JPH0376811A - Polyurethane elastomer fiber - Google Patents
Polyurethane elastomer fiberInfo
- Publication number
- JPH0376811A JPH0376811A JP12190390A JP12190390A JPH0376811A JP H0376811 A JPH0376811 A JP H0376811A JP 12190390 A JP12190390 A JP 12190390A JP 12190390 A JP12190390 A JP 12190390A JP H0376811 A JPH0376811 A JP H0376811A
- Authority
- JP
- Japan
- Prior art keywords
- polyurethane
- spinning
- iii
- molar ratio
- diol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title description 21
- 229920003225 polyurethane elastomer Polymers 0.000 title description 2
- 239000004814 polyurethane Substances 0.000 claims description 56
- 229920002635 polyurethane Polymers 0.000 claims description 56
- 150000002009 diols Chemical class 0.000 claims description 40
- 238000011084 recovery Methods 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 210000004177 elastic tissue Anatomy 0.000 claims description 20
- 229920000728 polyester Polymers 0.000 claims description 19
- 125000005442 diisocyanate group Chemical group 0.000 claims description 14
- 239000004970 Chain extender Substances 0.000 claims description 9
- 230000014759 maintenance of location Effects 0.000 claims description 6
- 125000000962 organic group Chemical group 0.000 claims description 3
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims 4
- 238000009987 spinning Methods 0.000 description 41
- 239000000203 mixture Substances 0.000 description 28
- 150000001875 compounds Chemical class 0.000 description 20
- 230000000704 physical effect Effects 0.000 description 19
- 229920006306 polyurethane fiber Polymers 0.000 description 18
- 238000000034 method Methods 0.000 description 14
- 239000008188 pellet Substances 0.000 description 14
- 229920000515 polycarbonate Polymers 0.000 description 14
- 239000004417 polycarbonate Substances 0.000 description 14
- 239000005056 polyisocyanate Substances 0.000 description 13
- 229920001228 polyisocyanate Polymers 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 11
- -1 aliphatic dicarboxylic acids Chemical class 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 8
- 230000002349 favourable effect Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 239000012948 isocyanate Substances 0.000 description 7
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 6
- 150000002513 isocyanates Chemical class 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- SDQROPCSKIYYAV-UHFFFAOYSA-N 2-methyloctane-1,8-diol Chemical compound OCC(C)CCCCCCO SDQROPCSKIYYAV-UHFFFAOYSA-N 0.000 description 4
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 4
- 235000011037 adipic acid Nutrition 0.000 description 4
- 239000001361 adipic acid Substances 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000002074 melt spinning Methods 0.000 description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 2
- 238000000578 dry spinning Methods 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- 238000002166 wet spinning Methods 0.000 description 2
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- ZXHZWRZAWJVPIC-UHFFFAOYSA-N 1,2-diisocyanatonaphthalene Chemical compound C1=CC=CC2=C(N=C=O)C(N=C=O)=CC=C21 ZXHZWRZAWJVPIC-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- WTPYFJNYAMXZJG-UHFFFAOYSA-N 2-[4-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=C(OCCO)C=C1 WTPYFJNYAMXZJG-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- QPKOBORKPHRBPS-UHFFFAOYSA-N bis(2-hydroxyethyl) terephthalate Chemical compound OCCOC(=O)C1=CC=C(C(=O)OCCO)C=C1 QPKOBORKPHRBPS-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- JXCHMDATRWUOAP-UHFFFAOYSA-N diisocyanatomethylbenzene Chemical compound O=C=NC(N=C=O)C1=CC=CC=C1 JXCHMDATRWUOAP-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Polyurethanes Or Polyureas (AREA)
- Artificial Filaments (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明はポリウレタン弾性繊維に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to polyurethane elastic fibers.
[従来技術]
ポリウレタン弾性繊維の製造は一般に湿式紡糸法、乾式
紡糸法あるいは溶融紡糸法が用いられている。[Prior Art] Polyurethane elastic fibers are generally produced by wet spinning, dry spinning, or melt spinning.
従来から弾性繊維とされるポリウレタンとしてポリエー
テルジオールを用いて製造されたものかあるが耐塩素性
に劣る。Conventionally, polyurethane used as elastic fiber has been manufactured using polyether diol, but it has poor chlorine resistance.
また、ポリエステルジオールを用いて製造されたポリウ
レタンからの弾性繊維は耐水性、耐かび性に劣る。In addition, elastic fibers made from polyurethane produced using polyester diol have poor water resistance and mold resistance.
特開昭62−22817号公報には2−メチル−1,8
オクタンジオールを用いたポリウレタンが記載され、乾
式または湿式で弾性繊礒と出来ることが示唆されている
。2-methyl-1,8 in JP-A No. 62-22817
Polyurethanes using octanediol have been described, and it has been suggested that they can be made into elastic fibers either dry or wet.
[発明が解決しようとする課題]
本発明の目的は耐塩素性、耐水性、耐かび性、弾性回復
性、耐熱性の全ての性能に優れるとともに伸度の大きい
ポリウレタン弾性繊維を提供するにある。[Problems to be Solved by the Invention] The purpose of the present invention is to provide a polyurethane elastic fiber that is excellent in all of the properties of chlorine resistance, water resistance, mold resistance, elastic recovery, and heat resistance, and has high elongation. .
[課題を解決するための手段]
本発明は高分子ジオール(A)、有機ジイソシアナート
(B)および鎖伸長剤(C)を重合して得られるポリウ
レタンよりなるポリウレタン弾性w&維であって、該高
分子ジオールとして数平均分子ffi 1000〜35
00の
■一般式
で表される構造単位からなり、式中11i1は下記構造
単位(T)、(II)および/または(III)であり
、R2は2価の有機基であるポリエステルジオール、ま
たは
■−一般
%式%
で表わされる構造単位からなり、式中R1は下記構造単
位(I)、(I[)および/または(III)であるポ
リカーボネートであり、かつ、R1に占める下記構造単
位(【)、(「)、(III)が、[(II)+(II
I)コ/[(1)+ (II )+ (III)]がモ
ル比で0.1以上であり、[(1)+ (If )]
/ [(I )+ (II )+ (III)]がモル
比で0.5より大きい高分子ジオールを主体として用い
、
−(CHt、)e′−・・・・・ (1)−CH,−
CH,−CH−CHt−CHt−・・・・・ ([[
)(B)/ (A)のモル比が1.5〜4.5であり、
かつ下記式(1’Y)、CV>の条件を満足することを
特徴とするポリウレタン弾性繊維。[Means for Solving the Problems] The present invention provides a polyurethane elastic w&fiber made of polyurethane obtained by polymerizing a polymeric diol (A), an organic diisocyanate (B) and a chain extender (C), The polymer diol has a number average molecular ffi of 1000 to 35
00, where 11i1 is the following structural unit (T), (II) and/or (III), and R2 is a divalent organic group, polyester diol, or - Consists of a structural unit represented by the general formula %, in which R1 is a polycarbonate that is the following structural unit (I), (I[) and/or (III), and the following structural unit ( [), (“), (III) are [(II) + (II
I) co/[(1)+(II)+(III)] is 0.1 or more in molar ratio, and [(1)+(If)]
/ [(I)+(II)+(III)] using a polymeric diol with a molar ratio of more than 0.5 as the main component, -(CHt,)e'-... (1)-CH, −
CH, -CH-CHt-CHt-... ([[
)(B)/(A) molar ratio is 1.5 to 4.5,
A polyurethane elastic fiber characterized by satisfying the following formula (1'Y), CV>.
耐熱水性強度保持率(%)≧60 ・・・・・ (I
V)弾 性 回 復 率(%)≧80 ・・
・・・ (V)本発明において使用される高分子ジオ
ールは、ジオール残基として前記構造単位(I)、(I
I)および/または(II[)で示される基を含有する
ポリエステルジオールまたはポリカーボネートジオール
である。(1)で示される基を与える化合物としては1
.9−ノナンジオールが挙げられ、(■)で示される基
を与える化合物としては2−メチル−1,8−オクタン
ジオールが挙げられ、([I)で示される基を与える化
合物としては3−メチル−1,5−ベンタンジオールが
挙げられる。本発明において高分子ジオール中の[(I
I)+(I[I)]/ [([)+(n)+(■)]の
モル比が0.1以上であり、[(1)+(II )]
/ [(I )+ (II )+ (I[I)]のモル
比は0.5より大きいことが必要である。[(II)+
(III)]/[([)+ (II )+ (I[[)
]のモル比が0.1未満となると弾性回復性が低下し、
伸度が小さくなる。Hot water resistance strength retention rate (%) ≧60 (I
V) Elastic recovery rate (%) ≧80...
