、珪
藻土、フエロシリコンダスト、白土などの粉末、
石灰質原料としては生石灰、消石灰、セメントな
どの粉末が挙げられる。このようにして得られる
珪酸カルシウム水和物は、トバモライト、ゾノト
ライト、CSHゲル、フオシヤジヤイト、ジヤイ
ロライト、ヒレプランダイト等よりなる群より選
ばれる1種または2種以上のものとなる。またこ
の中でもトバモライト、ゾノトライト、CSHゲ
ルはPH緩衝能が高く、比表面積が20〜400m2/g
と大きいので特に好ましい。
本発明に用いるい多孔質接触材は50〜90%の空
〓率を有するが、この空〓を珪酸カルシウム水和
物の生成時に得る場合には珪酸質物質と石灰質物
質とをスラリー状にしたものに泡剤としてアルミ
ニウム粉末などの金属発泡剤やAE剤などの起泡
剤を添加した後高温高圧下で水熱反応処理すれば
よい。ここで金属発泡剤は化学反応によつてガス
を発生するもので、その使用割合はスラリー中の
巻き込み気泡や水の量によつて変化するが化学反
応式から導くことができる。また起泡剤としては
具体的には樹脂せつけん類、サポニン、合成界面
活性剤類、加水分解たんぱく質、高分子界面活性
剤などがあり、主として界面活性作用により物理
的に気泡を導入するもので、単に原料と混合して
撹拌することにより泡を生じさせる場合と、特殊
な撹拌槽又は起泡装置を使用して安定した泡をつ
くり、この泡を体積計量して原料に混合する場合
とがある。このような起泡剤を用いる場合は泡の
安定性を試験した上、その添加量を決定する必要
がある。また、空〓率の小さい珪酸カルシウム水
和物を得た場合にはそれが成形物であれば粉末化
した後、造粒又は成形する過程で気泡を入れてそ
の空〓率を調整すればよい。つまり粉末状の珪酸
カルシウム水和物にアクリル樹脂エマルジヨン等
の高分子樹脂の糊剤の水溶液を添加し、必要に応
じて起泡剤を加えた後混練したものをパンペレタ
イザーにより造粒したり型枠成形したりすればよ
い。ここでの乾燥方法としては、自然乾燥、加熱
乾燥のどちらを採用してもよい。また、ここで、
粉末状の珪酸カルシウム水和物としては、上記の
ように空〓を入れて成形したものを破砕したとき
に得られる粉末を用いてもよい。なお、空〓率の
高い多孔質接触材とする場合には、型枠成形を採
用するのがよい。
本発明にかかる有機性汚水の処理方法は、かか
る多孔質接触材を充填した好気性床槽に一次処
理して浮遊物や沈澱物を除去した有機性汚水を曝
気しながら希釈せずに通水することにより、生物
膜法による有機物の除去を行うものである。すな
わち、これにより多孔質接触材の表面に微生物が
生息して水浄化材となり、その水浄化材が生物膜
法による有機物の除去を行う。またこれと同じ
に、リンの除去と、NH+ 4−Nの硝化とをも同時
に行い、さらに、NH+ 4−Nが硝化されたNO- 2−
N、NO- 3−Nを含む処理水を嫌気性床槽に導
入し、メタノールなどの水素供与体を加えて通気
性嫌気性状態で脱窒菌によりNO- 2−N、NO- 3−
NをN2ガスに還元することにより、生物学的脱
窒素を行うことができる。
ここで、好気性床槽に充填されている水浄化
材の母体となる多孔質接触材は、その表面に珪酸
カルシウム水和物の結晶もしくはゲル表面の微細
な凹凸を有しているので微生物が固定されやす
く、生物膜の形成が容易であるとともに有機物の
分解生成物(微生物代謝産物)である乳酸、酪
酸、酢酸などの低級脂肪酸類によるPH低下を緩和
して微生物の至適PHである弱アルカリ性のPH8〜
9の状態を安定に作り出すことができる。よつ
て、本発明方法の好気性床槽においては、有機
物の分解に寄与する細菌・原生動物及び硝化を行
う亜硝酸菌・硝酸菌の活動が活発となるので、高
負荷での処理が可能となり、導入する有機性汚水
が一般的豚舎の尿汚水程度の高濃度であつても希
釈が不要となる。
また、かかる好気性床槽で同時に行われる脱
リンは次の作用による。
好気性床槽中の水浄化材の母体となる多孔質
接触材は、これを形成している珪酸カルシウム水
和物の結晶もしくはゲル表面からカルシウムヒド
ロキシアパタイトの晶析に必要なCa2+を供給す
るとともに該接触材のPH緩衝能により、汚水のPH
が低くまたその値が変動しても常にほぼPH8〜9
の安定した状態をつくり出しているので、汚水中
のリン酸イオンはCa2+と反応してカルシウムヒ
ドロキシアパタイトの形で該接触材表面に晶析さ
れる。このとき、多孔質接触材の空〓は、汚水の
一方向の流れを乱す作用をするとともに該接触材
表面の流速を緩和するように働くので、リン酸イ
オンとCa2+とによるカルシウムヒドロキシアパ
タイトの析出あるいは成長が促進される。また、
この多孔質接触材は、リン酸カルシウムあるいは
カルシウムヒドロキシアパタイトに類する「結晶
種」を含んでいないが、吸着能を有しているた
め、通水初期においては生成したカルシウムヒド
ロキシアパタイトを吸着し、またその後はその表
面がカルシウムヒドロキシアパタイトの核形成に
都合のよい構造になつてその微細空〓、細孔部分
にカルシウムヒドロキシアパタイトの核を形成す
るものである。
汚水を処理した後の多孔質接触材、すなわち本
発明の水浄化材を走査電子顕微鏡で観察するとそ
の空〓内部及び結晶表面に微生物が多量に着床・
生息しているのが見られ、また不定形結晶も観察
され、EPMA(X線マイクロアナライザー)によ
りカルシウムヒドロキシアパタイトと同定され
た。
このことからも明らかなように、水浄化材の母
体となる多孔質接触材の細孔・空〓微生物の着床
及び脱リンに大きな効果を与えており、本発明に
用いる多孔質接触材は、空〓率が50〜90%、好ま
しくは60〜80%のものが微生物の着床及び脱リン
に望ましい。この多孔質接触材の空〓率が50%未
満では比表面積が小さく微生物の着床が悪く且つ
リン除去率が小さく、一方、空〓率が90%を超え
ると好気性床槽への汚水導入及び曝気により浮
上りが生じるとともに強度低下が著しく、またPH
緩衝能力及びリン除去効果の持続性も悪くなり、
好ましくない。
また、本発明に用いる多孔質接触材の大きさも
リン除去性能に大きく関与している。接触材の径
が0.5mmより小さいとSSならびに晶析結晶により
目づまりしやすいので長期使用することができ
ず、一方、径が大きすぎても接触面積の減少によ
りリンの除去率が低下するのでともに好ましくな
い。よつて、多孔質接触材は0.5〜10mmの大きさ
のものが望ましい。
ここで、本発明にかかる有機性汚水の処理方法
の例を第1図及び第2図に示す。
第1図に示す例は好気性床槽の次に嫌気性
床槽を配置した例である。同図に示すようにスク
リーン沈砂池1及び振動篩2により一次処理され
た有機性汚水は、上記多孔質接触材が充填されて
いる好気槽(好気性床槽)3に導入されて有機
物除去、脱リン及び硝化が行われる。次いで、撹
拌槽4に導入されてメタノール又は有機性汚水が
添加された後嫌気槽(嫌気性床槽)5で脱窒素
され、再好気槽6及び消毒槽7を経て排水され
る。
第2図は循環式の処理工程の例である。同図に
示すようにスクリーン沈砂池1及び振動篩2で一
次処理された有機性汚水は撹拌槽13及び嫌気槽
14を経た後、多孔質接触材が充填されている好
気槽15へ導入され、さらに撹拌槽13へ循環さ
れる。これにより有機物処理、脱リン及び脱窒素
が行われる。この処理水は再嫌気槽16及び消毒
槽7を経て排水される。
これからも明らかなように、本発明にかかる有
機性汚水の処理方法によれば従来に比べて工程数
が大幅に削減されるとともに運転管理も容易とな
る。
さらに本発明に用いる多孔質接触材は重金属を
吸着する作用も有しているので、有機性汚水中に
重金属が含まれていれば、有機物及びリンととも
に除去される。
なお、本発明方法で使用済となつた水浄化材
は、珪酸石灰質肥料ならびに土壌改良材として再
利用できるので大変経済的である。
以下に、本発明の水浄化材の母体となる多孔質
