Nothing Special   »   [go: up one dir, main page]

JPH0375391A - Production of m-cyanobenzyl alcohol - Google Patents

Production of m-cyanobenzyl alcohol

Info

Publication number
JPH0375391A
JPH0375391A JP1209543A JP20954389A JPH0375391A JP H0375391 A JPH0375391 A JP H0375391A JP 1209543 A JP1209543 A JP 1209543A JP 20954389 A JP20954389 A JP 20954389A JP H0375391 A JPH0375391 A JP H0375391A
Authority
JP
Japan
Prior art keywords
acid
reaction
alcohol
cyanobenzoic
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1209543A
Other languages
Japanese (ja)
Inventor
Tatsu Oi
龍 大井
Noriko Tateyama
立山 紀子
Chitoshi Shimakawa
千年 島川
Shinji Takenaka
竹中 慎司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1209543A priority Critical patent/JPH0375391A/en
Publication of JPH0375391A publication Critical patent/JPH0375391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To enhance the yield of m-cyanobenzyl alcohol by electrolytically reducing m-cyanobenzoic acid or m-cyanobenzoic ester with a metallic material having high hydrogen overvoltage. CONSTITUTION:m-Cyanobenzoic acid or m-cyanobenzoic ester is electrolytically reduced in the presence of water and/or a water soluble org. solvent and/or quat. ammonium salt at pH<=4 with a metallic material having high hydrogen overvoltage as the cathode. The metallic material is made of Zn, Pb, Cd, Hg or an alloy contg. such metals. m-Cyanobenzyl alcohol is produced by an industrially superior method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はm−シアノベンジルアルコールの製造方法に関
する。さらに詳しくはm−シアノ安息香酸又はm−シア
ノ安息香酸のエステルを電解還元して、−シアノベンジ
ルアルコールを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing m-cyanobenzyl alcohol. More specifically, the present invention relates to a method for producing -cyanobenzyl alcohol by electrolytically reducing m-cyanobenzoic acid or an ester of m-cyanobenzoic acid.

■−シアノベンジルアルコールは各種医薬及び農薬の原
料として有用な化合物であるが、現状ではそれらの安価
な製造方法による工業的供給には至っていない。
(2)-Cyanobenzyl alcohol is a compound useful as a raw material for various medicines and agricultural chemicals, but at present it has not been commercially supplied by inexpensive manufacturing methods.

〔従来の技術及び発明が解決しようとする課題〕トシア
ノベンジルアルコールの合成法としては、訃アミノ安患
香酸をアマルガム還元し、ドアミノベンジルアルコール
とした後、アミノ基をジアゾ化し、シアン化銅にて処理
し、トシアノベンジルアルコールを台底する方法(Be
r (38) 2063 (1905)〕が報告されて
いるが、工程数が長いうえ、ジアゾ化、シアノ化が繁雑
であり実用的ではない。
[Prior art and problems to be solved by the invention] As a method for synthesizing tocyanobenzyl alcohol, aminobenzoic acid is reduced to amalgam to form doaminobenzyl alcohol, and then the amino group is diazotized and cyanated. A method of treating with copper and removing tocyanobenzyl alcohol (Be
r (38) 2063 (1905)] has been reported, but the number of steps is long and diazotization and cyanation are complicated, making it impractical.

トシアノ安患香酸は台底が比較的容易であり、−シアノ
ベンジルアルコール合成の原料としては適していると思
われるが、−シアノ安息香酸を出発原料に、カルボン酸
のみを還元してトシアノベンジルアルコールを台底する
方法は、LiA I Haといったハイドライド試薬、
あるいは水添法といった通常のカルボン酸の還元条件下
、シアノ基も同様に還元を受けるため薄−シアノベンジ
ルアルコ−ルへの選択性に問題がある。
Tocyanobenzoic acid is relatively easy to produce and seems to be suitable as a raw material for the synthesis of cyanobenzyl alcohol. The method for dissolving benzyl alcohol is to use a hydride reagent such as LiA I Ha,
Alternatively, under normal carboxylic acid reduction conditions such as hydrogenation, the cyano group is similarly reduced, so there is a problem in selectivity to dilute cyanobenzyl alcohol.