(V) The polymeric diol used in the present invention has the structural units (I) and (I) as diol residues.
It is a polyester diol or polycarbonate diol containing groups represented by I) and/or (II[). As a compound giving the group shown in (1), 1
.. 9-nonanediol is mentioned, a compound giving a group represented by (■) is 2-methyl-1,8-octanediol, and a compound giving a group represented by ([I) is 3-methyl. -1,5-bentanediol is mentioned. In the present invention, [(I
The molar ratio of I)+(I[I)]/[([)+(n)+(■)] is 0.1 or more, and [(1)+(II)]
The molar ratio of /[(I)+(II)+(I[I)] is required to be greater than 0.5. [(II)+
(III)]/[([)+ (II)+ (I[[)
] When the molar ratio is less than 0.1, the elastic recovery property decreases,
Elongation becomes smaller.
[(1)+(II)] / [(1)+([[)+(I
)]のモル比が0,5以下となると耐水性、耐かび性、
耐寒性が低下する。[(1)+(II)] / [(1)+([[)+(I
)] when the molar ratio is 0.5 or less, water resistance, mold resistance,
Cold resistance decreases.
また、高分子ジオールのうち、ポリエステルジオールを
構成するジカルボン酸残基R″を与えるジカルボン酸成
分としては、炭素数が5〜12の脂肪族または芳香族ジ
カルボン酸が好ましい。なかでも脂肪族ジカルボン酸が
好ましい。脂肪族ジカルボン酸の例としてはグルタル酸
、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸
、セバンン酸等が挙げられる。また芳香族ジカルボン酸
の例としてはフタル酸、テレフタル酸、イソフタル酸等
が挙げられる。特にアジピン酸、アゼライン酸、セバシ
ン酸の使用が好ましい。Further, among the polymer diols, as the dicarboxylic acid component that provides the dicarboxylic acid residue R'' constituting the polyester diol, an aliphatic or aromatic dicarboxylic acid having 5 to 12 carbon atoms is preferable.Among them, aliphatic dicarboxylic acids is preferred. Examples of aliphatic dicarboxylic acids include glutaric acid, adipic acid, pimelic acid, superric acid, azelaic acid, and sebanic acid. Examples of aromatic dicarboxylic acids include phthalic acid, terephthalic acid, and isophthalic acid. In particular, adipic acid, azelaic acid, and sebacic acid are preferably used.
本発明で使用される高分子ジオールの数平均分子鎖は1
000〜3500、より好ましくは1500〜3000
である。1000より小さいと耐熱性、弾性回復性が低
下し、3500より大きいと、紡糸性が低下する。The number average molecular chain of the polymer diol used in the present invention is 1
000-3500, more preferably 1500-3000
It is. If it is less than 1,000, heat resistance and elastic recovery properties will decrease, and if it is greater than 3,500, spinnability will decrease.
本発明に用いる高分子ジオールには必要に応じて上記以
外の高分子ジオールが用いられても良い。Polymer diols other than those mentioned above may be used as the polymer diol used in the present invention, if necessary.
本発明で使用されるポリエステルジオールはいかなる製
造法によったものでもよい。例えばポリエチレンテレフ
タレートまたはポリブチレンテレフタレートの製造にお
いて用いられる公知の方法と同様の方法、すなわち、ジ
オール残基に対応するジオールとジカルボン酸残基に対
応するジカルボン酸またはその工゛ステル形成性誘導体
とを用いてエステル交換または直接エステル化とそれに
続く溶融重縮合反応にて製造可能である。The polyester diol used in the present invention may be produced by any method. For example, using a method similar to the known method used in the production of polyethylene terephthalate or polybutylene terephthalate, that is, using a diol corresponding to the diol residue and a dicarboxylic acid or a ester-forming derivative thereof corresponding to the dicarboxylic acid residue. It can be produced by transesterification or direct esterification followed by melt polycondensation reaction.
本発明で使用されるポリカーボネートジオールもその製
造法は特に制限されない。例えばジフェニルカーボネー
トとビスフェノールAからのポリカーボネートの製造に
おいて用いられている公知の方法と同様の方法、すなわ
ちエステル交換反応にて製造可能である。The method for producing the polycarbonate diol used in the present invention is not particularly limited. For example, it can be produced by a method similar to the known method used in the production of polycarbonate from diphenyl carbonate and bisphenol A, that is, by transesterification.
本発明で使用されるポリカーボネートジオールを製造す
る際に使用されるカーボネート化合物としてはジアルキ
ルカーボネート、ジフェニルカーボネートなどのジアリ
ールカーボネートまたは、アルキレンカーボネートが好
ましい。The carbonate compound used in producing the polycarbonate diol used in the present invention is preferably diaryl carbonate such as dialkyl carbonate or diphenyl carbonate, or alkylene carbonate.
本発明において使用される適当な有機ジイソシアナート
としては、当業界で公知の脂肪族、指環族もしくは芳香
族の有機ジイソシアナートが挙げ与れ、具体的には4,
4°−ジフェニルメタンジイソシアナート、p−フェニ
レンジイソシアナート、トルイレンジイソシアナート、
l、5−ナフチレンジイソシアナート、キシリレンジイ
ソシアナート、ヘキサメチレンジイソシアナート、イソ
ホロンジイソンアナート、4,4°−ジシクロヘキシル
メタンジイソシアナート等の分子量500以下のジイソ
シアナートが例示される。好ましい有機ジイソシアナー
トは分子量200〜500の有機ジイソシアナートであ
り、とりわけ4,4゛−ジフェニルメタンジイソシアナ
ートである。なお有機ジイソシアナートとしては遊離の
イソシアナート基に変換されろ封鎖されたイソシアナー
ト基を有する化合物を使用しても良い。Suitable organic diisocyanates used in the present invention include aliphatic, ring ring or aromatic organic diisocyanates known in the art, specifically 4,
4°-diphenylmethane diisocyanate, p-phenylene diisocyanate, toluylene diisocyanate,
Examples include diisocyanates having a molecular weight of 500 or less, such as 1,5-naphthylene diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, isophorone diisonanate, and 4,4°-dicyclohexylmethane diisocyanate. Preferred organic diisocyanates are those having a molecular weight of 200 to 500, especially 4,4'-diphenylmethane diisocyanate. Note that as the organic diisocyanate, a compound having a blocked isocyanate group that is converted into a free isocyanate group may be used.
また本発明において使用される鎖伸長剤としてはポリウ
レタン業界における常用の連鎖成長剤、すなわちイソシ
アナートと反応し得る水素原子を少なくとも2@含有す
る分子量400以下の低分子化合物、例えばエチレング
リコール、1,4−ブタンジオール、プロピレングリコ
ール、l、6−ヘキサンジオール、3−メチル−1,5
−ベンタンジオール、I、4−ビス(2−ヒドロキシエ
トキシ)ベンゼン、1.4−シクロヘキサンジオール、
ビス(βヒドロキシエチル)テレフタレート、キシレン
グリコール等のフォール類が挙げられる。これらの化合
物は単独でまたは、2種以上を混合して使用してもよい
。最も好、ましい鎖伸長剤は1.4−ブタンジオール(
BD)および/または1.4−ビス(2−ヒドロキシエ
トキシ)ベンゼン(BHEB)である。The chain extender used in the present invention is a chain extender commonly used in the polyurethane industry, that is, a low-molecular compound with a molecular weight of 400 or less containing at least 2 hydrogen atoms capable of reacting with isocyanate, such as ethylene glycol, 1, 4-butanediol, propylene glycol, 1,6-hexanediol, 3-methyl-1,5
-bentanediol, I, 4-bis(2-hydroxyethoxy)benzene, 1,4-cyclohexanediol,
Examples include falls such as bis(β-hydroxyethyl) terephthalate and xylene glycol. These compounds may be used alone or in combination of two or more. The most preferred chain extender is 1,4-butanediol (
BD) and/or 1,4-bis(2-hydroxyethoxy)benzene (BHEB).
このBDとBHEBのモル比か9515〜5/95より
好ましくは20/ 80〜80/ 20で混合して使用
することにより、弾性回復性、柔軟性が大きく改良され
ろ。By mixing BD and BHEB in a molar ratio of 9515 to 5/95, preferably 20/80 to 80/20, elastic recovery and flexibility can be greatly improved.