接触材の製造例、及び本発明の効果を示す試験例
を示す。
(多孔質接触材の製造例)
(1) CSHゲル接触材
珪石粉末4重量部、生石灰粉末2重量部、消
石灰粉末1重量部及び普通ポルトランドセメン
ト3重量部(CaO/SiO2モル比=1.5)に金属
アルミニウム粉末0.008重量部を加えてなる混
合物に水7重量部を加えて水スラリーにした。
次いで、この水スラリーを型枠に注入して4時
間静置後脱型したものを回転ブラシで粉砕し、
パンペレタイザーで5〜10mmの粒径に造粒後オ
ートクレーブにて150℃5気圧下で10時間水熱
処理して多孔質接触材とした。この接触材の空
〓率は70%であつた。
(2) トバモライト接触材
珪石粉末5重量部、生石灰粉末2重量部及び
普通ポルトランドセメント3重量部(CaO/
SiO2モル比=0.8)に金属アルミニウム粉末
0.008重量部を加えてなる混合物に水7重量部
を加えて水スラリーにした。この水スラリーを
型枠に注入して4時間静置後脱型したものをオ
ートクレーブにて180℃10気圧下で10時間水熱
処理した。得られた成形物をクラツシヤーで粗
砕して5〜10mmの粒径にふるいわけて多孔質接
触材とした。このものの空〓率は75%であつ
た。
(3) ゾノトライト接触材
珪石粉末と生石灰粉末とをCaO/SiO2モル
比1.0となるように混合し、固体成分に対して
10倍重量の水に分散させて水スラリーを形成
し、その後オートクレーブ中にて210℃、20気
圧下で撹拌しながら10時間水熱処理した。この
ようにして得られたゾノトライト粉末の絶乾物
に対してアクリル樹脂エマルジヨン(固形物10
%)を4重量倍加え、混練後造粒成形して110
℃で乾燥固化させ、5〜10mmの粒径にふるいわ
けて多孔質接触材とした。このものの空〓率は
73%であつた。
(4) 種々の空隙率を有するトバモライト接触材
上記(2)に示した製造方法において、金属アル
ミニウム粉末及び水の添加割合を第1表に示す
ように変化させることにより各種トバモライト
接触材を得た。
<Field of Industrial Application> The present invention relates to a water purification material capable of purifying organic wastewater containing phosphorus compounds, nitrogen compounds, and organic substances such as livestock urine wastewater, miscellaneous wastewater, and sewage, and an organic wastewater treatment using the same. To be more specific, we devised a method to easily and efficiently remove SS (suspended solids) and BOD (biochemical oxygen demand), as well as dephosphorization and denitrification using a simple process. It is something. <Prior art and its problems> Organic wastewater such as livestock urine wastewater, miscellaneous wastewater, and sewage causes eutrophication that induces "blue water" and "red tide" in lakes and inland seas. Conventionally, there are various methods for treating organic sewage, such as activated sludge method, sprinkled bed method, and rotating disk contact method, but there are
The immersed bed method is often adopted for many reasons, including maintenance. In this immersed bed method, an aerobic bed tank is filled with a contact material, and sewage is poured into it and aerated to form a biofilm on the surface of the contact material, and the sewage is purified by the action of microorganisms in this biofilm. It is something. In addition, gravel, plastic pieces, honeycomb tubes, etc. are used as contact materials for this immersed bed method. However, although the above-mentioned immersed bed method can remove organic matter, it cannot sufficiently remove nitrogen compounds and phosphorus compounds such as phosphoric acid and phosphates (hereinafter referred to as phosphorus), so the treated water is not allowed to flow into a closed water system. When released, it causes eutrophication and causes great damage to fisheries and other industries. Therefore, when organic wastewater is treated by the soaked bed method, it is necessary to separately perform denitrification and dephosphorization. Therefore, biological denitrification methods are generally used along with the soaked bed method. In this biological denitrification method, an anaerobic bed tank is installed after the aerobic bed tank in the immersed bed method, and NH + 4 -N is oxidized by nitrite bacteria and nitrate bacteria in the aerobic bed tank. changed
NO - 2 -N and NO - 3 -N are reduced to N 2 gas by denitrifying bacteria in an anaerobic bed tank under anoxic conditions. However, in order to fully perform this denitrification, it is necessary to use an aerobic bed tank in the immersed bed method.