トシアノベンジルアルコールへの選択率及び収率を上げ
る方法として、 1」−シアノ安息香酸をクロル酢酸エチルと反応させた
後、NaBHnで還元する方法(特開昭6O−9794
6)。
As a method to increase the selectivity and yield to tocyanobenzyl alcohol, there is a method in which 1''-cyanobenzoic acid is reacted with ethyl chloroacetate and then reduced with NaBHn (Japanese Patent Laid-Open No. 60-9794).
6).

2、m1−シアノ安息香酸のエチルエステルをCa(B
Hn)zで還元する方法[J、Org、Chem、47
 (24) 4702 (1982) )。
2, ethyl ester of m1-cyanobenzoic acid is converted to Ca(B
Hn) Method of reduction with z [J, Org, Chem, 47
(24) 4702 (1982)).

が提案されているが、いずれも高価な還元剤を化学量論
量用いる割には収率もそれぞれ63%、70%と低く、
工業的製造法としては不十分であった。
have been proposed, but both have low yields of 63% and 70%, respectively, even though they use stoichiometric amounts of expensive reducing agents.
This was insufficient as an industrial manufacturing method.

即ち、−シアノ安息香酸は―−シアノベンジルアルコー
ル合或の出発原料として優れているにもかかわらず、−
シアノベンジルアルコールへの安価、かつ選択的な還元
技術が開発されていないのが現状である。
That is, although cyanobenzoic acid is an excellent starting material for cyanobenzyl alcohol synthesis,
At present, an inexpensive and selective reduction technology to cyanobenzyl alcohol has not been developed.

本発明の目的は簡便、安価かつ高収率で―シアノ安息香
酸あるいはそのエステルのシアノ基を残したまま、カル
ボン酸あるいはエステルのみを選択的に還元するm−シ
アノベンジルアルコールの製造方法を提供することであ
る。
The purpose of the present invention is to provide a simple, inexpensive, and high-yield method for producing m-cyanobenzyl alcohol, which selectively reduces only the carboxylic acid or ester while leaving the cyano group of cyanobenzoic acid or its ester. That's true.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上述のような従来技術の欠点を解消する
m−シアノ安息香酸の還元方法について鋭意検討を行っ
た結果、トシアノ安息香酸またはそのエステルの電解還
元により、m−シアノベンジルアルコールが選択的に得
られることを発見した。
The present inventors have conducted extensive studies on a method for reducing m-cyanobenzoic acid that overcomes the drawbacks of the prior art as described above, and have found that m-cyanobenzyl alcohol can be reduced by electrolytic reduction of tocyanobenzoic acid or its ester. It was discovered that it can be obtained selectively.

即ち、本発明はm−シアノ安息香酸またはそのエステル
を水及び/又は水可溶性有機溶媒及び/又は第4級アン
モニウム塩の存在下で、pH4以下に保持して水素過電
圧の高い金属材料を陰極に用いて、電解還元することを
特徴とするm−シアノベンジルアルコールの製造方法で
ある。
That is, the present invention maintains m-cyanobenzoic acid or its ester at pH 4 or less in the presence of water and/or a water-soluble organic solvent and/or a quaternary ammonium salt, and uses a metal material with a high hydrogen overvoltage as a cathode. This is a method for producing m-cyanobenzyl alcohol, which is characterized by carrying out electrolytic reduction.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の方法は、通常、陰極と陽極の画室が陽イオン交
換膜あるいはガラス隔膜で分離した電解槽を用いて行わ
れるが、特開平01−126782に示されるように陽
極材質として、酸素過電圧の低い陽極材質を使用するこ
とによって無隔膜法にても反応を行うことができる。
The method of the present invention is usually carried out using an electrolytic cell in which the cathode and anode compartments are separated by a cation exchange membrane or a glass diaphragm. By using a low anode material, the reaction can also be carried out without a diaphragm.