本発明に用いるポリウレタンを製造するために使用され
る高分子ジオール、有機ジイソシアナートおよび鎖伸長
剤の量的関係としては、得られるポリウレタンの耐熱性
および弾性回復性が特に良好となる点から、有機ジイソ
シアナートの使用量が使用する高分子ジオールと鎖伸長
剤との合計モル数に対して0.9〜1.2倍のモル数と
なる量が好ましく 、 0.95〜1□15倍のモル数
となる量がより好ましく、とりわけ、得られるポリウレ
タンが上記の特長を有するのみならず、伸長の大きい弾
性繊維を形成しうる点からt、02〜1.15倍のモル
数となる量が特に好ましい。The quantitative relationship of the polymer diol, organic diisocyanate, and chain extender used to produce the polyurethane used in the present invention is such that the resulting polyurethane has particularly good heat resistance and elastic recovery properties. The amount of organic diisocyanate used is preferably 0.9 to 1.2 times the total number of moles of the polymer diol and chain extender used, and is preferably 0.95 to 1□15 times. More preferably, the amount is 02 to 1.15 times the number of moles of t, since the obtained polyurethane not only has the above-mentioned features but also can form elastic fibers with large elongation. is particularly preferred.
高分子ジオール、有機ジイソシアナートおよび鎖伸長剤
を重合して熱可塑性ポリウレタンを製造する方法に関し
ては、公知のウレタン化反応の技術を採用することがで
きる。本発明者らの研究によればなかでも実質的に不活
性溶媒の不存在下で溶融重合することか好ましく、特に
多軸スクリュー型押出機を用いる連続溶融重合が好まし
いことが判明した。As for the method of producing a thermoplastic polyurethane by polymerizing a polymeric diol, an organic diisocyanate, and a chain extender, a known urethanization reaction technique can be employed. According to research conducted by the present inventors, it has been found that melt polymerization in the substantially absence of an inert solvent is preferable, and continuous melt polymerization using a multi-screw extruder is particularly preferable.
溶融重合する温度は特に制限されないが200℃以上2
40℃以下が好ましい。240℃以下に保つことにより
耐熱性が増大し、200℃以上に保つことにより紡糸性
に優れる熱可塑性ポリウレタンを造ることが可能となる
。The temperature for melt polymerization is not particularly limited, but is 200°C or higher2.
The temperature is preferably 40°C or lower. By keeping the temperature below 240°C, heat resistance increases, and by keeping the temperature above 200°C, it becomes possible to produce a thermoplastic polyurethane with excellent spinnability.
高分子ジオール(^)に対する有機ジイソシアナート(
B)の割合(B)/ (A)はモル比でt、S〜4.5
が弾性回復性、風合、耐熱性、耐寒性の点より必要とな
り、好ましくは1.8〜4.0である。Organic diisocyanate (
The ratio of B) (B)/(A) is the molar ratio t, S ~ 4.5
is required from the viewpoint of elastic recovery, texture, heat resistance, and cold resistance, and is preferably 1.8 to 4.0.
本発明において用いるポリウレタン弾性体には酸化チタ
ン等の艶消剤、紫外線吸収剤や酸化防止剤などの添加剤
、染顔料等の着色剤を添加することが出来る。Matting agents such as titanium oxide, additives such as ultraviolet absorbers and antioxidants, and colorants such as dyes and pigments can be added to the polyurethane elastomer used in the present invention.
この様にして得られるポリウレタンは従来公知の乾式紡
糸法、湿式紡糸法、溶融紡糸法等によって繊維としうる
。The polyurethane thus obtained can be made into fibers by conventionally known dry spinning methods, wet spinning methods, melt spinning methods, and the like.
細デニール化出来る点で溶融紡糸法が好ましく、具体的
にはポリウレタンを、−度ペレット化しfこのち溶融紡
糸するか、あるいは溶融重合して得られる熱可塑性ポリ
ウレタンを直接に紡糸口金を通して紡糸する方法が採用
しうる。紡糸安定性の点からは重合直結紡糸が好ましい
。Melt spinning is preferable because it allows for finer denier, and specifically, polyurethane is pelletized and then melt spun, or thermoplastic polyurethane obtained by melt polymerization is directly spun through a spinneret. can be adopted. From the viewpoint of spinning stability, direct polymerization spinning is preferred.
本発明のポリウレタン弾性繊維は該繊維を構成するポリ
ウレタンの対数粘度(η1nh)が0.2〜1.6di
2/g、特に、0.3〜1.4d12/gが好ましい。The polyurethane elastic fiber of the present invention has a logarithmic viscosity (η1nh) of 0.2 to 1.6 di.
2/g, particularly preferably 0.3 to 1.4 d12/g.
この範囲とすることにより弾性回復性に優れた繊維とな
る。対数粘度は試料を0.5g/dcとなるようにn−
ブチルアミンを1重量%含むN、N−ジメチルホルムア
ミドに溶解し、24時聞役30°Cの恒温槽中でウツペ
ローデ型粘度計で測定し、次式より求めることができる
。By setting it within this range, the fiber will have excellent elastic recovery properties. The logarithmic viscosity of the sample was n-
It can be determined from the following formula by dissolving it in N,N-dimethylformamide containing 1% by weight of butylamine and measuring it with an Utsperohde viscometer in a thermostat kept at 30°C for 24 hours.
77 re(2= t / t。77re(2=t/t.
(n(ηreff)
ηinh =
t:溶液の流下時間(秒)
とo:溶媒の流下時間(秒)
C:重合体の濃度(g/dI2)
本発明のポリウレタン弾性繊維を構成するポリウレタン
は、実質的に
(a)高分子ジオールから分子両末端の水酸基中の2個
の水素原子が除かれた形の2価の構造単位、(b)有機
ジイソシアナートに由来する一般式(式中、R3は2価
の有機基であり、Xおよびyはそれぞれ0または1の整
数2を表す)
で示される2〜4価の構造単位、
(c)低分子化合物(鎖伸長剤)分子のイソシアナート
と反応しうる2個の水素原子が除かれた形の2価の構造
単位
で示される構造単位よりなり、ここで該(a)の構造単
位は(b)の構造単位とウレタン結合を形成して結合し
ており、また(b)の構造単位の一部は他の(b)の構
造単位とアロハネート結合を形成して結合している場合
があるしのと考えられる。(n(ηref) ηinh = t: solution flow time (seconds) and o: solvent flow time (seconds) C: polymer concentration (g/dI2) The polyurethane constituting the polyurethane elastic fiber of the present invention is substantially Generally speaking, (a) a divalent structural unit in which two hydrogen atoms in the hydroxyl groups at both ends of the molecule are removed from a polymeric diol, (b) a general formula derived from an organic diisocyanate (in the formula, R3 is a divalent organic group, and X and y each represent an integer 2 of 0 or 1. It consists of a structural unit represented by a divalent structural unit with two reactive hydrogen atoms removed, where the structural unit (a) forms a urethane bond with the structural unit (b). It is considered that some of the structural units (b) may be bonded to other structural units (b) by forming an allophanate bond.
さらに高分子ジオール(A)、有機ジイソンアナ−ト(
B)、鎖伸長剤(C)を組成比において、(B)/[(
A)+ (C)コのモル比が1.02〜1.15のイソ
シアナート過剰系で重合した熱可塑性ポリウレタン、あ
るいは紡糸時にポリイソシアナート化合物あるいは封鎖
ポリイソシアナート化合物を添加混合しくB)/ [(
A)+ (C)コのモル比が1.02〜1.15のイソ
シアナート過剰のポリウレタンを紡糸することにより、
前記(b)/ [(a) + (c) ]のモル比が1
.02〜1.15とした耐熱性、弾性回復性に優れかつ
伸度の大きいポリウレタン弾性繊維が得られる。Furthermore, polymeric diol (A), organic diisonanate (
B), chain extender (C) in a composition ratio of (B)/[(
A) + (C) A thermoplastic polyurethane polymerized with an excess isocyanate system having a molar ratio of 1.02 to 1.15, or a polyisocyanate compound or a blocked polyisocyanate compound added and mixed during spinning B)/ [(
By spinning a polyurethane containing an excess of isocyanate with a molar ratio of A) + (C) of 1.02 to 1.15,
The molar ratio of (b)/[(a) + (c)] is 1
.. 02 to 1.15, polyurethane elastic fibers with excellent heat resistance, elastic recovery properties, and high elongation can be obtained.