Oxidation of NH + 4 -N to NO - 2 -N and NO - 3 -N, that is, nitrification, must be carried out sufficiently, but as the nitrification progresses, the pH decreases, so the alkali Neutralization treatment with a chemical agent is required, which poses a problem of complicating management and equipment, and also imposes a large economic burden due to the use of chemicals. Conventionally, such denitrification is followed by dephosphorization. There are two methods of dephosphorization: one is to precipitate and remove it as a phosphate by reaction with a metal salt such as calcium salt, aluminum, or iron, and the other is to crystallize and dephosphorize it as hydroxyapatite in an alkaline region in the presence of calcium. However, either method requires separate equipment called a dephosphorization device or a dephosphorization tank. In addition, the former sedimentation removal method generates a lot of sludge and is difficult to dewater, making treatment difficult, and the use of chemicals imposes a large economic burden. Although the amount of sludge generated and the amount of chemicals used are small, calcium concentration adjustment and pH
There is a problem in that it is difficult to control the pretreatment process that creates conditions for crystallization, such as adjustment and decarboxylation, and the management and equipment become complicated. In any case, when treating organic wastewater,
Currently, three steps are essential: organic matter removal (soaked bed method), denitrification, and dephosphorization. Here, an example of a process for treating such organic wastewater will be explained with reference to FIG. As shown in the figure, organic sewage is primarily treated in a screen settling tank 1 and a vibrating sieve 2 to remove floating matter and sediment, and then diluted with water in a dilution tank 3, which is then suitable for the soaked bed method. In addition to removing organic matter in the air tank 4, sufficient nitrification is performed while adjusting the pH using an alkaline agent. Next, methanol is added and stirred in the stirring tank 5, followed by denitrification in the anaerobic tank 6, organic matter removal again in the re-aerobic tank 7, and sent to the dephosphorization step. The dephosphorization process includes decarboxylation by adding sulfuric acid in the decarboxylation tank 8, pH adjustment by adding gypsum and slaked lime in the PH adjustment layer 9, and
The pretreatment process consists of precipitating CaCO 3 etc. in the precipitation tank 10, and crystallization dephosphorization in which phosphorus is removed as hydroxyapatite in the dephosphorization tank 11. The treated water after this dephosphorization process is sent to the disinfection tank. After being disinfected at step 12, it is drained. As described above, in the past, when treating organic wastewater, a large number of facilities and sophisticated operational management were required. In view of these circumstances, the present invention has been developed to remove organic matter,
It is an object of the present invention to provide a water purification material that can easily and efficiently perform denitrification and dephosphorization in a simple process, and a method for treating organic wastewater using the same. <Means for Solving the Problems> As a result of various studies to achieve the above-mentioned object, the present inventors have discovered that a certain type of composition consisting of calcium silicate hydrate can be used in the biofilm method for organic raw wastewater. The present invention was completed based on the findings that the treatment with nitrification creates a favorable environment for microorganisms to live in, crystallizes out phosphate ions, and maintains a pH suitable for nitrification. The water purification material according to the present invention is obtained by hydrothermal reaction treatment of a foamed cured product obtained by foaming and curing a water slurry consisting of a siliceous raw material and a calcareous raw material in the presence of a foaming agent, and The organic wastewater treatment according to the present invention is characterized in that microorganisms are allowed to live on the surface of a porous contact material mainly composed of porous calcium silicate hydrate having a vacancy of 90%. The method is
In a method for treating organic wastewater containing phosphorus compounds, nitrogen compounds, and organic substances, the organic wastewater and/or anaerobically treated water is passed through an aerobic region containing a porous contact material to the porous contact material in the presence of air. contacting the water to produce aerobic treated water; and contacting the aerobic treated water with a hydrogen donor in substantially the absence of air to produce anaerobic treated water, the porous contact material comprising: , obtained by hydrothermal reaction treatment of a foamed cured product obtained by foaming and curing an aqueous slurry consisting of a siliceous raw material and a calcareous raw material in the presence of a foaming agent, and having a porosity of 50 to 90%. It is characterized by having porous calcium silicate hydrate as its main component. The configuration of the present invention will be explained in detail below. The water purification material according to the present invention is one in which microorganisms are made to live on the surface of a specific porous contact material, but it may be one that has been previously treated to make microorganisms live there,
It is also possible to treat organic sewage so that microorganisms can live there at an early stage. The porous contact material that is the base material of the water purification material according to the present invention will be specifically explained. This porous contact material is, for example, a calcium silicate water obtained by adding a foaming agent such as aluminum powder to a water slurry whose main raw materials are silicic raw materials and calcareous raw materials, and performing a hydrothermal reaction treatment under high temperature and high pressure. A molded product made of a compound or a crushed product obtained by crushing this molded product.
50% to 90%, or by pulverizing a water slurry whose main raw materials are silicic raw materials and calcareous raw materials after hydrothermal reaction treatment under high temperature and high pressure. Granules or molded products made of molded calcium silicate hydrate with a void ratio of 50 to 90.
%belongs to. Here, calcium silicate hydrate is prepared by combining a silicate raw material and a calcareous raw material at a predetermined CaO/SiO 2 molar ratio (0.5~
2.0) and is obtained by curing at high temperature and high pressure under the required pressure and temperature in an autoclave according to a conventional method. Silica raw materials include silica stone, silica sand, cristobalite, amorphous silica, diatomaceous earth, Powder such as ferrosilicon dust, white clay,
Examples of calcareous raw materials include powders such as quicklime, slaked lime, and cement. The calcium silicate hydrate thus obtained is one or more selected from the group consisting of tobermorite, xonotlite, CSH gel, phosiyaite, gyalolite, heleprandite, and the like. Also, among these, tobermorite, xonotlite, and CSH gel have high PH buffering ability and a specific surface area of 20 to 400 m 2 /g.
It is especially preferable because it is large. The porous contact material used in the present invention has a porosity of 50 to 90%, but when this porosity is obtained during the production of calcium silicate hydrate, the silicic material and calcareous material are made into a slurry. After adding a foaming agent such as a metal foaming agent such as aluminum powder or a foaming agent such as an AE agent to the material, the foaming agent may be subjected to a hydrothermal reaction treatment at high temperature and high pressure. Here, the metal foaming agent generates gas through a chemical reaction, and its usage ratio varies depending on the amount of air bubbles and water entrained in the slurry, but can be derived from the chemical reaction equation. Specific examples of foaming agents include resin soaps, saponins, synthetic surfactants, hydrolyzed proteins, and polymeric surfactants, which mainly introduce air bubbles physically through surfactant action. There are cases where foam is generated simply by mixing with the raw material and stirring, and cases where stable foam is created using a special stirring tank or foaming device, and this foam is measured by volume and mixed with the raw material. be. When using such a foaming agent, it is necessary to test the stability of the foam and then determine the amount to be added. In addition, if you obtain calcium silicate hydrate with a small porosity, if it is a molded product, you can adjust the porosity by adding air bubbles during the granulation or molding process after pulverizing it. . In other words, an aqueous solution of a sizing agent of a polymer resin such as an acrylic resin emulsion is added to powdered calcium silicate hydrate, a foaming agent is added if necessary, the mixture is kneaded, and the mixture is granulated using a pan pelletizer or molded. All you have to do is form a frame. As the drying method here, either natural drying or heat drying may be employed. Also, here,
As the powdered calcium silicate hydrate, a powder obtained by crushing a molded product containing voids as described above may be used. In addition, when forming a porous contact material with a high porosity, it is preferable to employ mold molding. The method for treating organic sewage according to the present invention is to pass organic sewage, which has undergone primary treatment to remove floating matter and sediment, through an aerobic bed tank filled with such a porous contact material without diluting it while aerating it. By doing so, organic matter is removed using the biofilm method. That is, as a result, microorganisms live on the surface of the porous contact material and become a water purification material, and the water purification material removes organic matter by the biofilm method. In the same way, phosphorus removal and nitrification of NH + 4 −N are performed simultaneously, and NO − 2 − in which NH + 4 −N is nitrified is also removed.