本発明の方法において、電解液のpHは重要な因子であ
る。アルカリ性下においては反応の進行が遅いので電解
は酸性下で行うことが好ましく、pH4以下が適当であ
る。
In the method of the present invention, the pH of the electrolyte is an important factor. Since the reaction progresses slowly under alkaline conditions, it is preferable to carry out electrolysis under acidic conditions, and a pH of 4 or less is suitable.

溶液を酸性に保持する手段としては電解反応に関与しな
い酸性物質なら特に限定するものではないが、−船釣に
は鉱酸類又はスルホン酸類を水溶媒に添加することが好
ましい、特に硫酸は安価でかつ反応系材質に対して腐食
性もなく使い易い。
The means for keeping the solution acidic is not particularly limited as long as it is an acidic substance that does not participate in electrolytic reactions, but for boat fishing it is preferable to add mineral acids or sulfonic acids to the water solvent, especially sulfuric acid is inexpensive and Moreover, it is not corrosive to reactive materials and is easy to use.

また、本発明の方法において、原料のm−シアノ安息香
酸またはそのエステルは酸性水溶液中への溶解度が低く
、反応の容積効率を上げるため溶解度を大幅に越える原
料を添加した場合、不溶の原料が陰極の反応活性低下の
原因にもなる。そこで溶解度を上げるために電解反応液
中に第4級アンモニウム塩類を添加したり、水可溶性有
機溶媒を添加したり、その両方を添加することも好まし
い方法である。
In addition, in the method of the present invention, m-cyanobenzoic acid or its ester as a raw material has low solubility in an acidic aqueous solution, and when a raw material that greatly exceeds the solubility is added to increase the volumetric efficiency of the reaction, insoluble raw materials may be added. It also causes a decrease in the reaction activity of the cathode. Therefore, in order to increase the solubility, it is also a preferable method to add a quaternary ammonium salt, a water-soluble organic solvent, or both to the electrolytic reaction solution.

第4級アンモニウム塩は次の一般式(1)で表されるも
のである。
The quaternary ammonium salt is represented by the following general formula (1).

(式中、Rls Rz、R1、R4は低級7)L/キル
基、Xはp−)ルエンスルホン酸、硫酸、塩酸又は臭化
水素酸のいずれかの酸基を示す) このような塩を使用する酸性水溶液に対し、最高60重
量%まで添加する。それ以上添加しても特に溶解度の改
善はみられない。
(In the formula, Rls Rz, R1, R4 are lower 7)L/kyl group, X is p-) represents any acid group of luenesulfonic acid, sulfuric acid, hydrochloric acid or hydrobromic acid) Add up to 60% by weight based on the acidic aqueous solution used. Even if more than that is added, no particular improvement in solubility is observed.

水可溶性有機溶媒としては水と均一に混合し、トシアノ
安息香酸の溶解度を上げる溶媒なら特に限定されるもの
ではないが、例えばアセトニトリル、N、N”−ジメチ
ルイ弓ダシリジノン、N、N−ジメチルホルムアミド、
N−メチル−2−ピロリドン、スルホラン等の非プロト
ン性極性溶媒、メタノール、エタノール、プロパノール
、ブタノールといったアルコール類、あるいはエチレン
グリコール、ジエチレングリコール、トリエチレングリ
コール、テトラエチレングリコール、ポリエチレングリ
コ−ルなどのグリコール類、あるいはそれらのモノメチ
ルエーテル、モノエチルエーテル、モノプロピルエーテ
ル、モノブチルエーテル等があげられる。
The water-soluble organic solvent is not particularly limited as long as it is a solvent that mixes uniformly with water and increases the solubility of tocyanobenzoic acid, but examples include acetonitrile, N,N''-dimethylyydacyridinone, N,N-dimethylformamide,
Aprotic polar solvents such as N-methyl-2-pyrrolidone and sulfolane; alcohols such as methanol, ethanol, propanol, and butanol; and glycols such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and polyethylene glycol. , or their monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether, etc.

これらの有機溶媒は使用する酸性水溶液に対して、最高
10重量倍添加する。それ以上添加しても特に溶解度の
改善はみられない。
These organic solvents are added in an amount of at most 10 times the weight of the acidic aqueous solution used. Even if more than that is added, no particular improvement in solubility is observed.

m−シアノ安息香酸の電解液中の濃度は通常、0゜5〜
40重量%の範囲である。0.5%以下では反応の容積
効率が悪く、また40%以上では十分溶解せず反応効率
が低下する。
The concentration of m-cyanobenzoic acid in the electrolyte is usually 0°5~
It is in the range of 40% by weight. If it is less than 0.5%, the volumetric efficiency of the reaction is poor, and if it is more than 40%, it will not dissolve sufficiently and the reaction efficiency will decrease.

原料の添加法としては、−シアノ安息香酸あるいはその
エステルの添加濃度、及び使用する反応溶媒へのトシア
ノ安患香酸あるいはそのエステルの溶解度によっても異
なるが、トシアノ安患香酸あるいはそのエステルの酸性
水溶液中への溶解度が低いため、反応初期に一括添加す
るより反応の進行に合わせて分割装入することが望まし
い。
The method of adding raw materials varies depending on the concentration of cyanobenzoic acid or its ester added and the solubility of tocyanobenzoic acid or its ester in the reaction solvent used, but the acidity of tocyanobenzoic acid or its ester Because of its low solubility in aqueous solutions, it is preferable to charge it in portions as the reaction progresses rather than adding it all at once at the beginning of the reaction.

尚、本反応を隔膜にて陽、陰極室を分離した電解槽中で
実施する隔膜法の場合は、原料のトシアノ安息香酸ある
いはそのエステル及び第4級アンモニウム塩、水可溶性
有機溶媒等は陰極側のみに添加し、陽極側は特に限定さ
れるものではないが通常、硫酸水溶液のみを使用する。
In addition, in the case of the diaphragm method in which this reaction is carried out in an electrolytic cell with positive and cathode compartments separated by a diaphragm, the raw materials tocyanobenzoic acid or its ester, quaternary ammonium salt, water-soluble organic solvent, etc. are placed on the cathode side. On the anode side, although not particularly limited, usually only an aqueous sulfuric acid solution is used.

隔膜としてはガラス隔膜、アスベスト、イオン交換膜な
どを使用する。
As the diaphragm, glass diaphragm, asbestos, ion exchange membrane, etc. are used.

本発明の方法において、電解還元反応は20〜100′
Cの温度範囲で実施する。温度が20’C未満では反応
は遅く、100°Cを越えると水及び添加有機溶媒等が
蒸発し、反応が複雑となる。
In the method of the present invention, the electrolytic reduction reaction
It is carried out in the temperature range of C. If the temperature is less than 20'C, the reaction will be slow, and if it exceeds 100°C, water and the added organic solvent will evaporate, making the reaction complicated.

また、電極のうち特に陰極材料はトシアノ安息香酸の側
鎖カルボニル基の還元電位(1,62VvsHg/Hg
zSOa )よりも卑な水素過電圧を有する金属、具体
的には亜鉛、鉛、カドミウム、水銀が用いられ、または
それらを含有する合金も用いられる。
In addition, among the electrodes, the cathode material in particular is the reduction potential of the side chain carbonyl group of tocyanobenzoic acid (1,62V vs Hg/Hg
Metals having hydrogen overpotentials more base than zSOa ), specifically zinc, lead, cadmium, and mercury, or alloys containing them are also used.

陰極材質としてニッケル、白金、鉄といった水素過電圧
の低いものを用いた場合はカルボン酸の還元は進行せず
、シアノ基の還元が優先する。
When a cathode material having a low hydrogen overvoltage such as nickel, platinum, or iron is used, reduction of carboxylic acid does not proceed, and reduction of cyano groups takes priority.

又、対する陽極については隔膜法の場合には、通常の電
極材料であればよく、特に限定されない。
Further, in the case of the diaphragm method, the anode may be made of any ordinary electrode material and is not particularly limited.

反応の電流密度は通常1〜30 A /d rrrであ
り、IA/drrf以下では所定の電気量を通電するの
に時間がかかり容積効率が低下する。また30 A /
d nf以上では電流効率が低下する。
The current density for the reaction is usually 1 to 30 A/drrf, and if it is less than IA/drrf, it takes time to supply a predetermined amount of electricity, resulting in a decrease in volumetric efficiency. Also 30 A/
The current efficiency decreases above d nf.

本反応は理論的には4電子還元であり4 Fr/mo1
通電した時点で反応は終結するはずであるが、実際には
水の電気分解による水素発生が副反応として起こるため
、反応を完結させるためには10〜40Fr/molの
電気量を必要とする。
Theoretically, this reaction is a 4-electron reduction, and 4 Fr/mol
The reaction is supposed to end when electricity is applied, but in reality, hydrogen generation occurs as a side reaction due to electrolysis of water, so an amount of electricity of 10 to 40 Fr/mol is required to complete the reaction.

無隔膜法で行う場合の陽極材質としては、酸性水溶液中
で安定な金属酸化物でその酸素過電圧が、使用電流密度
が0.1 A/d−〜100 A/dw”において、硫
酸水銀電極基準で+1.I V (15重量%硫酸水溶
液中、25°Cで測定、標準水素電極換算で+1.7 
V)以下である酸化物を使用し、又、その酸化物は金属
基材表面に被覆したものでもよい。
The anode material for the non-diaphragm method is a metal oxide that is stable in an acidic aqueous solution, and its oxygen overvoltage is 0.1 A/d- to 100 A/dw'' at a working current density of 0.1 A/d- to 100 A/dw'', and the oxygen overvoltage is based on the mercury sulfate electrode standard. +1.IV (measured at 25°C in a 15% by weight sulfuric acid aqueous solution, +1.7 in terms of standard hydrogen electrode)
V) The following oxides may be used, and the oxides may be coated on the surface of the metal substrate.

その場合の酸化物として、第8族白金族の酸化ルテニウ
ム、酸化ロジウム、酸化パラジウム、酸化オスミウム、
酸化イリジウム、酸化白金、酸化スズ、酸化タンタル及
び酸化コバルト等、あるいはそれらの混合物が挙げられ
る。
In this case, the oxides include ruthenium oxide of Group 8 platinum group, rhodium oxide, palladium oxide, osmium oxide,
Examples include iridium oxide, platinum oxide, tin oxide, tantalum oxide, cobalt oxide, and mixtures thereof.

工業的には通常、金属チタンの基材表面に白金族金属を
主成分とする酸化物被覆層を有するDSE (Dime
nsionally 5table Electrod
e)が望ましい。
Industrially, DSE (Dime
sionally 5table Electrod
e) is desirable.

〔作用〕[Effect]

トシアノベンジルアルコールの安価な工業的製造方法は
今まで確立されておらず、原料として有利と思われるト
シアノ安息香酸、あるいはそのエステルのカルボン酸の
みを選択的に還元して、曙シアノベンジルアルコールを
製造する方法は、高価な還元剤を化学量論量用いても満
足な目的物収率を与えなかったが、電解法を用いること
により、簡便かつ高収率で目的物を得ることができる。
To date, no inexpensive industrial production method for tocyanobenzyl alcohol has been established, and Akebono's cyanobenzyl alcohol can be produced by selectively reducing only tocyanobenzoic acid, which is considered to be an advantageous raw material, or the carboxylic acid of its ester. Although the production method did not give a satisfactory yield of the target product even if a stoichiometric amount of an expensive reducing agent was used, by using an electrolytic method, the target product can be obtained easily and in high yield.

即ち、本発明は−シアノベンジルアルコールの工業的に
優れた製造方法を提供するものである。
That is, the present invention provides an industrially excellent method for producing -cyanobenzyl alcohol.

〔実施例〕〔Example〕

次に実施例によって本発明を更に具体的に説明するが、
本発明はこれらに限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.

なお、%は重量%を意味する。In addition, % means weight %.

実施例1 両極室とも401dの容量を有し、陽、陰極がガラス隔
膜により分離されたH型の電解セルを使用し、両極室に
それぞれ15%の硫酸水を15gずつ仕込む。
Example 1 An H-type electrolytic cell in which both electrode chambers have a capacity of 401 d and an anode and a cathode are separated by a glass diaphragm is used, and 15 g of 15% sulfuric acid water is charged into each electrode chamber.

さらに陰極室にはトシアノ安息香酸0.15g (1゜
02+wwol )を添加する。陰極には有効面積5.
5 cdの鉛板、陽極には同面積の白金板を!極として
用いた9反応部度を70℃にて0.4Aの直流定電流電
解を行い、12Fr/mo1通電したところで反応を中
止した。
Furthermore, 0.15 g (1°02+wwol) of tocyanobenzoic acid is added to the cathode chamber. Effective area for cathode 5.
5 CD lead plate, platinum plate with the same area for the anode! Constant current electrolysis at 0.4 A was carried out at 70° C. in the 9 reaction sections used as electrodes, and the reaction was stopped when 12 Fr/mo1 current was applied.

電解終了後、陰極液を液体クロマトグラフィーで分析し
た結果、m−シアノ安息香酸の転化率は98.0%、ト
シアノベンジルアルコールの収率は85.5%であった
After the electrolysis was completed, the catholyte was analyzed by liquid chromatography, and the conversion rate of m-cyanobenzoic acid was 98.0%, and the yield of tocyanobenzyl alcohol was 85.5%.

実施例2 実施例1と同様な電解セルを用い、陽極室に15%硫酸
水15g、陰極室にジエチレングリコール:30%硫酸
水(1:1.)混合溶媒を15g添加し、実施例1と同
様の電極を用いて70℃でIAの直流定電流を流した。
Example 2 Using the same electrolytic cell as in Example 1, 15 g of 15% sulfuric acid water was added to the anode chamber, and 15 g of diethylene glycol:30% sulfuric acid water (1:1.) mixed solvent was added to the cathode chamber. A constant DC current of IA was applied at 70° C. using the electrode.

原料のm−シアノ安患香酸(1,5g、 10.2ms
+ol)を陰極室に分割添加しく 5 Fr/molの
通電中に添加)合計12Fr/mo1通電したところで
反応を中止した。
Raw material m-cyanobenzoic acid (1.5g, 10.2ms
The reaction was stopped when a total of 12 Fr/mol (12 Fr/mol) of current was applied) to the cathode chamber in portions.

液体クロマトグラフィーによる分析の結果、麟シアノ安
患香酸の転化率は97.3%、トシアノベンジルアルコ
ールの収率は84.9%であった。
As a result of analysis by liquid chromatography, the conversion rate of cyanobenzoic acid was 97.3%, and the yield of tocyanobenzyl alcohol was 84.9%.

実施例3 実施例1と同様な電解セルを用い、陽極室に15%硫酸
水15g、陰極室にホウ酸−水酸化アンモニウム緩衝液
(p)14 ) 15g、支持電解質として硫酸ナトリ
ウム0.45g仕込み、さらに陰極液にはm−シアノ安
息香酸メチルエステル0.15 g (0,93mmo
l )を添加した。
Example 3 Using the same electrolytic cell as in Example 1, 15 g of 15% sulfuric acid water was placed in the anode chamber, 15 g of boric acid-ammonium hydroxide buffer (p)14) was placed in the cathode chamber, and 0.45 g of sodium sulfate was charged as a supporting electrolyte. In addition, the catholyte contains 0.15 g of m-cyanobenzoic acid methyl ester (0.93 mmo
l) was added.

実施例1と同様の電極を用いて室温で0.4 Aの直流
定電流電解を行い、30Fr/mo1通電した。
Using the same electrode as in Example 1, 0.4 A constant current electrolysis was performed at room temperature, and a current of 30 Fr/mo1 was applied.

液体クロマトグラフィーによる分析の結果、m−シアノ
安息香酸メチルエステルの転化率は62.5%、トシア
ノベンジルアルコールの収率は55,3%であった。
As a result of analysis by liquid chromatography, the conversion rate of m-cyanobenzoic acid methyl ester was 62.5%, and the yield of tocyanobenzyl alcohol was 55.3%.

実施例4 容量100 mの同筒型単一電解セルに20%硫酸水1
0g1エタノール10g、テトラエチルアンモニウム1
1−)ルエンスルホネートIgとトシアノ安患香酸1.
5 g (lo、2mol)を仕込んだ。
Example 4 1 part of 20% sulfuric acid water was added to a cylindrical single electrolytic cell with a capacity of 100 m.
0g 1 ethanol 10g, tetraethylammonium 1
1-) Luenesulfonate Ig and tocyanobenzoic acid 1.
5 g (lo, 2 mol) was charged.

陰極として有効面積5.5cjの鉛板、陽極として同面
積の表面に酸化イリジウムをコーティングしたチタン板
(酸素過電圧は+〇、95V vs HgzSOa)を
用いた。室温で0.5Aの直流定電流電解を行い15F
r/mo1通電したところで反応を中止した。
A lead plate with an effective area of 5.5 cj was used as a cathode, and a titanium plate coated with iridium oxide on the surface of the same area was used as an anode (oxygen overvoltage: +0, 95 V vs. HgzSOa). Perform 0.5A DC constant current electrolysis at room temperature at 15F.
The reaction was stopped when r/mo1 current was applied.

実施例1と同様の方法で液体クロマトグラフィーにて分
析したところ、トシアノ安息香酸の転化率は97.9%
、トシアノベンジルアルコールの収率は82.9%であ
った。
When analyzed by liquid chromatography in the same manner as in Example 1, the conversion rate of tocyanobenzoic acid was 97.9%.
The yield of tocyanobenzyl alcohol was 82.9%.

比較例1 実施例1と同様な電解セルを用い、陽極室に15%硫酸
水15g、陰極室にリン酸水素二ナトリウムー水酸化ナ
トリウム緩衝液(pH10)を15g、支持電解質とし
て硫酸ナトリウム0.45 g仕込み、さらに陰極液に
はトシアノ安患香酸0.15g (1,0mmol)を
添加した。
Comparative Example 1 Using the same electrolytic cell as in Example 1, 15 g of 15% sulfuric acid water was placed in the anode chamber, 15 g of disodium hydrogen phosphate-sodium hydroxide buffer (pH 10) was placed in the cathode chamber, and 0.45 g of sodium sulfate was used as the supporting electrolyte. Furthermore, 0.15 g (1.0 mmol) of tocyanobenzoic acid was added to the catholyte.

実施例1と同様の電極を用で、室温で0.4Aの直流定
電流電解を行い30Fr/s+o1通電した。
Using the same electrode as in Example 1, constant current electrolysis of 0.4 A was carried out at room temperature, and a current of 30 Fr/s+o1 was applied.

液体クロマトグラフィーによる分析の結果、−シアノ安
息香酸の転化率は8.2%、−シアノベンジルアルコー
ルの収率は5.8%であった。
As a result of analysis by liquid chromatography, the conversion rate of -cyanobenzoic acid was 8.2%, and the yield of -cyanobenzyl alcohol was 5.8%.

比較例2 実施例1と同様な電解セルを用い、陽、陰極室にそれぞ
れ5%水酸化ナトリウム水溶液15gずつを仕込み、さ
らに陰極液にはトシアノ安息香酸0゜15 (1,05
nol)を添加した。実施例1と同様の電極を用で、室
温で0.4 Aの直流定電流電解を行い30Fr/mo
1通電した。
Comparative Example 2 Using the same electrolytic cell as in Example 1, 15 g of 5% sodium hydroxide aqueous solution was charged into the anode and cathode chambers, and 0.15 (1,05 g) of tocyanobenzoic acid was added to the catholyte.
nol) was added. Using the same electrode as in Example 1, constant current electrolysis at 0.4 A was performed at room temperature at 30Fr/mo.
1 power was applied.

液体クロマトグラフィーによる分析の結果、爾シアノ安
息香酸の転化率及びm−シアノベンジルアルコールの収
率は1%未満であった。
As a result of analysis by liquid chromatography, the conversion rate of cyanobenzoic acid and the yield of m-cyanobenzyl alcohol were less than 1%.

C発明の効果〕 実施例と比較例より判るように、電解還元反応時の電解
液のpHがアルカリ側でなくpH4以下の酸性側である
と、鼾シアノベンジルアルコールの収率が良好である事
が判る。
C Effect of the invention] As can be seen from the examples and comparative examples, when the pH of the electrolytic solution during the electrolytic reduction reaction is not on the alkaline side but on the acidic side of pH 4 or less, the yield of snoring cyanobenzyl alcohol is good. I understand.

Claims (1)

【特許請求の範囲】 1、m−シアノ安息香酸又はm−シアノ安息香酸のエス
テルを水及び/又は水可溶性有機溶媒及び/又は第4級
アンモニウム塩の存在下で、pH4以下に保持して水素
過電圧の高い金属材料を陰極に用いて、電解還元するこ
とを特徴とするm−シアノベンジルアルコールの製造方
法。 2、水素過電圧の高い金属材料が亜鉛、鉛、カドミウム
又は水銀あるいはそれらの金属を含有する合金である請
求項1記載の方法。
[Claims] 1. m-cyanobenzoic acid or an ester of m-cyanobenzoic acid is hydrogenated by maintaining it at pH 4 or below in the presence of water and/or a water-soluble organic solvent and/or a quaternary ammonium salt. A method for producing m-cyanobenzyl alcohol, which comprises carrying out electrolytic reduction using a metal material with high overvoltage as a cathode. 2. The method according to claim 1, wherein the metal material having a high hydrogen overvoltage is zinc, lead, cadmium, mercury, or an alloy containing these metals.
JP1209543A 1989-08-15 1989-08-15 Production of m-cyanobenzyl alcohol Pending JPH0375391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1209543A JPH0375391A (en) 1989-08-15 1989-08-15 Production of m-cyanobenzyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1209543A JPH0375391A (en) 1989-08-15 1989-08-15 Production of m-cyanobenzyl alcohol

Publications (1)

Publication Number Publication Date
JPH0375391A true JPH0375391A (en) 1991-03-29

Family

ID=16574548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1209543A Pending JPH0375391A (en) 1989-08-15 1989-08-15 Production of m-cyanobenzyl alcohol

Country Status (1)

Country Link
JP (1) JPH0375391A (en)

Similar Documents

Publication Publication Date Title
JPH0343351B2 (en)
JPH09286774A (en) 2-alkylmercapto-4-(trifluoromethyl) benzoic acid ester and its production
US7713401B2 (en) Methods for performing electrochemical nitration reactions
CN101591787B (en) Electrochemical synthesis method for aminophenylarsonic acid
JPH0375391A (en) Production of m-cyanobenzyl alcohol
US5395488A (en) Electrochemical process for reducing oxalic acid to glyoxylic acid
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
US6669828B2 (en) Cathode for electrolysis cells
US4061548A (en) Electrolytic hydroquinone process
JP2812748B2 (en) Method of electrosynthesis of aldehyde
US5066369A (en) Process for preparing para-aminophenol
JP4303215B2 (en) Electrolytic method for producing borohydride
JPS62294191A (en) Production of alkoxy acetate
JPS63277781A (en) Electrolytic reduction of aliphatic nitro compound
DE3928290A1 (en) METHOD FOR PRODUCING AMINOBENZYL ALCOHOLS
JPH03120253A (en) Preparation of 3-hydroxymethylpyridine
JP2767703B2 (en) Method for electrolytic reduction of aromatic carboxylic acids
JPS6342712B2 (en)
JP2632832B2 (en) Method for producing polyfluorobenzyl alcohol
CN118639251A (en) High-efficiency preparation method and application of deuterated methylamine
JP2674767B2 (en) Method for producing polyfluoroaromatic aldehyde
JP2622115B2 (en) Method for producing benzyl alcohols
RU2193527C1 (en) Manganese dioxide production process
CZ298394A3 (en) Process for preparing 3-alkyl-2,6-dichloroacylanilides by electrolytic debromination of 3-alkyl-4-bromo-2,6-dichloroacylanilides
KR100437483B1 (en) Electrochemical synthesis of p-aminophenol