ポリイソシアナート化合物とは分子内に少なくとも2個
のイソシアナート基を有する化合物て、たとえばポリウ
レタン製造において汎用的に使用されている4、4゛−
ジフェニルメタンジイソシアナートやトリレンジイソシ
アナート、ナフタレンジイソシアナート、さらには分子
量300〜3000のポリオールに2倍当量以上の分子
量500以下の有機ジイソシアナートを反応させて合成
したイソシアナート末端プレポリマーや有礪ジイソシア
ナートの2量体、或はカルボジイミド変性ポリイソシア
ナートら含まれる。ポリイソシアナート化合物の一分子
中に含まれるイソシアナート基の数は2〜3が好適であ
り特に2のジイソシアナート化合物が好ましい。A polyisocyanate compound is a compound having at least two isocyanate groups in the molecule, for example, 4,4゛-, which is commonly used in polyurethane production.
Diphenylmethane diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, and isocyanate-terminated prepolymers synthesized by reacting polyols with a molecular weight of 300 to 3,000 with more than twice the equivalent of organic diisocyanates with a molecular weight of 500 or less. Dimers of diisocyanate or carbodiimide-modified polyisocyanates are included. The number of isocyanate groups contained in one molecule of the polyisocyanate compound is preferably 2 to 3, and a diisocyanate compound having 2 is particularly preferred.
また、封鎖ポリイソシアナート化合物とは前記ポリイソ
シアナート化合物のイソシアナート基をフェノール、ε
−カプロラクタム、オキシムアセト酢酸エチル、アセト
アミド等の封鎖剤とを反応させた化合物であり、高温に
なると熱解離をおこし遊離のイソシアナート基を生成す
るものをすべて含む。In addition, the term "blocked polyisocyanate compound" refers to the isocyanate group of the polyisocyanate compound that is substituted with phenol, ε
- Compounds that are reacted with caprolactam, oxime ethyl acetoacetate, acetamide, etc., and include all compounds that cause thermal dissociation at high temperatures to produce free isocyanate groups.
好適なポリイソシアナート化合物の分子量は200〜3
000である。ポリウレタンに対するポリイソシアナー
ト化合物の添加量が少なすぎると本発明の効果が小さく
、多すぎると紡糸性が不安定となる。紡糸時にポリイソ
シアナート化合物を添加するポリウレタンには(B)/
[(A)+ (C)]のモル比が0.95〜1.08
で重合したものが好ましい。The molecular weight of a suitable polyisocyanate compound is 200-3
It is 000. If the amount of the polyisocyanate compound added to the polyurethane is too small, the effect of the present invention will be small, and if it is too large, the spinnability will become unstable. For polyurethane to which a polyisocyanate compound is added during spinning, (B)/
The molar ratio of [(A) + (C)] is 0.95 to 1.08
Those polymerized with are preferred.
本発明のポリウレタン弾性′fa推は、前述のイソシア
ナート過剰のポリウレタンを紡糸することにより、該繊
維を、n−ブチルアミン0.ON f) N、N−ジメ
チルホルムアミド溶液に溶解し逆滴定により求められる
アロハネート結合量をo、oos〜0.05mmof2
/gとすることにより弾性回復性に優れた繊維となしう
る。The polyurethane elasticity of the present invention is obtained by spinning the above-mentioned polyurethane containing an excess of isocyanate, and then spinning the fiber with an excess of n-butylamine. ON f) The amount of allophanate bond dissolved in N,N-dimethylformamide solution and determined by back titration is o, oos ~ 0.05 mmof2
/g, the fiber can have excellent elastic recovery properties.
溶融紡糸法により前記(I)および(II)の条件を満
足する本発明のポリウレタン弾性繊維を得るためには例
えば以下に述べる方法を用いる。In order to obtain the polyurethane elastic fiber of the present invention that satisfies the above conditions (I) and (II) by the melt spinning method, for example, the method described below is used.
第1に紡糸速度が重要であり、900m/min以下、
特にBoom/min以下とする事が好ましい。First, the spinning speed is important; 900 m/min or less;
In particular, it is preferable to set it to below Boom/min.
見掛ドラフト率(ノズル単孔面積/単繊維断面積)は5
0以上、好ましくは100以上より好ましくは150以
上とする。Apparent draft rate (nozzle single hole area/single fiber cross-sectional area) is 5
0 or more, preferably 100 or more, more preferably 150 or more.
また、紡糸した糸条を捲取機によりボビンに捲取る際の
紡糸テンションは0.1g/d以下、より好ましくは0
.05g/d以下とし、ゴデツトローラーから捲取機へ
の給糸速度差は5%のアンダーフィードを越えない事か
好ましく、特に等速に近づける事が好ましい。Further, the spinning tension when winding the spun yarn onto a bobbin with a winding machine is 0.1 g/d or less, more preferably 0.
.. It is preferable that the yarn feeding speed difference from the godet roller to the winding machine does not exceed 5% underfeed, and it is particularly preferable that the yarn feeding speed be close to a constant speed.
また、捲取られた糸条を低湿下に於て、ハードセグメン
トのガラス転移点(Tg)に対し、+20’Cから一5
0℃の範囲において熱処理し、7)−ド、゛ノットのセ
グメントとの相分離を十分に実施する事が好ましい。In addition, the wound yarn was heated from +20'C to 15°C with respect to the glass transition point (Tg) of the hard segment under low humidity.
7) It is preferable to carry out the heat treatment in the range of 0°C to sufficiently perform phase separation from the -do and knot segments.
さらに前述のごとくイソシアナート過剰の状態で紡糸さ
れたポリウレタンは経時的に糸質及び熱的性質が変化し
ていく。これはイソシアナート過剰で重合されたポリウ
レタン、ある(1(よ紡糸時1こ添加されたポリイソシ
アナート化合物力(紡糸直後では反応が完結されておら
ず紡糸後にも反応力(進行し、イソシアナートとウレタ
ン結合などの反応によるアロハナート結合が生成するこ
と1こよる。Furthermore, as mentioned above, polyurethane spun with an excess of isocyanate changes its yarn quality and thermal properties over time. This is polyurethane polymerized with an excess of isocyanate. This is due to the formation of allophanate bonds through reactions such as urethane bonds and urethane bonds.
この反応の進行により、弾性回復性の向上、1熱性の向
上、伸度の増大などの改良効果力く特Zこ本発明に用い
る高分子ジオールを使用した場合顕著Zこ認め占れる。As this reaction progresses, improved effects such as improved elastic recovery, improved heat resistance, and increased elongation can be achieved, which is particularly noticeable when the polymeric diol used in the present invention is used.
また、本発明の実施ZこあたってCよ紡糸後70〜12
0℃で1〜48時間の熱処理を実施することが好ましい
。In addition, when carrying out the present invention, Z is 70 to 12 mm after spinning.
Preferably, the heat treatment is carried out at 0°C for 1 to 48 hours.
これらの原因については明確では無いが、本発明の長鎖
グリコール系高分子ジオールからのポリウレタンはミク
ロ相分離が進行していることにより、前述の効果がより
顕著になるものと推定される。Although the causes of these are not clear, it is presumed that the above-mentioned effects become more pronounced because microphase separation is progressing in the polyurethane made from the long-chain glycol-based polymer diol of the present invention.
本発明のポリウレタン弾性繊維は耐熱水性が良好であり
、耐熱水性強度保持率は60%以上より好ましくは70
%以上である(120℃の測定においては60%以上と
なるが、135℃の測定においては60%未満となる繊
維も本発明の範囲に含まれる)。The polyurethane elastic fiber of the present invention has good hot water resistance, and the hot water resistant strength retention rate is 60% or more, preferably 70%.
% or more (fibers that are 60% or more when measured at 120°C but less than 60% when measured at 135°C are also included within the scope of the present invention).
また、本発明のポリウレタン弾性繊維は弾性回復性が良
好であり、弾性回復率は80%以上好ましくは90%以
上が実用的である。Further, the polyurethane elastic fiber of the present invention has good elastic recovery properties, and a practical elastic recovery rate is 80% or more, preferably 90% or more.
本発明のポリウレタン弾性繊維は伸度350%以上好ま
しくは450%以上が実際的である。It is practical for the polyurethane elastic fiber of the present invention to have an elongation of 350% or more, preferably 450% or more.
さらに、本発明にいうポリウレタン弾性繊維とは、実質
的に連続した′a維又はIa維束であり、長さloom
をとった時の繊度の斑が±15%以内、より好ましくは
±IO%以内のものが好ましい。Furthermore, the polyurethane elastic fibers referred to in the present invention are substantially continuous 'a fibers or Ia fibers, and have a length of loom.
It is preferable that the unevenness of fineness when removed is within ±15%, more preferably within ±IO%.
以上、本発明の高分子ジオールを使用したポリウレタン
からの弾性繊維は、耐熱性、耐水性、弾性回復性に優れ
、伸度が大きく耐塩素性ら良好である。As described above, the elastic fiber made from polyurethane using the polymeric diol of the present invention has excellent heat resistance, water resistance, and elastic recovery, and has high elongation and good chlorine resistance.
以下実施例にて説明する。This will be explained below using examples.
尚、実施例中の耐熱水性(強度保持率)、弾性回復率は
以下の方法により測定した。In addition, hot water resistance (strength retention) and elastic recovery rate in Examples were measured by the following methods.
・耐熱水性(強度保持率)
試料を10%伸長固定し、160℃の熱風で1分間熱処
理後130°Cで90分熱水処理後の引張強度保持率を
測定。・Hot water resistance (strength retention) The sample was stretched and fixed by 10%, and the tensile strength retention was measured after heat treatment with hot air at 160°C for 1 minute and hot water treatment at 130°C for 90 minutes.
・強伸度の測定 、MSL−1013に従い強伸度を求めた。・Measurement of strength and elongation , strength and elongation were determined according to MSL-1013.
・弾性回復性
試料を200%伸長してl(1分間保持した後、張力を
除き、3分間放置した後の弾性回復率を測定。・Elastic recovery The sample was stretched by 200% and held for 1 minute, then the tension was removed and the elastic recovery rate was measured after being left for 3 minutes.
弾性回復率= (1−(Q−Qo)/ 12o) x
100(%)Q ;張力除去後3分間放置した後の試料
の長さQo;伸長前の試料の長さ
用いた化合物は略号を用いて示したが、略号と化合物の
関係は以下の通りである。(表1)参考例I
(ポリエステルジオールの製造)
2−メチル−1,8−オクタンジオールと1.9−ノナ
ンジオールの混合物(モル比二35/65) 1600
g及びアジピン酸1460g (ジオール/アジピン酸
のモル比: IJ/l)を常圧下に窒素ガスを通じつつ
約220℃の温度で縮合水を留去しながらエステル化を
行なった。ポリエステルの酸価が0.3以下になったと
き真空ポンプにより徐々に真空度を上げ反応を完結させ
た。こうして水酸基価56、酸価0.12のポリエステ
ルジオール(以下、ポリエステルaと記す)を得た。こ
のポリエステルaの分子量は2000であった。Elastic recovery rate = (1-(Q-Qo)/12o) x
100 (%) Q; Length of the sample after being left for 3 minutes after tension removal Qo; Length of the sample before elongation The compounds used are indicated using abbreviations, but the relationship between the abbreviations and compounds is as follows. be. (Table 1) Reference Example I (Manufacture of polyester diol) Mixture of 2-methyl-1,8-octanediol and 1,9-nonanediol (molar ratio 235/65) 1600
1,460 g of adipic acid (molar ratio of diol/adipic acid: IJ/l) were esterified at a temperature of about 220° C. under normal pressure while passing nitrogen gas while distilling off condensed water. When the acid value of the polyester became 0.3 or less, the degree of vacuum was gradually increased using a vacuum pump to complete the reaction. In this way, a polyester diol (hereinafter referred to as polyester a) having a hydroxyl value of 56 and an acid value of 0.12 was obtained. The molecular weight of this polyester a was 2,000.
参考例2〜9
酸成分及びジオール成分とを各々表2に示したものを用
いること以外は参考例りと同様にして各々表2に示した
ポリエステル(ポリエステルb〜I)を得た。Reference Examples 2 to 9 Polyesters (polyesters b to I) shown in Table 2 were obtained in the same manner as in Reference Example except that the acid components and diol components shown in Table 2 were used.
参考例11
(ポリカーボネート、ジオールの製造)窒素気流下、2
−メチル−1,8−オクタンジオール(MOD)と1.
9−ノナンジオール(ND)の混合物(MOD/NDの
モル比: 35/ 65) 1730gおよびジフェニ
ルカーボネート2140gよりなる混合物を加熱し、2
00℃で反応系よりフェノールを留去した。温度を徐々
に210〜220℃に上げ、フェノールをほとんど留去
させたあと真空にし、6〜10mm1gの真空下210
〜220℃で残りのフェノールを完全に留去した。その
結果水酸基filIi56、分子量2000のポリカー
ボネートジオール(ポリカーボネートk)を得た。Reference Example 11 (Manufacture of polycarbonate and diol) Under nitrogen stream, 2
-Methyl-1,8-octanediol (MOD) and 1.
A mixture of 1730 g of 9-nonanediol (ND) (MOD/ND molar ratio: 35/65) and 2140 g of diphenyl carbonate was heated, and 2
Phenol was distilled off from the reaction system at 00°C. The temperature was gradually raised to 210 to 220°C, and after most of the phenol had been distilled off, vacuum was applied, and 6 to 10 mm and 1 g of 210
The remaining phenol was completely distilled off at ~220°C. As a result, a polycarbonate diol (polycarbonate k) having 56 hydroxyl groups and a molecular weight of 2000 was obtained.
参考例12
ジオール成分として、王、9−ノナンジオール1730
gを用いる以外は参考例11と同様にして分子It 2
000のポリカーボネートジオール(ポリカーボネート
I2)を得た。Reference Example 12 As a diol component, 9-nonanediol 1730
The molecule It 2 was prepared in the same manner as in Reference Example 11 except that g was used.
000 polycarbonate diol (polycarbonate I2) was obtained.
以下余白
実施例!
ポリエステルaとBDとからなり30℃に加熱さ礼た屋
台物と50℃に加熱溶融したMDIとをポリエステルa
/ M D I / B Dの使用モル比が1/3/
2となる量で定量ポンプにより同方向に回転する二軸ス
クリュー押出機に連続的に仕込み、連続熔融重合をおこ
なった。このとき前記押出機の中を前部、中間部および
後部の三つの帯域に分は中間部の温度(重合温度)を2
30℃とした。生成したポリウレタンをストランド状で
水中へ連続的に押し出し、次いでペレタイザーでベレッ
トに成形した。Margin examples below! A food stall made of polyester a and BD heated to 30°C and MDI heated and melted to 50°C are combined into polyester a.
/MDI/BD usage molar ratio is 1/3/
2 was continuously charged into a twin-screw extruder rotating in the same direction using a metering pump, and continuous melt polymerization was performed. At this time, the temperature of the middle part (polymerization temperature) is 2.
The temperature was 30°C. The polyurethane produced was continuously extruded into water in the form of a strand, and then formed into pellets using a pelletizer.
このペレットを80’CIO時間真空乾燥し、単軸押出
機付の紡糸機により、紡糸温度235℃、紡糸速度65
0Ill/min、見掛ドラフト率816で紡糸テンシ
ョン0.05g/d、給糸速度差20m/minで紡糸
し、70デニール/2フイラメントのポリウレタン繊維
を得た。このwt推を80℃20時間熱処理し、物性を
測定したところ、表3に示す様に好ましい結果が得られ
た。The pellets were vacuum-dried for 80' CIO hours, and then spun at a spinning temperature of 235°C and a spinning speed of 65°C using a spinning machine equipped with a single-screw extruder.
Spinning was carried out at a spinning speed of 0 Ill/min, an apparent draft rate of 816, a spinning tension of 0.05 g/d, and a yarn feeding speed difference of 20 m/min to obtain a polyurethane fiber of 70 denier/2 filaments. When this wt specimen was heat treated at 80° C. for 20 hours and its physical properties were measured, favorable results were obtained as shown in Table 3.
実施例2〜5
実施例1と同様にして表3に示す組成のポリウレタンを
合成し、ペレット化せず、そのまま紡糸頭に供給し、紡
糸温度235°C1紡糸速度800m/minで表3に
示す見掛ドラフト率で紡糸テンション0.06g/d、
給糸速度差30m/minで紡糸して70デニール/2
フイラメントのポリウレタン繊維を得た。Examples 2 to 5 Polyurethanes having the compositions shown in Table 3 were synthesized in the same manner as in Example 1, and fed to the spinning head as they were without being pelletized, at a spinning temperature of 235° C. and a spinning speed of 800 m/min. Spinning tension at apparent draft rate: 0.06 g/d,
70 denier/2 by spinning with a yarn feeding speed difference of 30 m/min
A filament polyurethane fiber was obtained.
この繊維を100°C48時間、熱処理し、物性を評価
したところ、表3に示す様に好ましい結果を得た。When this fiber was heat treated at 100° C. for 48 hours and its physical properties were evaluated, favorable results were obtained as shown in Table 3.
実施例6
表3に示す組成のポリカーボネート系ポリウレタンを、
実施例1と同様に合成、紡糸熱処理し、物性を測定した
ところ、表3に示される様に特に耐熱水性に優れた好ま
しい結果が得られた。Example 6 Polycarbonate polyurethane having the composition shown in Table 3 was
Synthesis and spinning heat treatment were performed in the same manner as in Example 1, and the physical properties were measured. As shown in Table 3, favorable results were obtained, particularly excellent in hot water resistance.
比較例1
実施例1と同様にして、表3に示す組成のポリウレタン
繊維を得、物性を評価したところ、表3に示される様に
伸度、耐熱水性および弾性回復性が極めて不良な結果と
なった。Comparative Example 1 Polyurethane fibers having the composition shown in Table 3 were obtained in the same manner as in Example 1, and the physical properties were evaluated.As shown in Table 3, the elongation, hot water resistance, and elastic recovery were extremely poor. became.
比較例2
ポリウレタンの組成を表3に示す組成とする以外、実施
例4と同様にして得られたポリウレタン比較例3
実施例1と同様にして得られた表3に示す組成のポリウ
レタンmiの物性を評価したところ伸度、弾性回復性、
耐熱水性の不良なものであった。Comparative Example 2 Polyurethane obtained in the same manner as in Example 4 except that the composition of the polyurethane was changed to the composition shown in Table 3 Comparative Example 3 Physical properties of polyurethane mi obtained in the same manner as in Example 1 and having the composition shown in Table 3 When evaluated, elongation, elastic recovery,
It had poor hot water resistance.
比較例4〜6
実施例1と同様にして得られた表3に示す組成のポリウ
レタン繊維の物性を評価したところ、弾性回復性および
伸度の低い不良なものであった。Comparative Examples 4 to 6 When the physical properties of polyurethane fibers having the compositions shown in Table 3 obtained in the same manner as in Example 1 were evaluated, they were found to be poor in terms of elastic recovery and elongation.
比較例7
実施例1と同様にして、見掛ドラフト率が30とたる様
にし、紡糸テンシコン0.1g/dr1給糸速度差20
m/minで紡糸し、70デニール/2フイラメントの
ポリウレタン弾性m維を得た。この繊維を80”C20
時間熱処理し、物性を測定したところ、表3に示す様に
伸度および弾性回復性の低いもので好ましくない結果で
あった。Comparative Example 7 In the same manner as in Example 1, the apparent draft rate was set to 30, and the spinning tensicon was 0.1 g/dr1, and the yarn feeding speed difference was 20.
Spinning was performed at m/min to obtain polyurethane elastic m-fibers of 70 denier/2 filaments. This fiber is 80"C20
When the material was heat treated for a period of time and its physical properties were measured, as shown in Table 3, the elongation and elastic recovery were low, which were unfavorable results.
実施例7
ポリエステルaとBDとからなり30℃に加熱された混
合物と50℃に加熱溶融したMDIとをポリエステルa
/ M D I / B Dの使用モル比がl/3.
24/ 2となる量で定量ポンプにより同方向に回転す
る二軸スクリュー押出機に連続的に仕込む以外実施例1
と同様にして70デニール/2フイラメントのポリウレ
タン繊維を得た。この繊維を80℃20時間熱処理し、
物性を測定したところ、表4に示す様に好ましい結果か
得られた。Example 7 A mixture of polyester a and BD heated to 30°C and MDI heated and melted to 50°C were mixed into polyester a.
/MDI/BD used molar ratio is l/3.
Example 1 except that the amount of 24/2 was continuously charged into a twin screw extruder rotating in the same direction using a metering pump.
In the same manner as above, a 70 denier/2 filament polyurethane fiber was obtained. This fiber was heat treated at 80°C for 20 hours,
When the physical properties were measured, favorable results were obtained as shown in Table 4.
実施例8
実施例1と同様にして表4に示す組成のポリウレタンを
合威し、ベレット化せず、そのまま紡糸頭に供給し、紡
糸温度235℃、紡糸速度800m/minで表4に示
す見掛ドラフト率で紡糸テンション0.07g/d、給
糸速度差−10m/l1linで紡糸して70デニール
/2フイラメントのポリウレタン繊維を得た。この繊維
を100℃48時間、熱処理し、物性を評価したところ
、表4に示す様に好ましい結果を得°た。Example 8 Polyurethane having the composition shown in Table 4 was combined in the same manner as in Example 1, and fed to the spinning head as it was without being made into pellets. Polyurethane fibers of 70 denier/2 filaments were obtained by spinning at a draft rate, a spinning tension of 0.07 g/d, and a yarn feeding speed difference of -10 m/l lin. When this fiber was heat treated at 100° C. for 48 hours and its physical properties were evaluated, favorable results were obtained as shown in Table 4.
実施例9〜11
実施例1と同様にして表4に示す組成のポリウレタン3
種を合成しベレットとした。これらのベレットを80℃
12時間真空乾燥し、ロスインウェイト式フィーダー付
の二軸押出機により押し出し、ベント部より、ポリイソ
シアナートとして実施例9、■0においては、分子量5
00のP T G 1.: M DIを2倍モル反応さ
せたもの、実施例11においてはMDIをε−カプロラ
クタムにより封鎖したものを計量ポンプによりそれぞれ
(B)/ [(A)+(C)コのモル比が1,12.1
.12.1.15となる様添加し゛て混線した。この溶
融状態のポリウレタンをそのまま、紡糸頭に供給し、紡
糸温度235℃、紡糸速度800m/aIinで表4に
示す見掛ドラフト率で紡糸テンション0.06g/d、
給糸速度差20m/winで紡糸し、70デニール/2
フイラメントのポリウレタン繊維3種を得た。これらの
繊維を100℃24時間熱処理し、物性を評価したとこ
ろ、表4に示される様に好ましいものであった。Examples 9 to 11 Polyurethane 3 having the composition shown in Table 4 in the same manner as Example 1
The seeds were synthesized and made into a beret. These pellets at 80℃
After vacuum drying for 12 hours, it was extruded using a twin-screw extruder equipped with a loss-in weight type feeder, and from the vent part, polyisocyanate was obtained with a molecular weight of 5.
00 P T G 1. : Two times the mole of MDI reacted, in Example 11, MDI blocked with ε-caprolactam, was mixed with a metering pump so that the molar ratio of (B)/[(A)+(C) was 1, 12.1
.. 12.1.15 was added to cause crosstalk. This molten polyurethane was supplied as it was to the spinning head, and the spinning temperature was 235°C, the spinning speed was 800 m/aIin, the apparent draft rate was as shown in Table 4, and the spinning tension was 0.06 g/d.
Spun at a yarn feeding speed difference of 20 m/win, 70 denier/2
Three types of filament polyurethane fibers were obtained. These fibers were heat treated at 100° C. for 24 hours and their physical properties were evaluated, and as shown in Table 4, they were favorable.
実施例12
表4に示す組成のポリカーボネート系ポリウレタンを、
実施例1と同様に合成、紡糸熱処理し、物性を測定した
ところ、表4に示される様に特に耐熱水性に優れた好ま
しい結果が得られた。Example 12 Polycarbonate polyurethane having the composition shown in Table 4 was
Synthesis and spinning heat treatment were carried out in the same manner as in Example 1, and physical properties were measured. As shown in Table 4, favorable results were obtained, particularly excellent in hot water resistance.
比較例8
実施例1と同様にして、表4に示す組成のポリウレタン
繊維を得、物性を評価したところ、表4に示される様に
耐熱水性および弾性回復性が極めて不良な結果となった
。Comparative Example 8 Polyurethane fibers having the compositions shown in Table 4 were obtained in the same manner as in Example 1, and their physical properties were evaluated. As shown in Table 4, the hot water resistance and elastic recovery properties were extremely poor.
比較例9
ポリウレタンの組成を表4に示す組成とし、実施例IO
と同様にしてポリイソシアナート添加後の(B)/ [
(A)+ (C)]が1.08のポリウレタン弾性繊維
を得た。該繊維の物性を評価したところ、伸度は良好で
あったが、耐熱水性及び弾性回復性に劣るものであった
。Comparative Example 9 The composition of polyurethane was as shown in Table 4, and Example IO
(B) after adding polyisocyanate in the same manner as [
(A)+(C)] of 1.08 was obtained. When the physical properties of the fiber were evaluated, it was found that the elongation was good, but the hot water resistance and elastic recovery were poor.
比較例1O
実施例1と同様にして得られた表4に示す組成のポリウ
レタン繊維の物性を評価したと、:ろ、耐熱水性の不良
なものであった。Comparative Example 1O When the physical properties of the polyurethane fiber having the composition shown in Table 4 obtained in the same manner as in Example 1 were evaluated, it was found to have poor hot water resistance.
比較例If〜13
実施例1と同様にして得られた表4に示す組成のポリウ
レタン繊維の物性を評価したところ、弾性回復性および
伸度の低い不良なものであった。Comparative Examples If-13 When the physical properties of polyurethane fibers having the compositions shown in Table 4 obtained in the same manner as in Example 1 were evaluated, they were found to be poor in terms of elastic recovery and elongation.
以下余白
実施例13
ポリエステルaとBDおよびBHEB (モル比で7/
3の混合物)とからなる30℃に加熱された混合物と5
0℃に加熱溶融したM D Iとをポリエステル/MD
I/ (BD/BHEB)の使用モル比が1/ 3.
3/ (1,4+ 0.6)となる量で定量ポンプによ
り同方向に回転する二軸スクリュー押出様に連続的に仕
込み、連続溶融重合をおこなった。このとき前記押出機
の中を前部、中間部および後部の三つの帯域に分は中間
部の温度(重合温度)を230℃とした。生成したポリ
ウレタンをストランド状で水中へ連続的に押し出し、次
いでペレタイザーでペレットに成形した。The following margin Example 13 Polyester a, BD and BHEB (molar ratio 7/
3) and a mixture heated to 30°C consisting of 5
MDI heated and melted at 0°C and polyester/MD
The molar ratio of I/(BD/BHEB) used is 1/3.
An amount of 3/(1,4+0.6) was continuously fed into a twin screw extruder rotating in the same direction using a metering pump, and continuous melt polymerization was performed. At this time, the extruder was divided into three zones: front, middle, and rear, and the temperature (polymerization temperature) in the middle was 230°C. The polyurethane produced was continuously extruded into water in the form of a strand, and then formed into pellets using a pelletizer.
このペレットを80℃真空中で16時間乾燥し、通常の
単軸押出機による紡糸機により紡糸温度240℃、捲取
速度800m/winで表5に示す見掛ドラフト率で紡
糸テンション0.02g/d、給糸速度差−10m/m
inで紡糸して、70デニール/2フイラメントのポリ
ウレタン繊維を得た。得られたポリウレタン繊維を80
℃にて24時間熱処理した後、強度、伸度、弾性回復率
、耐熱水性を測定したところ良好な結果が得られた。The pellets were dried in a vacuum at 80°C for 16 hours, and then spun using an ordinary single-screw extruder spinning machine at a spinning temperature of 240°C, a winding speed of 800 m/win, an apparent draft rate shown in Table 5, and a spinning tension of 0.02 g/win. d, Yarn feeding speed difference -10m/m
A polyurethane fiber of 70 denier/2 filaments was obtained. 80% of the obtained polyurethane fiber
After heat treatment at ℃ for 24 hours, good results were obtained when strength, elongation, elastic recovery rate, and hot water resistance were measured.
実施例14〜15
実施例13と同様にして表5に示す組成のポリウレタン
ペレットを得、実施例13と同様に紡糸した結果を表5
に示す。Examples 14-15 Polyurethane pellets having the composition shown in Table 5 were obtained in the same manner as in Example 13, and the results of spinning in the same manner as in Example 13 are shown in Table 5.
Shown below.
実施例16
実施例13と同様にして表5に示す組成のポリウレタン
ペレットを得た。このペレットを80℃24時間真空乾
燥し、ロスインウェイト式計量器付2軸押出機により押
し出し、ベント部分より分子量500のPTGに2倍当
量のMDIを反応させたイソシアナート末端プレポリマ
ーを溶融状態で定量ポンプにより表5の組成となる様供
給し、十分に混練して240℃の紡糸頭より押出し80
0m/minの速度で捲取り70デニール/2フイラメ
ントのポリウレタン繊維を得た。この繊維を90℃30
時間熱処理し、物性を測定した結果、良好な結果か得ら
れた。Example 16 Polyurethane pellets having the composition shown in Table 5 were obtained in the same manner as in Example 13. The pellets were vacuum-dried at 80°C for 24 hours, extruded using a twin-screw extruder with a loss-in-weight meter, and the isocyanate-terminated prepolymer made by reacting PTG with a molecular weight of 500 with twice the equivalent of MDI was melted from the vent part. Then, the composition was supplied using a metering pump to obtain the composition shown in Table 5, thoroughly kneaded, and extruded from the spinning head at 240°C.
A polyurethane fiber of 70 denier/2 filaments was obtained by winding at a speed of 0 m/min. This fiber was heated at 90℃30
As a result of heat treatment for a period of time and measurement of physical properties, good results were obtained.
これを表5に示す。This is shown in Table 5.
実施例17
実施例!3と同様にして表5に示す組成のポリウレタン
ペレットを得た。このペレットを80℃24時間真空乾
燥し、先端部に混練機能を有する単軸押出機により押し
出し、この押出し機のシリンダー途中で、混練機能部直
前に、封鎖イソシアナート化合物として、MDIにカプ
ロラクタムを反応させイソシアナート基を封鎖したもの
を加熱溶融したものを表5の組成となるように定量ポン
プで注入し、混練して押し出した。さらに56素子の静
止型混練機(スタチックミキサー)により混練し、紡糸
温度235℃捲取速度700m/ff1inで紡糸し7
0デニール/2フイラメントのポリウレタン繊維を得た
。Example 17 Example! Polyurethane pellets having the composition shown in Table 5 were obtained in the same manner as in Example 3. The pellets were vacuum dried at 80°C for 24 hours and extruded using a single-screw extruder with a kneading function at the tip. Caprolactam was reacted with MDI as a blocked isocyanate compound in the middle of the cylinder of the extruder, just before the kneading function. A mixture obtained by heating and melting the isocyanate groups blocked was injected using a metering pump to obtain the composition shown in Table 5, kneaded, and extruded. It was further kneaded using a 56-element static mixer, and spun at a spinning temperature of 235°C and a winding speed of 700 m/ff1in.
A polyurethane fiber of 0 denier/2 filaments was obtained.
この繊維に110℃48時間の熱処理を行い、物性を測
定したところ、表5に示す良好な結果が得られた。When this fiber was heat treated at 110° C. for 48 hours and its physical properties were measured, the good results shown in Table 5 were obtained.
比較例14〜19
実施例13と同様にしてポリウレタン繊維を得、表5に
示す結果を得た。強度的には良好であったが、伸度が低
く、耐熱水性ら劣っており(比較例17〜18は良好)
、また弾性回復率も不良で、満足なものは得られなかっ
た。Comparative Examples 14 to 19 Polyurethane fibers were obtained in the same manner as in Example 13, and the results shown in Table 5 were obtained. Although the strength was good, the elongation was low and the hot water resistance was poor (Comparative Examples 17 and 18 were good)
Also, the elastic recovery rate was poor, and a satisfactory result could not be obtained.
実施例18
高分子ジオールとしてポリカーボネートkを用い、ポリ
カーボネート/MD I/ (HD+BHEB)の使用
モル比が1/ 3.15/ (1,4+ 0.8)とす
る以外は実施例13と同様にしてポリウレタンペレット
を得た。このペレットを用いイソシアナート末端プレポ
リマー(ポリイソシアナート化合物)添加量が、(B)
/ [(A)+ (C)]のモル比が110となる様に
する以外、実施例16と同様にしてポリウレタン繊維を
得た。この繊維を90’C20時間熱処理し、特性を測
定したところ表5に示す様に耐熱水性に特に優れる良好
な結果が得られた。Example 18 The same procedure as Example 13 was carried out except that polycarbonate k was used as the polymeric diol and the molar ratio of polycarbonate/MD I/(HD+BHEB) was 1/3.15/(1,4+0.8). Polyurethane pellets were obtained. Using this pellet, the amount of isocyanate-terminated prepolymer (polyisocyanate compound) added is (B)
/ [(A) + (C)] Polyurethane fibers were obtained in the same manner as in Example 16, except that the molar ratio was 110. This fiber was heat treated at 90'C for 20 hours and its properties were measured. As shown in Table 5, good results were obtained, particularly in hot water resistance.
比較例20
組成が表5に示される組成である以外、実施例13と同
様にして得られたポリウレタン繊維の物性を測定したと
ころ、表5に示す様に弾性回復性、伸度の低い不満足な
結果であった。Comparative Example 20 The physical properties of the polyurethane fiber obtained in the same manner as in Example 13 except that the composition was as shown in Table 5 were measured, and as shown in Table 5, it had unsatisfactory low elastic recovery and elongation. It was the result.
実施例19
実施例13と同−組成のボリウ、レタンを、同様にして
合成し、ベレット化せずに直接紡糸頭へ供給し、紡糸温
度240°C1紡糸速度HOm/minで紡糸し70デ
ニール/2フイラメントのポリウレタン繊維を得た。こ
の繊維を100°C30時間熱処理し、物性を測定した
ところ、表5に示す様に好ましいものであった。Example 19 Polyurethane and urethane having the same composition as in Example 13 were synthesized in the same manner, fed directly to the spinning head without being made into pellets, and spun at a spinning temperature of 240° C. and a spinning speed of HOm/min to obtain 70 denier/ A two-filament polyurethane fiber was obtained. This fiber was heat treated at 100°C for 30 hours and its physical properties were measured, and as shown in Table 5, the properties were favorable.
以下余白
[発明の効果コ
以上の実施例から明らかなように、本発明のポリウレタ
ン弾性繊維は伸度が大きく弾性回復性に浸れるとともに
耐熱水性、耐熱性に優れており、有用性が高く、かつ広
汎な用途への対応が可能となった。Below is a margin [Effects of the Invention] As is clear from the above examples, the polyurethane elastic fiber of the present invention has high elongation, good elastic recovery, and excellent hot water resistance and heat resistance, making it highly useful. Moreover, it has become possible to respond to a wide range of applications.
Claims (1)
よび鎖伸長剤(C)を重合して得られるポリウレタンよ
りなるポリウレタン弾性繊維であって、該高分子ジオー
ルとして数平均分子量1000〜3500の(1)一般
式 ▲数式、化学式、表等があります▼ で表される構造単位からなり、式中R^1は下記構造単
位( I )、(II)および/または(III)であり、R^
2は2価の有機基であるポリエステルジオール、または (2)一般式 ▲数式、化学式、表等があります▼ で表わされる構造単位からなり、式中R^1は下記構造
単位( I )、(II)および/または(III)であるポリ
カーボネートジオールであり、かつ、R^1に占める下
記構造単位( I )、(II)、(III)が、[(II)+(
III)]/[( I )+(II)+(III)]がモル比で0
.1以上であり、[( I )+(II)]/[( I )+(
II)+(III)]がモル比で0.5より大きい高分子ジ
オールを主体として用い、 −(CH_2)_■−・・・・・( I ) ▲数式、化学式、表等があります▼・・・・・(II) ▲数式、化学式、表等があります▼・・・・・(III) (B)/(A)のモル比が1.5〜4.5であり、かつ
下記式(IV)、(V)の条件を満足することを特徴とす
るポリウレタン弾性繊維。 耐熱水性強度保持率(%)≧60・・・・・(IV)弾性
回復率(%)≧80・・・・・(V)[Scope of Claims] A polyurethane elastic fiber made of polyurethane obtained by polymerizing a polymeric diol (A), an organic diisocyanate (B), and a chain extender (C), which has a number average as the polymeric diol. It consists of a structural unit represented by (1) General formula ▲ Numerical formula, chemical formula, table, etc.▼ with a molecular weight of 1000 to 3500, where R^1 is the following structural unit (I), (II) and/or (III). ) and R^
2 is a polyester diol, which is a divalent organic group, or (2) a structural unit represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼, where R^1 is the following structural unit (I), ( II) and/or (III), and the following structural units (I), (II), and (III) occupying R^1 are [(II)+(
III)]/[(I)+(II)+(III)] is 0 in molar ratio
.. 1 or more, and [(I)+(II)]/[(I)+(
II) + (III)] with a molar ratio of more than 0.5 is used as the main component, −(CH_2)_■−・・・(I) ▲Mathematical formulas, chemical formulas, tables, etc. are included▼・......(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼......(III) The molar ratio of (B)/(A) is 1.5 to 4.5, and the following formula ( A polyurethane elastic fiber characterized by satisfying the conditions IV) and (V). Hot water resistance strength retention rate (%)≧60...(IV) Elastic recovery rate (%)≧80...(V)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-119469 | 1989-05-12 | ||
JP11946789 | 1989-05-12 | ||
JP1-119467 | 1989-05-12 | ||
JP11946889 | 1989-05-12 | ||
JP1-119468 | 1989-05-12 | ||
JP11946989 | 1989-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0376811A true JPH0376811A (en) | 1991-04-02 |
Family
ID=27313829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12190390A Pending JPH0376811A (en) | 1989-05-12 | 1990-05-11 | Polyurethane elastomer fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0376811A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002302222A (en) * | 2001-03-30 | 2002-10-18 | Sanki Eng Co Ltd | Curved belt conveyor |
CN102477278A (en) * | 2010-11-23 | 2012-05-30 | 上海恩意材料科技有限公司 | Preparation method of wear-resistant elastic adhesive |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4825433A (en) * | 1971-08-03 | 1973-04-03 | ||
JPS61185520A (en) * | 1985-02-12 | 1986-08-19 | Kuraray Co Ltd | Production of polyester polyurethane |
JPS6222817A (en) * | 1985-07-23 | 1987-01-31 | Kuraray Co Ltd | Production of polyurethane |
JPS646180A (en) * | 1987-06-19 | 1989-01-10 | Kuraray Co | Leather-like sheet having excellent water vapor transmission |
-
1990
- 1990-05-11 JP JP12190390A patent/JPH0376811A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4825433A (en) * | 1971-08-03 | 1973-04-03 | ||
JPS61185520A (en) * | 1985-02-12 | 1986-08-19 | Kuraray Co Ltd | Production of polyester polyurethane |
JPS6222817A (en) * | 1985-07-23 | 1987-01-31 | Kuraray Co Ltd | Production of polyurethane |
JPS646180A (en) * | 1987-06-19 | 1989-01-10 | Kuraray Co | Leather-like sheet having excellent water vapor transmission |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002302222A (en) * | 2001-03-30 | 2002-10-18 | Sanki Eng Co Ltd | Curved belt conveyor |
CN102477278A (en) * | 2010-11-23 | 2012-05-30 | 上海恩意材料科技有限公司 | Preparation method of wear-resistant elastic adhesive |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4132244B2 (en) | Polyurethane elastic fiber comprising thermoplastic polyurethane and method for producing the same | |
US5565270A (en) | Process for the production of elastane filaments | |
KR20060069795A (en) | Melt-spun monofilament or elastic tapes and methods | |
JPH03220311A (en) | polyurethane elastic fiber | |
JPS5846573B2 (en) | Manufacturing method of polyurethane elastic yarn | |
JPH0376811A (en) | Polyurethane elastomer fiber | |
CN114127345B (en) | Bicomponent thermoplastic polyurethane fibers and fabrics made therefrom | |
JP3247777B2 (en) | Polyurethane elastic body and method for producing the same | |
JPS6114245B2 (en) | ||
JP2752317B2 (en) | Polyurethane elastic body excellent in heat resistance and method for producing the same | |
JP3142089B2 (en) | Polyurethane elastic fiber | |
JP3217160B2 (en) | Polyurethane, production method thereof and polyurethane fiber | |
JP2653711B2 (en) | Polyurethane | |
EP1273606A1 (en) | Polyurethane and elastic fiber obtained therefrom | |
JP3142090B2 (en) | Polyurethane elastic fiber | |
JP2001323156A (en) | Thermoplastic polyurethane resin composition and polyurethane elastic fiber comprising the same | |
JPH04316609A (en) | Polyolefin-based elastic conjugated fiber | |
JP2619844B2 (en) | Method for producing polyurethane elastic yarn | |
JPH1135818A (en) | Polyurethane composition and elastic fiber | |
JPH04146915A (en) | Polyurethane elastomer and its production | |
JP2653718B2 (en) | Polyurethane and polyurethane elastic fiber | |
JPS5844764B2 (en) | Manufacturing method of polyurethane elastic yarn | |
JPH03287816A (en) | Production of polyurethane elastic fiber | |
JPH111822A (en) | Polyurethane elastic fiber | |
JP3029721B2 (en) | Polyurethane fiber |