Treated water containing N, NO - 3 -N is introduced into an anaerobic bed tank, a hydrogen donor such as methanol is added, and NO - 2 -N, NO - 3 - is produced by denitrifying bacteria in an aerated anaerobic state.
Biological denitrification can be performed by reducing N to N2 gas. Here, the porous contact material that is the base of the water purification material filled in the aerobic bed tank has microscopic irregularities on the surface of calcium silicate hydrate crystals or gel, so microorganisms can It is easy to fix and form a biofilm, and it also alleviates the pH drop caused by lower fatty acids such as lactic acid, butyric acid, and acetic acid, which are decomposition products of organic matter (microbial metabolites), and is the optimal pH for microorganisms. Alkaline pH8~
9 can be stably created. Therefore, in the aerobic bed tank of the method of the present invention, the activities of bacteria and protozoa that contribute to the decomposition of organic matter as well as nitrite bacteria and nitrate bacteria that perform nitrification become active, making it possible to process at high loads. Even if the organic sewage to be introduced has a high concentration similar to urine sewage from a general pig farm, dilution is not required. Moreover, the dephosphorization that is simultaneously carried out in such an aerobic bed tank is due to the following action. The porous contact material, which is the base of the water purification material in the aerobic bed tank, supplies the Ca 2+ necessary for crystallization of calcium hydroxyapatite from the crystal or gel surface of the calcium silicate hydrate that forms it. At the same time, the PH buffering ability of the contact material reduces the PH of the wastewater.
PH is low, and even if the value fluctuates, the pH is always around 8 to 9.
As a result, phosphate ions in the wastewater react with Ca 2+ and crystallize on the surface of the contact material in the form of calcium hydroxyapatite. At this time, the voids in the porous contact material act to disturb the flow of wastewater in one direction and to moderate the flow velocity on the surface of the contact material, so calcium hydroxyapatite formed by phosphate ions and Ca 2+ The precipitation or growth of is promoted. Also,
This porous contact material does not contain "crystal seeds" similar to calcium phosphate or calcium hydroxyapatite, but it has adsorption ability, so it adsorbs the generated calcium hydroxyapatite at the initial stage of water flow, and thereafter The surface has a structure suitable for the formation of calcium hydroxyapatite nuclei, and calcium hydroxyapatite nuclei are formed in the microscopic cavities and pores. When the porous contact material after sewage treatment, that is, the water purification material of the present invention, is observed with a scanning electron microscope, a large amount of microorganisms settles inside the pores and on the crystal surfaces.
Amorphous crystals were also observed, which were identified as calcium hydroxyapatite by EPMA (X-ray microanalyzer). As is clear from this, the pores and cavities of the porous contact material, which is the base of the water purification material, have a great effect on the attachment of microorganisms and dephosphorization, and the porous contact material used in the present invention A vacancy rate of 50 to 90%, preferably 60 to 80% is desirable for microbial implantation and dephosphorization. If the vacancy rate of this porous contact material is less than 50%, the specific surface area is small, making it difficult for microorganisms to settle and the phosphorus removal rate is low. On the other hand, if the vacancy rate exceeds 90%, sewage is introduced into the aerobic bed tank. As a result of aeration, surfacing occurs and the strength decreases significantly, and PH
The durability of the buffering capacity and phosphorus removal effect also deteriorates.
Undesirable. Further, the size of the porous contact material used in the present invention also has a large effect on the phosphorus removal performance. If the diameter of the contact material is smaller than 0.5 mm, it will be easily clogged by SS and crystallization, so it cannot be used for a long period of time.On the other hand, if the diameter is too large, the phosphorus removal rate will decrease due to the reduction of the contact area. Both are undesirable. Therefore, it is desirable that the porous contact material has a size of 0.5 to 10 mm. Here, an example of the method for treating organic wastewater according to the present invention is shown in FIGS. 1 and 2. The example shown in FIG. 1 is an example in which an anaerobic bed tank is placed next to an aerobic bed tank. As shown in the figure, organic sewage that has been primarily treated in a screen settling basin 1 and a vibrating sieve 2 is introduced into an aerobic tank (aerobic bed tank) 3 filled with the above-mentioned porous contact material to remove organic matter. , dephosphorization and nitrification are performed. Next, the water is introduced into a stirring tank 4 and methanol or organic wastewater is added thereto, denitrified in an anaerobic tank (anaerobic bed tank) 5, and drained through a re-aerobic tank 6 and a disinfection tank 7. FIG. 2 is an example of a circulating treatment process. As shown in the figure, organic sewage that has been primarily treated in a screen settling tank 1 and a vibrating sieve 2 passes through an agitation tank 13 and an anaerobic tank 14, and then is introduced into an aerobic tank 15 filled with a porous contact material. , and further circulated to the stirring tank 13. This performs organic matter treatment, dephosphorization, and denitrification. This treated water is drained through a re-anaerobic tank 16 and a disinfection tank 7. As is clear from this, according to the organic wastewater treatment method according to the present invention, the number of steps is significantly reduced compared to the conventional method, and operation management is also facilitated. Furthermore, the porous contact material used in the present invention also has the function of adsorbing heavy metals, so if heavy metals are contained in organic wastewater, they will be removed together with organic matter and phosphorus. Incidentally, the used water purification material obtained by the method of the present invention can be reused as a silicate lime fertilizer and a soil improvement material, which is very economical. Below, examples of manufacturing a porous contact material that is the base material of the water purification material of the present invention and test examples showing the effects of the present invention are shown. (Manufacturing example of porous contact material) (1) CSH gel contact material 4 parts by weight of silica powder, 2 parts by weight of quicklime powder, 1 part by weight of slaked lime powder, and 3 parts by weight of ordinary Portland cement (CaO/SiO 2 molar ratio = 1.5) 0.008 parts by weight of metallic aluminum powder was added to the mixture, and 7 parts by weight of water was added to make a water slurry.
Next, this water slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold, which was then crushed with a rotating brush.
After granulation with a pan pelletizer to a particle size of 5 to 10 mm, the mixture was hydrothermally treated in an autoclave at 150°C under 5 atm for 10 hours to obtain a porous contact material. The void ratio of this contact material was 70%. (2) Tobermorite contact material 5 parts by weight of silica powder, 2 parts by weight of quicklime powder, and 3 parts by weight of ordinary Portland cement (CaO/
SiO2 molar ratio = 0.8) to metallic aluminum powder
7 parts by weight of water was added to the mixture formed by adding 0.008 parts by weight to form a water slurry. This water slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold, which was then hydrothermally treated in an autoclave at 180° C. and under 10 atmospheric pressure for 10 hours. The obtained molded product was crushed using a crusher and sieved to a particle size of 5 to 10 mm to obtain a porous contact material. The empty rate for this item was 75%. (3) Zonotlite contact material Silica stone powder and quicklime powder are mixed so that the CaO/SiO 2 molar ratio is 1.0, and
It was dispersed in 10 times its weight of water to form a water slurry, and then hydrothermally treated in an autoclave at 210°C under 20 atm with stirring for 10 hours. Acrylic resin emulsion (solid matter 10%
%) was added 4 times by weight, kneaded, and then granulated to form 110
The mixture was dried and solidified at ℃ and sieved to particles with a particle size of 5 to 10 mm to obtain a porous contact material. The empty rate of this thing is
It was 73%. (4) Tobermorite contact materials with various porosity In the production method shown in (2) above, various tobermorite contact materials were obtained by changing the addition ratio of metal aluminum powder and water as shown in Table 1. .
【表】
試験例 1
第3図に示すように、多孔質接触材を充填した
200×150×310mmの第1の槽101及び200×150
×290mmの第2の槽102に、固液分離を行つた
後0.3mmφの鋼の振動篩を通過させた豚尿汚水の
一次処理水を上向き流で通水するとともに、各槽
101,102の下方より500ml/分で曝気を行
うことにより、各種多孔質接触材を母材とした水
浄化材の性能を調べた。ここで、上記製造例(1)、
(2)、(3)で製造した各多孔質接触材を上記第1及び
第2の槽101,102に充填して一次処理水を
10/日の流速で通水したものをそれぞれ試験例
A−1、A−2、A−3とした。
比較のため、多孔質接触材の代りに市販のバラ
ス、軽石、石灰石及びポリプロピレンで粒度5〜
10mmのものを接触材として用いたものをそれぞれ
比較例B−1、B−2、B−3、B−4とした。
これらの試験例A−1〜A−3及び比較例B−
1〜B−4の2〜3ケ月経過時において、この処
理水の透明度、PH、BOD及びT−P(全リン)、
NH+ 4−N、NO- 2−N、NO- 3−Nの各濃度を各4
回測定し、その平均を第2表に示す。[Table] Test example 1 As shown in Figure 3, a porous contact material was filled.
First tank 101 of 200×150×310mm and 200×150
The primary treated water of swine urine sewage, which has been subjected to solid-liquid separation and passed through a 0.3 mmφ steel vibrating sieve, is passed through the second tank 102 of ×290 mm in an upward flow. By performing aeration from below at a rate of 500 ml/min, the performance of water purification materials using various porous contact materials as base materials was investigated. Here, the above production example (1),
The porous contact materials manufactured in (2) and (3) are filled into the first and second tanks 101 and 102 to supply the primary treated water.
Test examples A-1, A-2, and A-3 were obtained by passing water at a flow rate of 10/day. For comparison, instead of the porous contact material, commercially available ballast, pumice, limestone, and polypropylene were used with particle sizes of 5 to 5.
Comparative Examples B-1, B-2, B-3, and B-4 were made using a 10 mm contact material as a contact material. These Test Examples A-1 to A-3 and Comparative Example B-
1 to B-4 after 2 to 3 months, the clarity, PH, BOD and T-P (total phosphorus) of the treated water,
Each concentration of NH + 4 −N, NO − 2 −N, and NO − 3 −N was
The measurements were taken twice and the averages are shown in Table 2.
【表】
この結果に示すようにBOD容積負荷1.0Kg/
日・m3高負荷の処理においてBOD除去率は比較
例が77〜87%であるのに対して本発明法では95%
以上の高い除去率を示した。またリンの除去率は
比較例においては25%以下でほとんど除去できて
いないが、本発明法では90%以上の高い除去率で
あつた。さらに次工程で脱窒素を行なうために
は、有機体窒素及びNH+ 4−NをNO- 3−Nあるい
はNO- 2−Nに硝化させる必要があるが、本発明
法によれば、NH+ 4−N容積負荷が0.4Kg/日・m3
の高負荷処理でも完全に硝化が進行しており、次
工程で脱窒素が完全に行える状態となつている。
これに対し比較例では10〜30%のNH+ 4−Nが残
つているので、たとえその後生物学的脱窒素工程
を付加してもこの残存のNH+ 4−Nはそのまま流
出されることになる。
試験例 2
試験例1と同様な実験装置を行い、製造例(4)に
示す各種多孔質接触材を使用して豚尿一次処理水
を処理して多孔質接触材の空〓率の大小による浄
化の違いを試験した。なお他の条件は試験例1と
同様とした。この結果は試験例1と同様2〜3ケ
月の間の4回の測定結果の平均を第3表に示す。[Table] As shown in this result, BOD volume load 1.0Kg/
In high-load processing of 3 days/m3, the BOD removal rate in the comparative example was 77-87%, while in the method of the present invention it was 95%.
This showed a high removal rate. Further, the removal rate of phosphorus was 25% or less in the comparative example, which was hardly removed, but the method of the present invention had a high removal rate of 90% or more. Furthermore, in order to perform denitrification in the next step, it is necessary to nitrify organic nitrogen and NH + 4 -N to NO - 3 -N or NO - 2 -N, but according to the method of the present invention, NH + 4 -N volumetric load is 0.4Kg/day・m 3
Even with the high-load treatment, nitrification has progressed completely, making it possible for complete denitrification to occur in the next process.
On the other hand, in the comparative example, 10 to 30% of NH + 4 -N remains, so even if a biological denitrification process is added afterwards, this remaining NH + 4 -N will be washed away as is. Become. Test Example 2 The same experimental equipment as in Test Example 1 was used, and the various porous contact materials shown in Production Example (4) were used to treat primary treated pig urine water. The difference in purification was tested. Note that other conditions were the same as in Test Example 1. Similar to Test Example 1, the results are shown in Table 3, which is the average of four measurements over a period of 2 to 3 months.
【表】【table】
【表】
第3表に示すように、多孔質接触材の空〓率が
50%以上の時にBOD除去、リン除去の効果が大
きくかつ硝化が充分に進む。なお、空〓率が90%
を超えると通水時の浮き上り現象により槽より流
出してしまうと同時に強度低下が著しい。
この結果より多孔質接触材の空〓構造は、浄化
材と有機性汚水との接触機会を高めるとともに細
孔、空〓内に微生物を着床のために極めて重要で
ある。また、同時に晶析してくるカルシウムヒド
ロキシアパタイトの結晶成長のためにも極めて重
要でリン除去効果に大きく寄与している。
<実施例>
実施例 1
本実施例には第4図a,bに示すようなA〜F
の6つの処理室からなるコンクリート製の汚水処
理装置を用いた。ここで、A,B及びFは好気性
床槽であり、A及びBには上記製造例(2)と同様
にして製造し粒径5〜15mmのトバモライトを主た
る構成物とする多孔質接触材がまた、Fには粒径
5〜8mmの同様なトバモライト接触材が充填され
ており、それぞれの下方に曝気を行うための散気
筒110a〜110cが配設されている。これら
散気筒110a〜110cはエアー配管111及
びエアー調整バルブ112を介してエアーポンプ
113と接続されている。処理槽Cは撹拌槽でメ
タノールタンク114からメタノールが供給され
るようになつている。また、D及びEは嫌気性
床槽でこの内部には市販のアンスラサイトで粒径
5〜10mmのものが充填されている。
このような汚水処理装置において、豚舎汚水の
一次処理水を汚水導入管115より600/日の
流量で通水処理して排出管116より処理液を排
出した。なお、処理室Cにおけるメタノールの添
加流量は1.2/日である。
このような条件で約6ケ月間処理し、このとき
の一次処理水及び排出処理液のPH、透視度、
BOD、SS、T−P及びT−N(全窒素)をそれ
ぞれ測定した。この結果は第5図に示す。同図よ
り明らかなように、本実施例によれば、豚舎汚水
中の有機物、リン及び窒素が長期に亘つて確実に
除去されている。
実施例 2
本実施例には第6図に示すようなG〜Lの6つ
の処理室からなるコンクリート製の汚水処理装置
を用いた。ここでI及びJは好気性床槽であ
り、これらの槽には上記製造例(2)と同様にして製
造した粒径5〜10mmのトバモライトを主たる構造
とする接触材が充填されているとともにその下方
には曝気を行うための散気筒120a,120b
が配設されている。これら散気筒120a,12
0bはエアー配管121及び調整バルブ122を
介してエアーポンプ123と接続されている。一
方、処理槽G及びHは嫌気性床槽で市販のアン
スラサイトで粒径5〜15mmのものが充填されてお
り、汚水導入管125より汚水が導入されるとと
もにメタノールタンク124よりメタノールが供
給されるようになつている。これらG,Hを通つ
た汚水はI,Jの好気槽で処理された後Kの処理
槽より循環水導入管127及び流量ポンプ128
を介してGの処理槽へ循環されるようになつてい
る。さらにKの後は再嫌気槽Lが設けており、こ
こにはG及びHと同様のアンスラサイトが充填さ
れている。
このような汚水処理装置において、汚水導入管
125より600/日の流量で、豚舎汚水の一次
処理水を通水するとともにKからGへの循環を
5400/日とし、さらに汚水中の窒素濃度が高い
ため汚水中のBOD源だけでは脱窒素効果が不十
分であるため、嫌気槽Gへ水素供与体としてのメ
タノールを0.2/日供給した。このようにして、
約6ケ月間に亘つて汚水を処理し、このときの一
次処理水及び処理排出管126からの排出処理液
のPH、透視度、BOD、SS、T−P及びT−Nを
それぞれ測定した。この結果は第7図に示す。同
図より明らかなように、本実施例によれば、豚舎
汚水中の有機物、リン及び窒素が長期に亘つて確
実に除去されている。
ここで実施例1、2の結果をさらに詳しく検討
しておく。
第5図及び第7図に示すように、実施例1、2
では、汚水を流入してから約4週目から浄化が進
み、8週目からの処理水は安定した水質となつて
いる。ここで実施例1、2の8週目以降の処理水
の水質の測定結果を平均してみると第4表のよう
になる。[Table] As shown in Table 3, the porosity of the porous contact material is
When it is 50% or more, the effect of BOD removal and phosphorus removal is large and nitrification progresses sufficiently. In addition, the vacancy rate is 90%
If it exceeds this value, it will flow out of the tank due to the floating phenomenon when water is passed through, and at the same time, the strength will decrease significantly. These results show that the void structure of the porous contact material is extremely important for increasing the contact opportunities between the purifying material and organic wastewater and for allowing microorganisms to settle within the pores and voids. It is also extremely important for the crystal growth of calcium hydroxyapatite that crystallizes at the same time, and greatly contributes to the phosphorus removal effect. <Example> Example 1 In this example, A to F as shown in FIG.
A concrete sewage treatment system consisting of six treatment chambers was used. Here, A, B and F are aerobic bed tanks, and A and B are made of porous contact material mainly composed of tobermorite with a particle size of 5 to 15 mm, manufactured in the same manner as in Production Example (2) above. However, F is filled with a similar tobermorite contact material having a particle size of 5 to 8 mm, and aeration pipes 110a to 110c are provided below each of them for aeration. These diffuser cylinders 110a to 110c are connected to an air pump 113 via an air pipe 111 and an air adjustment valve 112. The processing tank C is a stirring tank, and methanol is supplied from the methanol tank 114. Furthermore, D and E are anaerobic bed tanks filled with commercially available anthracite having a particle size of 5 to 10 mm. In such a sewage treatment apparatus, the primary treated water of pigsty sewage was treated by passing through the sewage inlet pipe 115 at a flow rate of 600/day, and the treated liquid was discharged from the discharge pipe 116. Note that the methanol addition flow rate in the processing chamber C is 1.2/day. The treatment was carried out under these conditions for about 6 months, and the PH, transparency, and
BOD, SS, TP and TN (total nitrogen) were each measured. The results are shown in FIG. As is clear from the figure, according to this example, organic matter, phosphorus, and nitrogen in the pigsty wastewater are reliably removed over a long period of time. Example 2 In this example, a concrete sewage treatment apparatus consisting of six treatment chambers G to L as shown in FIG. 6 was used. Here, I and J are aerobic bed tanks, and these tanks are filled with a contact material whose main structure is tobermorite with a particle size of 5 to 10 mm, which was produced in the same manner as in Production Example (2) above. Below that are aeration cylinders 120a and 120b for aeration.
is installed. These aeration cylinders 120a, 12
0b is connected to an air pump 123 via an air pipe 121 and a regulating valve 122. On the other hand, treatment tanks G and H are anaerobic bed tanks filled with commercially available anthracite with a particle size of 5 to 15 mm, and wastewater is introduced from a wastewater introduction pipe 125 and methanol is supplied from a methanol tank 124. It is becoming more and more like this. The wastewater that has passed through G and H is treated in aerobic tanks I and J, and then from a treatment tank K to a circulating water introduction pipe 127 and a flow pump 128.
It is designed to be circulated to the G processing tank via the . Furthermore, a re-anaerobic tank L is provided after K, and this tank is filled with anthracite similar to G and H. In such a sewage treatment device, primary treated water from the pigsty sewage is passed through the sewage inlet pipe 125 at a flow rate of 600 g/day, and the water is circulated from K to G.
5400/day, and since the nitrogen concentration in the wastewater was high and the BOD source in the wastewater alone was insufficient for the denitrification effect, methanol as a hydrogen donor was supplied to the anaerobic tank G at 0.2/day. In this way,
The wastewater was treated for about 6 months, and the PH, transparency, BOD, SS, TP, and TN of the primary treated water and the treated liquid discharged from the treated discharge pipe 126 were measured. The results are shown in FIG. As is clear from the figure, according to this example, organic matter, phosphorus, and nitrogen in the pigsty wastewater are reliably removed over a long period of time. Here, the results of Examples 1 and 2 will be considered in more detail. As shown in FIGS. 5 and 7, Examples 1 and 2
In this case, purification has progressed from about 4 weeks after the sewage was introduced, and the quality of the treated water has been stable since the 8th week. Here, when the measurement results of the water quality of the treated water after the 8th week of Examples 1 and 2 are averaged, the results are as shown in Table 4.
【表】
第4表に示すように、実施例1、2共に、
BOD、SSはもちろん、T−P、T−Nについて
も高い除去率を示しており、非常に高度の処理結
果となつている。
また、重金属については、実施例1における20
週目の流入汚水と排出処理水とを測定し、その結
果を第5表に示す。[Table] As shown in Table 4, both Examples 1 and 2,
It shows a high removal rate not only for BOD and SS, but also for TP and TN, which is an extremely high level of processing result. Regarding heavy metals, 20% in Example 1
The inflow sewage and discharged treated water were measured for the first week, and the results are shown in Table 5.
【表】
同表に示す通り、豚舎汚水に含まれていた銅、
亜鉛の重金属は、本実施例の処理により90%以上
除去されていた。
<発明の効果>
以上、試験例及び実施例とともに具体的に説明
したように、本発明によれば煩雑な工程を必要と
せず、単純かつ容易な処理で効率よく有機物、窒
素及びリンを効率よく除去でき、維持管理も容易
であり、さらに家畜尿汚水処理や工業排水などの
高濃度な汚水に対しても高負荷で処理することが
できるので、処理設備が小型化できるとともに簡
略化できる。また、本発明によれば、銅、亜鉛、
鉛などの重金属も同時に除去できる。さらに、長
期に亘つて使用して処理能力の低下した水浄化材
は、珪酸石灰質肥料ならびに土壌改良材として再
利用できるので経済的である。[Table] As shown in the table, copper contained in pig farm wastewater,
More than 90% of the heavy metals in zinc were removed by the treatment of this example. <Effects of the Invention> As specifically explained above with the test examples and examples, according to the present invention, organic matter, nitrogen and phosphorus can be efficiently removed through simple and easy treatment without the need for complicated steps. It is easy to remove, maintain and manage, and can also treat high-concentration wastewater such as livestock urine sewage and industrial wastewater with a high load, making it possible to downsize and simplify the processing equipment. Further, according to the present invention, copper, zinc,
Heavy metals such as lead can also be removed at the same time. Furthermore, water purification materials whose treatment capacity has decreased due to long-term use can be reused as silicate lime fertilizers and soil improvement materials, which is economical.
第1図〜第7図は本発明にかかり、第1図及び
第2図は有機性汚水の処理方法の例を示す工程
図、第3図は試験例に用いた装置を示す説明図、
第4図は第1実施例に用いた汚水処理装置を示す
説明図、第5図は第1実施例の結果を示す説明
図、第6図は第2実施例に用いた汚水処理装置を
示す説明図、第7図は第2実施例の結果を示す説
明図、第8図は従来技術にかかる有機性汚水の処
理工程を示す工程図である。
図面中、3,15は好気性床槽、5,14は
嫌気性床槽である。
1 to 7 are related to the present invention, FIGS. 1 and 2 are process diagrams showing an example of a method for treating organic wastewater, and FIG. 3 is an explanatory diagram showing an apparatus used in a test example.
Fig. 4 is an explanatory diagram showing the sewage treatment equipment used in the first example, Fig. 5 is an explanatory diagram showing the results of the first example, and Fig. 6 is an explanatory diagram showing the sewage treatment equipment used in the second example. FIG. 7 is an explanatory diagram showing the results of the second example, and FIG. 8 is a process diagram showing the organic wastewater treatment process according to the prior art. In the drawing, 3 and 15 are aerobic bed tanks, and 5 and 14 are anaerobic bed tanks.
Claims (1)
ーを気泡剤の存在下で発泡させると共に硬化させ
て得た発泡硬化物を水熱反応処理して得られ且つ
50〜90%の空〓率を有する多孔質珪酸カルシウム
水和物を主成分とする多孔質接触材の表面に、微
生物を生息させてなることを特徴とする水浄化
材。 2 多孔質珪酸カルシウム水和物が、トバモライ
ト、ゾノトライト、CSHゲル、フオシヤジヤイ
ト、ジヤイロライト、ヒレプランダイトの群から
選ばれる1種あるいは2種以上のものである請求
項1記載の水浄化材。 3 リン化合物、窒素化合物及び有機物を含む有
機性汚水の処理方法において、 多孔質接触材が含まれる好気性領域へ上記有機
性汚水及び/又は嫌気性処理水を通して空気存在
下で当該多孔質接触材に接触させ、好気性処理水
とする工程と、 上記好気性処理水を実質的に空気不存在下で水
素供与体と接触させて嫌気性処理水とする工程と
を含み、 上記多孔質接触材が、珪酸質原料と石灰質原料
とからなる水スラリーを気泡剤の存在下で発泡さ
せると共に硬化させて得た発泡硬化物を水熱反応
処理して得られ且つ50〜90%の空〓率を有する多
孔質珪酸カルシウム水和物を主成分とするもので
あることを特徴とする有機性汚水の処理方法。 4 多孔質珪酸カルシウム水和物が、トバモライ
ト、ゾノトライト、CSHゲル、フオシヤジヤイ
ト、ジヤイロライト、ヒレプランダイトの群から
選ばれる1種あるいは2種以上のものである請求
項3記載の汚水の処理方法。[Scope of Claims] 1. A foamed cured product obtained by foaming and curing an aqueous slurry consisting of a silicic raw material and a calcareous raw material in the presence of a foaming agent, and
A water purification material characterized by having microorganisms living on the surface of a porous contact material mainly composed of porous calcium silicate hydrate having a vacancy rate of 50 to 90%. 2. The water purification material according to claim 1, wherein the porous calcium silicate hydrate is one or more selected from the group consisting of tobermorite, xonotlite, CSH gel, phosiyaite, gyalolite, and hireplandite. 3. In a method for treating organic wastewater containing phosphorus compounds, nitrogen compounds, and organic substances, passing the organic wastewater and/or anaerobically treated water into an aerobic region containing the porous contact material in the presence of air. and a step of contacting the aerobically treated water with a hydrogen donor in substantially the absence of air to obtain anaerobic treated water, the porous contact material However, a foamed cured product obtained by foaming and curing an aqueous slurry consisting of a siliceous raw material and a calcareous raw material in the presence of a foaming agent and having a porosity of 50 to 90% is obtained by hydrothermal reaction treatment. 1. A method for treating organic wastewater, characterized in that the main component is porous calcium silicate hydrate. 4. The method for treating wastewater according to claim 3, wherein the porous calcium silicate hydrate is one or more selected from the group of tobermorite, xonotlite, CSH gel, phosiyaite, gyalolite, and hireplandite.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61168031A JPS6328496A (en) | 1986-07-18 | 1986-07-18 | Treatment of organic sanitary sewage |
CH3929/87A CH670627A5 (en) | 1986-02-10 | 1987-02-09 | |
AU70206/87A AU595013B2 (en) | 1986-02-10 | 1987-02-09 | Method for treating waste water |
PCT/JP1987/000080 WO1987004695A1 (en) | 1986-02-10 | 1987-02-09 | Process for treating waste water |
GB8722169A GB2196955B (en) | 1986-02-10 | 1987-02-09 | Method for treating waste water. |
DE19873790061 DE3790061T1 (en) | 1986-02-10 | 1987-02-09 | |
US07/130,875 US4917802A (en) | 1986-02-10 | 1987-02-09 | Method for treating waste water |
NL8720037A NL8720037A (en) | 1986-02-10 | 1987-02-09 | METHOD FOR TREATING WASTE WATER. |
SE8703919A SE466445B (en) | 1986-02-10 | 1987-10-09 | SETTLE TO TREAT WASTE WATER |
DK530287A DK530287A (en) | 1986-02-10 | 1987-10-09 | PROCEDURE FOR WASTE TREATMENT |
SE9102979A SE9102979L (en) | 1986-02-10 | 1991-10-14 | SETTLE TO TREAT WASTE WATER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61168031A JPS6328496A (en) | 1986-07-18 | 1986-07-18 | Treatment of organic sanitary sewage |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2133862A Division JPH03115387A (en) | 1990-05-25 | 1990-05-25 | Soil activator |
JP2133861A Division JPH0683832B2 (en) | 1990-05-25 | 1990-05-25 | Microorganism carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6328496A JPS6328496A (en) | 1988-02-06 |
JPH0378157B2 true JPH0378157B2 (en) | 1991-12-12 |
Family
ID=15860535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61168031A Granted JPS6328496A (en) | 1986-02-10 | 1986-07-18 | Treatment of organic sanitary sewage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6328496A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01218691A (en) * | 1988-02-29 | 1989-08-31 | Onoda Autoclaved Light Weight Concrete Co Ltd | Method for purifying treatment of organic waste water |
JPH01236993A (en) * | 1988-03-16 | 1989-09-21 | Susumu Hashimoto | Method for producing immobilized microorganisms or groups of thereof |
JPH02126995A (en) * | 1988-11-07 | 1990-05-15 | Onoda Autoclaved Light Weight Concrete Co Ltd | Soil trench |
JP5750722B2 (en) * | 2011-03-11 | 2015-07-22 | 国立研究開発法人産業技術総合研究所 | Treatment method of organic waste liquid |
CN110282783B (en) * | 2019-07-23 | 2021-10-22 | 格丰科技材料有限公司 | Ammonium phosphate chemical wastewater treatment system and method |
-
1986
- 1986-07-18 JP JP61168031A patent/JPS6328496A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6328496A (en) | 1988-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4917802A (en) | Method for treating waste water | |
JP2812640B2 (en) | Wastewater treatment device and wastewater treatment method | |
CA2199517C (en) | Installation for biological water treatment for the production of drinkable water | |
CN113860497B (en) | Urban and municipal sewage denitrification and dephosphorization filler and preparation method thereof | |
CN112441804A (en) | Preparation method of dephosphorization and denitrification type biological filter material and application of dephosphorization and denitrification type biological filter material in integrated rural domestic sewage treatment equipment | |
CN101544421B (en) | Method for treating coking wastewater | |
JPH0220315B2 (en) | ||
Bao et al. | Production of zeolite composite filters using waste paper pulp as slow release carbon source and performance investigation in a biological aerated filter | |
HU216776B (en) | Improved method for purifying waste water using activated sludge | |
JPH0378157B2 (en) | ||
JP3379924B2 (en) | Adsorbent | |
JP2024052993A (en) | Water treatment method and water treatment apparatus | |
JPH03114592A (en) | Microorganism carrier | |
JPS6317513B2 (en) | ||
CN114620907A (en) | Autotrophic deep denitrification method for producing hydrogen sulfide by using sludge | |
JPS5851986A (en) | Apparatus for biologically purifying waste water with aerobes | |
JPH0478675B2 (en) | ||
Anielak et al. | Influence of zeolites on kinetics and effectiveness of the process of sewage biological purification in sequencing batch reactors | |
JP2004041981A (en) | Organic waste water treatment method and its system | |
JPH0231895A (en) | Process and apparatus for treating filthy water | |
JPH02126997A (en) | Method for purifying sewage | |
JP2007054732A (en) | Sewage treatment material and its production method | |
JPS59199098A (en) | Treatment of organic filthy water | |
JPH06142672A (en) | Microorganism immobilizing carrier | |
JPS59206092A (en) | Treating process of waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |