JPH0373992B2 - - Google Patents
Info
- Publication number
- JPH0373992B2 JPH0373992B2 JP58069939A JP6993983A JPH0373992B2 JP H0373992 B2 JPH0373992 B2 JP H0373992B2 JP 58069939 A JP58069939 A JP 58069939A JP 6993983 A JP6993983 A JP 6993983A JP H0373992 B2 JPH0373992 B2 JP H0373992B2
- Authority
- JP
- Japan
- Prior art keywords
- acetylene
- polymer
- battery
- electrolyte
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000642 polymer Polymers 0.000 claims description 58
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 57
- -1 acetylene compound Chemical class 0.000 claims description 36
- 239000000843 powder Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 19
- 229920001169 thermoplastic Polymers 0.000 claims description 14
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 47
- 238000000034 method Methods 0.000 description 37
- 239000003792 electrolyte Substances 0.000 description 19
- 239000002019 doping agent Substances 0.000 description 17
- 238000006116 polymerization reaction Methods 0.000 description 14
- 125000004432 carbon atom Chemical group C* 0.000 description 13
- 230000005611 electricity Effects 0.000 description 12
- 229910020366 ClO 4 Inorganic materials 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 230000000379 polymerizing effect Effects 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 229920000092 linear low density polyethylene Polymers 0.000 description 6
- 239000004707 linear low-density polyethylene Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003115 supporting electrolyte Substances 0.000 description 4
- 229910016467 AlCl 4 Inorganic materials 0.000 description 3
- 229910017008 AsF 6 Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910013684 LiClO 4 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910018286 SbF 6 Inorganic materials 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000003856 thermoforming Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000008282 halocarbons Chemical group 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical compound OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- MCZUXEWWARACSP-UHFFFAOYSA-N 1-ethynylnaphthalene Chemical group C1=CC=C2C(C#C)=CC=CC2=C1 MCZUXEWWARACSP-UHFFFAOYSA-N 0.000 description 1
- CGHIBGNXEGJPQZ-UHFFFAOYSA-N 1-hexyne Chemical group CCCCC#C CGHIBGNXEGJPQZ-UHFFFAOYSA-N 0.000 description 1
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- HZNVUJQVZSTENZ-UHFFFAOYSA-N 2,3-dichloro-5,6-dicyano-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O HZNVUJQVZSTENZ-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- HDEXQZFQDZGFLQ-UHFFFAOYSA-N 4,5-dibromo-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile Chemical compound BrC1=C(Br)C(=O)C(C#N)=C(C#N)C1=O HDEXQZFQDZGFLQ-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical class F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229910019398 NaPF6 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910018287 SbF 5 Inorganic materials 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- VBVBHWZYQGJZLR-UHFFFAOYSA-I antimony pentafluoride Chemical compound F[Sb](F)(F)(F)F VBVBHWZYQGJZLR-UHFFFAOYSA-I 0.000 description 1
- YBGKQGSCGDNZIB-UHFFFAOYSA-N arsenic pentafluoride Chemical compound F[As](F)(F)(F)F YBGKQGSCGDNZIB-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- RUEKPBLTWGFBOD-UHFFFAOYSA-N bromoethyne Chemical group BrC#C RUEKPBLTWGFBOD-UHFFFAOYSA-N 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000005626 carbonium group Chemical group 0.000 description 1
- DIWKDXFZXXCDLF-UHFFFAOYSA-N chloroethyne Chemical group ClC#C DIWKDXFZXXCDLF-UHFFFAOYSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- ZUNGGJHBMLMRFJ-UHFFFAOYSA-O ethoxy-hydroxy-oxophosphanium Chemical compound CCO[P+](O)=O ZUNGGJHBMLMRFJ-UHFFFAOYSA-O 0.000 description 1
- ZJXZSIYSNXKHEA-UHFFFAOYSA-N ethyl dihydrogen phosphate Chemical compound CCOP(O)(O)=O ZJXZSIYSNXKHEA-UHFFFAOYSA-N 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- ZRZKFGDGIPLXIB-UHFFFAOYSA-N fluoroform;sulfuric acid Chemical compound FC(F)F.OS(O)(=O)=O ZRZKFGDGIPLXIB-UHFFFAOYSA-N 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- CBEQRNSPHCCXSH-UHFFFAOYSA-N iodine monobromide Chemical compound IBr CBEQRNSPHCCXSH-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- XDKQUSKHRIUJEO-UHFFFAOYSA-N magnesium;ethanolate Chemical compound [Mg+2].CC[O-].CC[O-] XDKQUSKHRIUJEO-UHFFFAOYSA-N 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- CAAULPUQFIIOTL-UHFFFAOYSA-N methyl dihydrogen phosphate Chemical compound COP(O)(O)=O CAAULPUQFIIOTL-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- SKECXRFZFFAANN-UHFFFAOYSA-N n,n-dimethylmethanethioamide Chemical compound CN(C)C=S SKECXRFZFFAANN-UHFFFAOYSA-N 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- UMIPWJGWASORKV-UHFFFAOYSA-N oct-1-yne Chemical group CCCCCCC#C UMIPWJGWASORKV-UHFFFAOYSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- OBCUTHMOOONNBS-UHFFFAOYSA-N phosphorus pentafluoride Chemical compound FP(F)(F)(F)F OBCUTHMOOONNBS-UHFFFAOYSA-N 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- LJZPPWWHKPGCHS-UHFFFAOYSA-N propargyl chloride Chemical group ClCC#C LJZPPWWHKPGCHS-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 229940070891 pyridium Drugs 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910001545 sodium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001542 sodium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Inorganic materials [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 1
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 1
- NLDYACGHTUPAQU-UHFFFAOYSA-N tetracyanoethylene Chemical group N#CC(C#N)=C(C#N)C#N NLDYACGHTUPAQU-UHFFFAOYSA-N 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- CYTQBVOFDCPGCX-UHFFFAOYSA-N trimethyl phosphite Chemical compound COP(OC)OC CYTQBVOFDCPGCX-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Primary Cells (AREA)
Description
本発明は良好な性能を有する電池に関するもの
である。
遷移金属化合物と有機金属化合物とからなる、
いわゆるチーグラー・ナツタ触媒を用いてアセチ
レンを重合して得られるアセチレン高重合体は、
その電気伝導度が半導体領域にあることにより、
電気・電子素子として有用な有機半導体材料であ
ることはすでに知られている。しかし、このよう
にして得られるアセチレン高重合体は、加熱して
も溶融せず、また加熱下では容易に酸化劣化を受
けるため、通常の熱可塑性樹脂の如き成形方法に
よつては成形することはできない。また、このア
セチレン高重合体を溶融する溶媒も見い出されて
いない。従つて、従来アセチレン高重合体の実用
的成形品を製造する方法は
(イ) 非晶性の粉末状アセチレン高重合体を加圧成
形する方法、および
(ロ) 特殊な重合条件下で重合と同時に膜状に成形
して、膜状アセチレン高重合体を得る方法(特
公昭48−32581号)、
に限られていた。
しかしながら、(イ)の方法では、機械的強度の低
い成形品しか得られず、一方、(ロ)の方法では、(イ)
の方法によつて得られる成形品に比べて、機械的
強度が高いという利点を有するものの、後加工が
困難であるから、実質的に膜厚の薄い多孔質のフ
イルムしか得ることができないという難点があつ
た。
上記(イ)の方法で得られる非晶性の粉末状アセチ
レン高重合体成形品をBF3、BCl3、HCl、Cl2、
SO2、NO2、HCN、O2、NO等の電子受容性化合
物(アクセプター)で化学的に処理すると電気伝
導度が最高3桁上昇し、逆にアンモニアやメチル
アミンのような電子供与性化合物(ドナー)で処
理すると電気伝導度が最高4桁低下することもす
でに知られている〔D.J.Berets et al.、Trans・
Farady Soc.、64、823(1986)〕。
また、(ロ)の方法で得られる結晶性の膜状アセチ
レン高重合体に、I2、Cl2、Br2、ICl、IBr、
ASF3、SbF5、PF6等の如き電子受容性化合物ま
たはNa、K、Liの如き電子供与性化合物を化学
的にドープすることによつてアセチレン高重合体
の電気伝導度を10-8〜103Ω-1・cm-1の広い範囲に
わたつて自由にコントロールできることもすでに
知られている〔J.C.S.Chem.Commu.、578
(1977)、Phys.Rev.Lett.、39、1098(1977)、J.
Am.Chem.Soc.、100、1013(1978)、J.Chem.
Phys.、69、5098(1978)〕。このドープされた膜状
アセチレン高重合体を一次電池の陽極の材料とし
て使用するという考えもすでに提案されている
(Mole−cular Metals、Metals、NATO
Conference Series、Series VI、471−489
(1978))。
一方、前記の化学的にドーピングする手法以外
に、電気化学的にClO4 -、PF6 -、ASF4 -、
CF3SO3 -、BF4 -、等の如きアニオンおよび
R′4N+(R′:アルキル基)の如きカチオンをアセ
チレン高重合体にドープしてp型およびn型の電
導性アセチレン高重合体を製造する方法もすでに
開発されている〔J.C.S.Chem.Commu.、1979、
594、C&EN Jan.26、39(1981)、J.C.S.Chem.
Commu.、1981、317〕。そして、(ロ)の方法で得ら
れる結晶性の膜状アセチレン高重合体を用いて電
気化学的ドーピングを利用した再充電可能な電池
が報告されている(Paper Presented atthe
International Conference on Low Dimens
ional Synthctic Metals.Hersinger.Denmark.10
〜15、August1980)。この電池は(ロ)の方法で得ら
れる例えば、0.1mmの厚さのアセチレン高重合体
フイルム二枚をそれぞれ陽・陰の電極とし、ヨウ
化リチウムを含むテトラハイドロフラン溶液にこ
れを浸して9Vの直流電源につなぐとヨウ化リチ
ウムが電気分解され、陽極のアセチレン高重合体
フイルムはヨウ素でドープされ、陰極のアセチレ
ン高重合体フイルムはリチウムでドープされる。
この電解ドーピングが充電過程に相当することに
なる。ドープされた二つの電極に負荷をつなげば
リチウムイオンとヨウ素イオンが反応して電力が
取り出せる。この場合、開放端電圧(Voc)は
2.8V、短絡電流密度は5mA/cm2であり、電解
液に過塩素酸リチウムのテトラハイドロフラン溶
液を使用した場合、開放端電圧は2.5V、短絡電
流密度は約3mA/cm2であつた。
この電池は、電極として軽量化および小型化が
容易なアセチレン高重合体をその電極材料として
用いるので、高エネルギー密度を有する軽量化・
小型化が容易でかつ安価な電池として注目を集め
ている。しかし、これら既知の文献で用いられて
いるアセチレン高重合体は、前記(ロ)の方法で製造
された結晶性の多孔質膜状アセチレン高重合体で
あつた。この膜状アセチレン高重合体は後加工が
困難であり、また、この方法で製造される膜状ア
セチレン高重合体の膜厚は高々200μmであり、
実用的にはこれ以上の膜厚のものが必要であるう
え、この膜の機械的強度は必ずしも充分でない。
また、この膜を電極に用いた電池のサイクル寿
命、放電時の電圧平坦性、充・放電効率等の性能
も必ずしも満足できるものではなかつた。そのた
め、(ロ)の方法で製造された膜状アセチレン高重合
体を電極材料とする既知の電池の用途は非常に限
定されたものであつた。一方、特開昭56−120715
号公報には重合体を溶解させた触媒液中でアセチ
レンを静置下で重合し高強度膜状アセチレン重合
体を得ることが提案されている。ところが本発明
におけるようなアセチレン系高重合体粉末の場合
には、このように重合体を溶解させた触媒溶液中
で重合をおこなうと、生成したアセチレン系重合
体粉末の内部ばかりでなく表面にも溶解していた
重合体が析出し非常に不均一なものになる。その
結果例えば電池の電極として用いた場合、ドーパ
ントが、アセチレン系重合体粉末の成形物、(特
に、フイブリル)中へドーピングする場合重合体
が障害物となるばかりでなく、電解液中への溶解
によつて電解液の電導度の低下となつて表われ
る。更に、アセチレン重合溶媒に溶解する重合物
なので、アセチレン重合体中に何%析出するか一
概に言えないばかりでなく重合触媒除去中に溶出
するため極めて製造が困難である。
従つて当該業者の間では成型が容易でかつ機械
的強度の大きい電極からなる高エネルギー密度で
放電時の平坦性及びサイクル寿命の良好な軽量
化、小型化が容易でかつ安価な電池の確立が要望
されていた。
本発明者らは、上記の点に鑑みて、成型が容易
でかつ機械的強度の大きい電極を有する高エネル
ギー密度で、サイクル寿命及び放電時の電圧の平
坦性が良好で、軽量化、小型化が容易で、かつ安
価な電池を得るべく種々検討した結果、本発明を
完成したものである。
即ち、本発明は熱可塑性重合体粉末の表面にア
セチレン系化合物が重合しているフイブリル状の
重合体組成物であつて、この全重合体組成物に対
する前記熱可塑性重合体粉末の割合が1重量%乃
至60重量%である成型体を正極または負極の少な
くとも一つの電極に用いた電池に関するものであ
る。そしてこの成型体は熱可塑性重合体粉末の存
在下でアセチレン系化合物を重合して得られる重
合体組成物を成形したものである。
本発明に係る電池は、一次電池の場合は、()
放電容量が大きい、()放電時の電圧の平坦性
が良好である、()自己放電が少ない。という
利点を有し、一方、二次電池の場合には、()
エネルギー密度が大きい、()放電時の電圧の
平坦性が良好である、()自己放電が少ない、
()充・放電の繰り返しの寿命が長い、という
利点を有する。
本発明において使用されるアセチレン系化合物
とは式(1)で示される構造をもつものであり、それ
らの単独重合及び共重合を含め、本明細書では重
合と称する。
(ここでRは水素原子、ハロゲン、ハロゲン原子
を含んだ炭素数が6以下のハロゲン化炭化水素
基、炭素数が6以下のアルキル基又は炭素数が6
〜10のアリル〔aryl〕基である。)代表例として、
アセチレン、フエニルアセチレン、メチルアセチ
チレン、ヘキシルアセチレン、ブチルアセチレ
ン、ナフチルアセチレン、クロルアセチレン、ク
ロルメチルアセチレンまたはブロモアセチレンを
例示することができるが、特にアセチレンを好ま
しい例としてあげることができる。また、アセチ
レン系高重合体を作る重合反応器の形態は、特に
制限は無い。またこれらのアセチレン系高重合体
は、チーグラー型触媒、ルツチンガー触媒または
メタセシス触媒で作られる。
重合溶媒としては、下記熱可塑性重合体を溶か
さない不活性溶媒が使用できる。
本発明における熱可塑性重合体粉末としては、
重合溶媒及び電池の電解液に実質的に不溶である
ものが用いられるが好ましくは軟化点又は融点が
200℃以下の重合体又は共重合体が用いられる。
200℃を超す重合体を使用すると、生成した重合
体組成物の熱成形温度を高くする必要が生じ用い
るアセチレン系化合物のある種のものに対しては
好ましくない。
その例としては、低密度ポリエチレン、高密度
ポリエチレン、直鎖状低密度ポリエチレン、ポリ
プロピレン、エチレン−プロピレン共重合体、エ
チレン−テトラフロロエチレン共重合体、ポリ
(テトラフロロエチレン)、ポリ(トリフロロエチ
レン)、ポリ(ジフロロエチレン)等のポリオレ
フイン、ポリアミド、ポリエステル、ポリカーボ
ネート等又は、これらとアセチレンブラツク、カ
ーボンブラツク、グラフアイト、金属繊維のよう
な電導性材料との混合物をあげることができる。
上記粉末の存在下に上記アセチレン系化合物を
重合させることにより、粉末状もしくは小塊状の
重合体組成物が得られるが、好ましい重合法とし
ては機械的撹拌下に重合させる方法が挙げられ
る。
重合体組成物中の熱可塑性重合体の割合は1〜
60重量%であることが必要であり、1重量%未満
では電池性能の改善効果が十分発揮されず、また
60重量%を超えると電極材料としての本来の特徴
が失なわれる。
重合体組成物の製造法の具体例としては、触媒
溶液に所定量の熱可塑性重合体粉末を添加し、次
いでアセチレンガスを吹き込んで重合させる方
法、アセチレンガスの存在下で調製した触媒溶液
に所定量の熱可塑性重合体粉末を添加し、次いで
アセチレンガスを吹きこんで重合させる方法、お
よび所定量の熱可塑性重合体粉末の存在下で触媒
溶液を調製して、次いでアセチレンガスを吹き込
んで重合させる方法等があげられるが必ずしもこ
れ等の方法に限定されるものではない。
後処理方法については本製造方法固有の制限は
なく、公知のすべての方法を適用することができ
る。また、重合反応器は撹拌が十分できるような
形態を必要とする。
得られた組成物から成型体を製造する方法とし
ては公知の冷間加工法又は熱成型加工法が採用さ
れるが、熱成型加工においては200℃以下の温度
で行なうのが好ましい。
電極の成形方法としては、特開昭55−128419
号、同56−10428号、同56−63448号、同56−
133133号、特願昭56−150647号、同57−88823号、
同57−88824号、同57−110842号、同57−110583
号、同57−110586号、同57−159532号等を挙げる
ことができるが、特にこれ等の方法にのみ限定さ
れるものではない。
本発明の電池の電極としては、上記組成物から
なる成型体ばかりでなく、該成型体中のアセチレ
ン系化合物の高重合体を適当な方法でドーピング
して電導性高分子化合物としたものも使用するこ
とができる。もつとも本発明の成型体を一次電池
の電極として用いる場合には該成型体のアセチレ
ン系化合物の高重合体にドーパントをドープした
複合体を用いることが必要である。
ドーピング方法は、化学的ドーピングおよび電
気化学的ドーピングのいずれの方法を採用しても
よい。
化学的にドーピングするドーパントとしては、
従来知られている種々の電子受容性化合物および
電子供与性化合物、即ち、(1)ヨウ素、臭素および
ヨウ化臭素の如きハロゲン、()五フツ化ヒ素、
五フツ化アンチモン、四フツ化ケイ素、五塩化リ
ン、五フツ化リン、塩化アルミニウム、臭化アル
ミニウムおよびフツ化アルミニウムの如き金属ハ
ロゲン化物、()硫酸、硝酸、フルオロ硫酸、
トリフルオロメタン硫酸およびクロロ硫酸の如き
プロトン酸、()三酸化イオウ、二酸化窒素、
ジフルオロスルホニルパーオキシドの如き酸化
剤、()AgClO4、()テトラシアノエチレ
ン、テトラシアノキノジメタン、クロラニール、
2,3−ジクロル−5,6−ジシアノパラベンゾ
キノン、2,3−ジブロム−5,6−ジシアノパ
ラベンゾキノン等をあげることができる。電気化
学的にドーピングするドーパントとしては、()
PF6 -、SbF6 -、AsF6 -、SbCl6 -の如きa族の元
素のハロゲン化物アニオン、BF4 -の如きa族
の元素のハロゲン化物アニオン、I-(I3 -)、Br-、
Cl-の如きハロゲンアニオン、ClO4 -の如き過塩
素酸アニオンなどの陰イオン・ドーパントおよび
()Li+、Na+、K+の如きアルカリ金属イオン、
R4N+(R:炭素数1〜20のの炭化水素基)の如
き4級アンモニウムイオンなどの陽イオン・ドー
パント等をあげることができるが、必ずしもとれ
等に限定されるものではない。
上述の陰イオン・ドーパントおよび陽イオン・
ドーパントを与える化合物の具体例としては
LiPF6、LiSbF6、LiAsF6、LiClO4、NaI、
NaPF6、NaSbF6、NaAsF6、NaClO4、KI、
KPF6、KSbF6、KAsF6、KClO4、〔(n−
Bu)4N〕+・(AsF6)-、〔(n−Bu)4N〕+・(PF6)-
、
〔(n−Bu)4N〕+・ClO4、LiAlCl4、LiBF4をあげ
ることができるが必ずしもこれらに限定されるも
のではない。これらのドーパントは一種類、また
は二種類以上を混合して使用してもよい。
前記以外の陰イオン・ドーパントとしては
HF2 -アニオンであり、また、前記以外の陽イオ
ン・ドーパントとしては次式()で表わされる
ピリリウムまたはピリジニウム・カチオン:
(式中、Xは酸素原子または窒素原子、R′は水
素原子または炭素数が1〜15のアルキル基、炭素
数6〜15のアリール(aryl)基、R″はハロゲン
原子または炭素数が1〜10のアルキル基、炭素数
が6〜15のアリール(aryl)基、mはXが酸素原
子のとき0であり、Xが窒素原子のとき1であ
る。nは0または1〜5である。)
または次式()もしくは()で表わされる
カルボニウム・カチオン:
および
〔上式中、R1、R2、R3は水素原子(R1、R2、R3
は同時に水素原子であることはない)、炭素数1
〜15のアルキル基、アリル(allyl)基、炭素数
6〜15のアリール(aryl)基または−OR5基、但
しR5は炭素数1〜10のアルキル基または炭素数
6〜15のアリール(aryl)基を示し、R4は水素
原子、炭素数が1〜15のアルキル基、炭素数6〜
15のアリール基である。〕
である。
用いられるHF2 -アニオンは通常、下記の一般
式()、()または():
R′4N・HF2 ()
M・HF2 ()
〔但し、上式中R′、R″は水素原子または炭素数
が1〜15のアルキル基、炭素数6〜15のアリール
(aryl)基、Rは炭素数が1〜10のアルキル基、
炭素数6〜15のアリール(aryl)基、Xは酸素原
子または窒素原子、nは0または5以下の正の整
数である。Mはアルカリ金属である。〕
で表わされる化合物(フツ化水素塩)を支持電解
として用いて適当な有機溶媒に溶解することによ
つて得られる。上式()、()および()で
表わされる化合物の具体例としてはH4N・HF2、
Bun 4N・HF2、Na・HF2、K・HF2、Li・HF2お
よび
The present invention relates to a battery with good performance. consisting of a transition metal compound and an organometallic compound,
Acetylene polymers obtained by polymerizing acetylene using a so-called Ziegler-Natsuta catalyst are
Because the electrical conductivity is in the semiconductor region,
It is already known that organic semiconductor materials are useful as electrical and electronic devices. However, the acetylene polymer obtained in this way does not melt even when heated, and it easily undergoes oxidative deterioration under heating, so it cannot be molded using the usual molding method used for thermoplastic resins. I can't. Furthermore, no solvent has been found that melts this acetylene polymer. Therefore, the conventional methods for producing practical molded products of acetylene polymers are (a) pressure molding of amorphous powdery acetylene polymers, and (b) polymerization under special polymerization conditions. At the same time, the method was limited to the method of obtaining a film-like acetylene polymer by forming it into a film (Japanese Patent Publication No. 32581/1983). However, with method (a), only molded products with low mechanical strength can be obtained, while with method (b), only molded products with low mechanical strength can be obtained.
Although it has the advantage of having higher mechanical strength than the molded product obtained by the above method, it has the disadvantage that it is difficult to perform post-processing, so only a porous film with a substantially thin film thickness can be obtained. It was hot. The amorphous powdery acetylene polymer molded product obtained by the method (a) above is mixed with BF 3 , BCl 3 , HCl, Cl 2 ,
Chemical treatment with electron-accepting compounds (acceptors) such as SO 2 , NO 2 , HCN, O 2 , and NO increases electrical conductivity by up to three orders of magnitude, while electron-donating compounds such as ammonia and methylamine It is already known that the electrical conductivity decreases by up to four orders of magnitude when treated with (donor) [DJBerets et al., Trans.
Farady Soc., 64 , 823 (1986)]. In addition, I 2 , Cl 2 , Br 2 , ICl, IBr,
By chemically doping electron-accepting compounds such as ASF 3 , SbF 5 , PF 6 etc. or electron-donating compounds such as Na, K, Li, etc., the electrical conductivity of the acetylene polymer can be increased from 10 −8 to 10 −8 . It is already known that it can be freely controlled over a wide range of 10 3 Ω -1 cm -1 [JCSChem.Commu., 578
(1977), Phys.Rev.Lett., 39 , 1098 (1977), J.
Am.Chem.Soc., 100 , 1013 (1978), J.Chem.
Phys., 69 , 5098 (1978)]. The idea of using this doped film-like acetylene polymer as an anode material for primary batteries has already been proposed (Mole-cular Metals, Metals, NATO
Conference Series, Series VI, 471−489
(1978)). On the other hand, in addition to the above chemical doping method, electrochemical doping methods such as ClO 4 - , PF 6 - , ASF 4 - ,
Anions such as CF 3 SO 3 - , BF 4 - , etc.
A method for producing p-type and n-type conductive acetylene polymers by doping cations such as R′ 4 N + (R′: alkyl group) into acetylene polymers has already been developed [JCSChem.Commu ., 1979 ,
594, C&EN Jan. 26 , 39 (1981), JCSChem.
Comm., 1981 , 317]. A rechargeable battery using electrochemical doping using the crystalline film-like acetylene polymer obtained by method (b) has been reported (Paper Presented at the
International Conference on Low Dimensions
ional Synthctic Metals.Hersinger.Denmark.10
~15, August1980). For example, this battery is made by using two 0.1 mm thick acetylene polymer films obtained by method (b) as positive and negative electrodes, and soaking them in a tetrahydrofuran solution containing lithium iodide to generate a voltage of 9V. When connected to a DC power source, lithium iodide is electrolyzed, and the acetylene polymer film at the anode is doped with iodine, and the acetylene polymer film at the cathode is doped with lithium.
This electrolytic doping corresponds to the charging process. When a load is connected to the two doped electrodes, lithium ions and iodine ions react to generate electricity. In this case, the open circuit voltage (Voc) is
2.8V, the short-circuit current density was 5mA/ cm2 , and when a tetrahydrofuran solution of lithium perchlorate was used as the electrolyte, the open circuit voltage was 2.5V, and the short-circuit current density was about 3mA/ cm2. . This battery uses an acetylene polymer as its electrode material, which is easy to reduce weight and size, so it is lightweight and has high energy density.
It is attracting attention as a battery that is easy to miniaturize and is inexpensive. However, the acetylene polymers used in these known documents were crystalline porous membrane-like acetylene polymers produced by the method (b) above. This film-like acetylene high polymer is difficult to post-process, and the film thickness of the film-like acetylene high polymer produced by this method is at most 200 μm.
Practically speaking, a film thicker than this is required, and the mechanical strength of this film is not necessarily sufficient.
Furthermore, the performance of batteries using this film as electrodes, such as cycle life, voltage flatness during discharge, and charging/discharging efficiency, was not necessarily satisfactory. Therefore, the use of known batteries using the membrane-like acetylene polymer produced by the method (b) as an electrode material has been extremely limited. On the other hand, JP-A-56-120715
The publication proposes that a high-strength film-like acetylene polymer be obtained by polymerizing acetylene while standing in a catalyst solution in which a polymer is dissolved. However, in the case of acetylene-based high polymer powder as used in the present invention, when polymerization is carried out in a catalyst solution in which the polymer is dissolved, not only the inside but also the surface of the acetylene-based polymer powder is formed. The dissolved polymer precipitates out and becomes very non-uniform. As a result, for example, when used as a battery electrode, when a dopant is doped into a molded product (especially fibrils) of acetylene polymer powder, the polymer not only becomes an obstacle, but also dissolves into the electrolyte. This appears as a decrease in the conductivity of the electrolyte. Furthermore, since it is a polymer that dissolves in the acetylene polymerization solvent, it is not only difficult to say exactly what percentage it will precipitate in the acetylene polymer, but also it is extremely difficult to manufacture because it will elute during the removal of the polymerization catalyst. Therefore, there is a desire among those involved to establish a lightweight, compact, and inexpensive battery that has high energy density, flatness during discharge, and good cycle life, and is made of electrodes that are easy to mold and have high mechanical strength. It was requested. In view of the above points, the present inventors have developed an electrode that is easy to mold, has high energy density, has electrodes with high mechanical strength, has good cycle life and flatness of voltage during discharge, and is lightweight and compact. The present invention was completed as a result of various studies aimed at obtaining a battery that is easy to use and inexpensive. That is, the present invention provides a fibrillar polymer composition in which an acetylene compound is polymerized on the surface of a thermoplastic polymer powder, wherein the ratio of the thermoplastic polymer powder to the entire polymer composition is 1 weight. % to 60% by weight of the molded body in at least one of the positive electrode and the negative electrode. This molded body is obtained by molding a polymer composition obtained by polymerizing an acetylene compound in the presence of a thermoplastic polymer powder. If the battery according to the present invention is a primary battery, ()
Large discharge capacity, () Good voltage flatness during discharge, () Less self-discharge. On the other hand, in the case of secondary batteries, ()
High energy density, () Good voltage flatness during discharge, () Less self-discharge,
(2) It has the advantage of long life after repeated charging and discharging. The acetylene compound used in the present invention has a structure represented by formula (1), and includes homopolymerization and copolymerization thereof, which is herein referred to as polymerization. (Here, R is a hydrogen atom, a halogen, a halogenated hydrocarbon group containing a halogen atom and having 6 or less carbon atoms, an alkyl group having 6 or less carbon atoms, or a halogenated hydrocarbon group having 6 or less carbon atoms.
~10 aryl groups. ) As a representative example,
Examples include acetylene, phenylacetylene, methylacetylene, hexylacetylene, butylacetylene, naphthylacetylene, chloroacetylene, chloromethylacetylene, and bromoacetylene, with acetylene being particularly preferred. Further, there is no particular restriction on the form of the polymerization reactor for producing the acetylene-based high polymer. Moreover, these acetylene-based polymers are produced using a Ziegler type catalyst, a Rutzinger catalyst, or a metathesis catalyst. As the polymerization solvent, an inert solvent that does not dissolve the thermoplastic polymer described below can be used. The thermoplastic polymer powder in the present invention includes:
Those that are substantially insoluble in the polymerization solvent and battery electrolyte are used, preferably those with a softening point or melting point.
A polymer or copolymer having a temperature of 200°C or less is used.
If a polymer with a temperature exceeding 200° C. is used, it becomes necessary to raise the thermoforming temperature of the resulting polymer composition, which is not preferable for certain types of acetylene compounds used. Examples include low density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-tetrafluoroethylene copolymer, poly(tetrafluoroethylene), poly(trifluoroethylene). ), polyolefins such as poly(difluoroethylene), polyamides, polyesters, polycarbonates, etc., or mixtures thereof with conductive materials such as acetylene black, carbon black, graphite, and metal fibers. By polymerizing the acetylene compound in the presence of the powder, a powdery or small-sized polymer composition can be obtained, and a preferred polymerization method includes polymerization under mechanical stirring. The proportion of thermoplastic polymer in the polymer composition is from 1 to
It needs to be 60% by weight, and if it is less than 1% by weight, the effect of improving battery performance will not be sufficiently exhibited, and
If it exceeds 60% by weight, the original characteristics as an electrode material will be lost. Specific examples of methods for producing the polymer composition include a method in which a predetermined amount of thermoplastic polymer powder is added to a catalyst solution and then polymerized by blowing acetylene gas into the catalyst solution; A method for polymerizing by adding a certain amount of thermoplastic polymer powder and then blowing acetylene gas, and a method in which a catalyst solution is prepared in the presence of a predetermined amount of thermoplastic polymer powder, and then polymerizing by blowing acetylene gas. Methods may be mentioned, but the method is not necessarily limited to these methods. Regarding the post-processing method, there are no limitations specific to this manufacturing method, and all known methods can be applied. Furthermore, the polymerization reactor needs to have a configuration that allows sufficient stirring. As a method for manufacturing a molded article from the obtained composition, a known cold working method or a thermoforming method is adopted, and the thermoforming is preferably carried out at a temperature of 200° C. or lower. The electrode forming method is described in Japanese Patent Application Laid-open No. 55-128419.
No. 56-10428, No. 56-63448, No. 56-
No. 133133, Patent Application No. 56-150647, No. 57-88823,
No. 57-88824, No. 57-110842, No. 57-110583
No. 57-110586, No. 57-159532, etc., but the method is not particularly limited to these methods. As the electrode of the battery of the present invention, not only a molded body made of the above composition but also a conductive polymer compound obtained by doping a high polymer of an acetylene compound in the molded body by an appropriate method can be used. can do. Of course, when the molded product of the present invention is used as an electrode for a primary battery, it is necessary to use a composite obtained by doping the molded product with a high polymer of an acetylene compound with a dopant. The doping method may be either chemical doping or electrochemical doping. As dopants for chemical doping,
Various electron-accepting and electron-donating compounds known in the art include (1) halogens such as iodine, bromine and bromine iodide; () arsenic pentafluoride;
Metal halides such as antimony pentafluoride, silicon tetrafluoride, phosphorus pentachloride, phosphorus pentafluoride, aluminum chloride, aluminum bromide and aluminum fluoride, () sulfuric acid, nitric acid, fluorosulfuric acid,
Protic acids such as trifluoromethane sulfuric acid and chlorosulfuric acid, () sulfur trioxide, nitrogen dioxide,
Oxidizing agents such as difluorosulfonyl peroxide, ()AgClO 4 , ()tetracyanoethylene, tetracyanoquinodimethane, chloranil,
Examples include 2,3-dichloro-5,6-dicyanoparabenzoquinone and 2,3-dibromo-5,6-dicyanoparabenzoquinone. As a dopant for electrochemical doping, ()
Halide anions of group a elements such as PF 6 - , SbF 6 - , AsF 6 - , SbCl 6 -, halide anions of group a elements such as BF 4 - , I - (I 3 - ), Br - ,
anionic dopants such as halogen anions such as Cl - , perchlorate anions such as ClO 4 - and alkali metal ions such as ()Li + , Na + , K + ;
Examples include cations and dopants such as quaternary ammonium ions such as R 4 N + (R: a hydrocarbon group having 1 to 20 carbon atoms), but are not necessarily limited to the following. The above-mentioned anion/dopant and cation/dopant
Specific examples of compounds that provide dopants include
LiPF 6 , LiSbF 6 , LiAsF 6 , LiClO 4 , NaI,
NaPF6 , NaSbF6 , NaAsF6 , NaClO4 , KI,
KPF 6 , KSbF 6 , KAsF 6 , KClO 4 , [(n-
Bu) 4 N] +・(AsF 6 ) - , [(n-Bu) 4 N] +・(PF 6 ) -
,
[(n-Bu) 4 N] + .ClO 4 , LiAlCl 4 , and LiBF 4 can be mentioned, but the material is not necessarily limited to these. These dopants may be used alone or in combination of two or more. As anion dopants other than those mentioned above,
HF 2 -anion , and other cation dopants include pyrylium or pyridinium cations represented by the following formula (): (In the formula, ~10 alkyl group, aryl group having 6 to 15 carbon atoms, m is 0 when X is an oxygen atom, and 1 when X is a nitrogen atom. n is 0 or 1 to 5. ) or a carbonium cation represented by the following formula () or (): and [In the above formula, R 1 , R 2 , R 3 are hydrogen atoms (R 1 , R 2 , R 3
is not a hydrogen atom at the same time), carbon number is 1
-15 alkyl group, allyl group, aryl group having 6 to 15 carbon atoms or -OR5 group, provided that R 5 is an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 15 carbon atoms ( aryl) group, R 4 is a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or a C 6 to 15 alkyl group.
15 aryl groups. ] It is. The HF 2 -anion used usually has the following general formula (), () or (): R′ 4 N·HF 2 () M·HF 2 () [However, in the above formula, R', R'' is a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, an aryl group having 6 to 15 carbon atoms, R is an alkyl group having 1 to 10 carbon atoms,
An aryl group having 6 to 15 carbon atoms, X is an oxygen atom or a nitrogen atom, and n is 0 or a positive integer of 5 or less. M is an alkali metal. ] It can be obtained by dissolving the compound (hydrogen fluoride salt) represented by as a supporting electrolyte in an appropriate organic solvent. Specific examples of compounds represented by the above formulas (), () and () include H 4 N・HF 2 ,
Bun 4 N・HF 2 , Na・HF 2 , K・HF 2 , Li・HF 2 and
【式】をあげることができる。
上記式()で表わされるピリリウムもしくは
ピリジウムカチオンは、式()で表わされるカ
チオンとClO4 -、BF4 -、AlCl4 -、FeCl4 -、
SnCl5 -、PF6 -、PCl6 -、SbF6 -、AsF6 -、
CF3SO3 -、HF2 -等のアニオンとの塩を支持電解
質として用いて適当な有機溶媒に溶解することに
よつて得られる。そのような塩の具体例としては[Formula] can be given. The pyrylium or pyridium cation represented by the above formula () is the cation represented by the formula () and ClO 4 - , BF 4 - , AlCl 4 - , FeCl 4 - ,
SnCl 5 - , PF 6 - , PCl 6 - , SbF 6 - , AsF 6 - ,
It can be obtained by dissolving it in an appropriate organic solvent using a salt with an anion such as CF 3 SO 3 - or HF 2 - as a supporting electrolyte. Examples of such salts include
【式】【formula】
【式】【formula】
【式】【formula】
【式】【formula】
【式】【formula】
【式】【formula】
【式】【formula】
【式】
等をあげることができる。
上記式()または()で表わされるカルボ
ニウム・カチオンの具体例としては(C6H5)3C+、
(CH3)3C+、[Formula] etc. can be given. Specific examples of carbonium cations represented by the above formula () or () are (C 6 H 5 ) 3 C + ,
( CH3 ) 3C + ,
【式】をあげるこ
とができる。
これらのカルボニウムカチオンは、それらと陰
イオンの塩(カルボニウム塩)を支持電解質とし
て適当な有機溶媒に溶解することによつて得られ
る。ここで用いられる陰イオンの代表例として
は、BF4 -、AlCl4 -、AlBr3Cl-、FeCl4 -、
SnCl3 -、PF6 -、PCl6 -、SbCl6 -、SbF6 -、ClO4、
CF3SO3 -等をあげることができ、また、カルボニ
ウム塩の具体例としては、例えば(C6H5)3C・
BF4、(CH3)3C・BF4、HCO・AlCl4、HCO・
BF4、C6H5CO・SnCl3等をあげることができる。
電気化学的ドーピングの際に用いられる電解液
は、水溶液または非水溶液のいずれも用いること
ができるが、好ましくは非水の有機溶媒に前記の
ドーパントを溶かしたものである。ここでいう有
機溶媒としては、電極中の熱可塑性樹脂を実質的
に溶解しないものであり非プロトン性でかつ高誘
電率のものが好ましい。例えばエーテル類、ケト
ン類、ニトリル類、アミド類、硫黄化合物、塩素
化炭化水素類、エステル類、リン酸エステル系化
合物、亜リン酸エステル系化合物、カーボネート
類、ニトロ化合物等を用いることができるが、こ
れらのうちでもエーテル類、ケトン類、ニトリル
類、塩素化炭化水素類、カーボネート類が好まし
い。これらの代表例としては、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1,4−ジ
オキサン、モノグリム、アセトニトリル、プロピ
オニトリル、4−メチル−2−ペンタノン、ブチ
ロニトリル、ベンゾニトリル、1,2−ジクロロ
エタン、γ−ブチロラクトン、ジメトキシエタ
ン、メチルフオルメイト、プロピレンカーボネー
ト、エチレンカーボネート、ジメチルホルムアミ
ド、ジメチルスルホキシド、ジメチルチオホルム
アミド、スルホラン、リン酸エチル、リン酸メチ
ル、亜リン酸エチル、亜リン酸メチル等をあげる
ことができるが、必ずしもこれ等に限定されるも
のではない。これらの有機溶媒は一種類または二
種類以上の混合溶媒として用いても良い。
複合体中のアセチレン系化合物の高重合体にド
ープされるドーパントの量は、アセチレン系化合
物の高重合体の繰り返し単位(単量体)1モルに
対して2〜40モル%であり、好ましくは4〜30モ
ル%、特に好ましくは5〜20モル%である。ドー
プしたドーパントの量が2モル%以下でも40モル
%以上でも放電容量の充分大きい電池を得ること
はできない。一般に、ドープして得られる電導性
アセチレン系化合物の高重合体の電気伝導度は、
一次電池の電極として用いる場合約10-4Ω-1・cm
-1より大であることが好ましく、一方、二次電池
の電極として用いる場合は特に電気伝導度に制限
はない。
ドープ量は電解の際に流れた電気量を測定する
ことによつて自由に制御することができる。一定
電流下でも一定電圧下でもまた電流および電圧の
変化する条件下のいずれの方法でドーピングを行
なつてもよい。ドーピングの際の電流値、電圧値
およびドーピング時間等は、用いる電極の嵩さ密
度、面積、ドーパントの種類、電解液の種類、要
求される重合体組成物の電気伝導度によつて異な
るので一概に規定することはできない。
本発明の電池の電解液の支持電解質及び溶媒
は、前記電気化学的ドーピングの際に用いらもの
と同様のものが用いられ、ドーピング条件を前記
方法または従来公知の方法(J.C.S.、Chem、
Commu.、1981、317)に準じて行なわれる。
本発明の電池においては、前記した電解質以外
にポリエチレンオキサイドとNaIやNaSCN等か
らなる高イオン伝導性有機固体電解や、飽和溶解
度以上の電解質(ドーパント)と有機溶媒を混合
した状態のものを用いることができる。
また、本発明の電池において用いられる電解質
の濃度は用いる正極または負極の種類、充・放電
条件、作動温度、電解質の種類および有機溶媒の
種類等によつて異なるので一概に規定することは
できない。均一に溶解した系でも不均一系のいず
れでも良いが通常は0.001〜10モル/の範囲で
ある。
本発明の電池の二次電池の具体例としては、複
合体中のアセチレン系重合体としてアセチレン高
重合体を用いた場合、アセチレン高重合体を
(CH)Xとすると、(CH)X(正極)/LiClO4(電解
質)/(CH)X(負極)、(CH)X(正極)/LiBF4
(電解質)/Li(負極)、〔(CH)+0.024(ClO4)- 0.0
24〕
X(正極)/(n−Bu4N)+・(ClO4)-(電解
質)/〔(n−Bu4N)+ 0.024(CH)-0.024〕X(負極)
、
〔(CH)+0.06(PF6)- 0.06〕X(正極)/(n−
Bu4N)+・(PF6)-(電解質)/〔(n−Bu4N)+ 0.06
(CH)-0.06〕X(負極)、〔(CH)+0.050(ClO4)-0.0
50〕X
(正極)/(n−Bu4N)+・(ClO4)-(電解質)/
〔(CH)+0.020(ClO4)-0.020〕X(負極)、〔(n−
Bu4N)+0.02(CH)-0.02〕X(正極)/(n−
Bu4N)+・(ClO4)-(電解質)/〔(n−Bu4N)+ 0.07
(CH)-0.07〕X(負極)、〔(CH)+0.010(I3)-0.010
〕X
(正極)/NaI(電解質)/〔(CH)-0.010(Na)+0.0
10〕(負極)等をあげることができる。
その他の具体例としては、ポリパラフエニレン
を(C6H4)X、ポリ(2,5−チエニレン)を
(C4H2S)Xとすると(CH)X/LiClO4/(C6H4)
X・(CH)X/LiClO4/(C4H2S)、等を挙げるこ
とができる。
また、一次電池の例としては、重合体組成物の
成型体を正極として用い、ポーリングの電気陰性
度が1.6を越えない金属を負極として用いたもの
をあげることができる。負極活物質として用いら
れる金属としては、リチウム、ナトリウム等のア
ルカリ金属、アルミニウム、マグネシウム等をあ
げることができる。中でもリチウムおよびアルミ
ニウムまたはこれらの合金が好ましい。これらの
金属は一般のリチウム電池のそれと同様にシート
状として用いてもよいし、またはそのシートるニ
ツケルまたはステンレスの網に圧着したものでも
よい。
本発明において必要ならば硝子やポリエチレ
ン、ポリプロピレンのごとき合成樹脂製の多孔質
膜や天然繊維紙を隔膜として用いても一向に差し
支えない。
本発明の電池は、高エネルギー密度を有し、サ
イクル寿命が長く、放電時の電圧の平坦性及び充
放電効率が良好である。また、本発明による電池
は、軽量、小型で、かつ高いエネルギー密度を有
するからポータブル機器、電気自動車、ガソリン
自動車および電力貯蔵用バツテリーとして最適で
ある。
以下、実施例によつて本発明をさらにくわしく
説明する。
実施例 1
1のガラスクレープに密度0.93g/cm3、
MI8.2g/10分の直鎖状低密度ポリエチレン粉末
1g、トルエン200ml、トリイソブチルアルミニ
ウム0.8g(7ミリモル)、テトラブチルチタネー
ト1.2g(3.5ミリモル)を入れ室温で2時間撹拌
下にアセチレンガスを吹き込んだ。重合終了後、
粉末部分を分離し、トルエンで6回洗い乾燥し、
熱可塑性重合体を20重量%含有した粉末5gを得
た。尚、この組成物を電子顕微鏡で観察した所フ
イブリル状であり、熱可塑性重合体の表面で重合
しているものと推定される。この粉末を圧力100
Kg/cm2、温度100℃で熱プレスして得られた重合
体組成物から作られた成型体より、幅が0.5cmで
長さが2.0cmの小片2枚を切り出し、2枚を別々
の白金線に機械的に圧着して固定してそれぞれ正
極および負極とした。E+4N・BF4の濃度が1.5
モル/のアセトニトリル溶液を電解液として用
い、一定電流下(5.0mA/cm2)で25分間充電を
行ない(アセチレン高重合体に対するドーピング
量6モル%に相当する電気量)、充電終了後、直
ちに一定電流(5.0mA/cm2)で放電を行ない電
圧が1Vになつたところで再度前記と同じ条件で
充電を行なうという充・放電の繰り返し試験を行
ない476回まで繰り返しが可能であつた。
10回目の繰り返し試験の結果、使用した複合体
中のアセチレン高重合体1Kgに対する理論エネル
ギー密度は116W・hr/Kgであり、充・放電効率
は97%であつた。また放電時に電圧が1.5Vに低
下するまでに放電された電気量の全放電電気量に
対する割合は93%であつた。
比較例 1
実施例1で直鎖状低密度ポリエチレンを入れな
かつた以外は実施例1と同様に重合しアセチレン
高重合体を得た。実施例1と同様に成形し評価用
サンプルを作つた。
実施例1で用いた成型体の代りに前記の方法で
得られたアセチレン高重合体を用いた以外は実施
例1と同様の方法で〔電池実験〕を行なつた。
充・放電の繰り返し試験を行なつたところ169回
目で充電が不可能となつた。試験後、電極のアセ
チレン高重合体を取り出してみると、膜は破壊さ
れていた。
また、10回目の繰り返し試験の結果、理論エネ
ルギー密度は112W・hr/Kgで、充・放電効率は
93%であつた。また、放電時に電圧が1.5Vに低
下するまでに放電された電気量の全放電電気量に
対する割合は84%であつた。
実施例 2
実施例1で直鎖状低密度ポリエチレンのかわり
に、カーボンブラツクが5%入つた密度0.95g/
cm3、MI2.0g/10分のポリエチレンを粉砕して粉
末にしたものを2g、またテトラブチルチタネー
トの変わりに、ジエトキマグネシウム50gとテト
ラブチルチタネート10gを振動ボールミル(1
の内容積中に直径10mmの磁性ボールが約50%入つ
ている。)で粉砕した粉末3gを入れた以外は同
様に重合し16gの粉末を得た。得られた組成物中
の熱可塑性重合体の割合は約12重量%であつた。
実施例1と同様に成型して得られた成型品より、
幅が0.5cmで長さが2.0cmの2枚の小片を切り出
し、白金線に機械的に圧着固定しそれぞれ正極・
負極とした。E+4N・BF4の濃度が1.5モル/
のアセトニトリル溶液を電解液として用い、一定
電流下(3.0mA/cm2)で充電を行ない(ドーピ
ング量6モル%に相当する電気量)、充電終了後、
直ちに一定電流下(3.0mA/cm2)で放電を行な
い電圧が1.0Vになつたところで再度前記と同じ
条件で充電を行なうという充・放電の繰り返し試
験は493回まで可能であつた。
第10回目の充・放電の繰り返し試験の結果、使
用した活物質1Kgに対する理論エネルギー密度は
118W・hr/Kgであり、充・放電効率は98%であ
つた。また、放電時に電圧が1.5Vに低下するま
でに放電された電気量の全放電電気量に対する割
合は93%であつた。
比較例 2
実施例1で直鎖状低密度ポリエチレンのかわり
に重量平均分子量20万のポリスチレンを20g入れ
溶解させた以外は実施例1と同様にして重合し粉
末4gを得た。赤外スペクトル測定からポリスチ
レンが粉末中に5重量%存在することがわかつ
た。得られた粉末を電子顕微鏡で観測したところ
アセチレン系高重合体が本来もつフイブリル状の
部分以外に、ポリスチレンのもつ形状の部分が不
均一に分散していた。この粉末を圧力500Kg/cm2、
温度200℃で成形して、得られたポリアセチレン
とポリスチレンの複合体を用いた以外は実施例1
と同様の方法で〔電池実験〕を行なつたところ
258回目で充電が不可能になつた。試験後、電極
を取り出したところ、電極の膜は破壊されてい
た。また、10回目の繰り返し試験の結果、理論エ
ネルギー密度は109W・hr/Kgで、充・放電効率
は91%であつた。また、放電時に電圧が1.5Vに
低下するまでに放電された電気量の全放電電気量
に対する割合は89%であつた。
実施例3〜5 比較例3
実施例1で直鎖状低密度ポリエチレン粉末の量
を第1表に示したようにした以外は実施例1と同
様にして重合し、成形して評価用の電池を作製し
た。そして充・放電の繰り返し試験を行い、その
結果も第1表に示した。[Formula] can be given. These carbonium cations can be obtained by dissolving salts of them and anions (carbonium salts) in a suitable organic solvent as a supporting electrolyte. Representative examples of anions used here include BF 4 - , AlCl 4 - , AlBr 3 Cl - , FeCl 4 - ,
SnCl 3 - , PF 6 - , PCl 6 - , SbCl 6 - , SbF 6 - , ClO 4 ,
Examples of carbonium salts include (C 6 H 5 ) 3 C・
BF 4 , (CH 3 ) 3 C・BF 4 , HCO・AlCl 4 , HCO・
Examples include BF 4 , C 6 H 5 CO・SnCl 3 and the like. The electrolytic solution used in electrochemical doping can be either an aqueous solution or a non-aqueous solution, but is preferably one in which the dopant is dissolved in a non-aqueous organic solvent. The organic solvent referred to herein is preferably one that does not substantially dissolve the thermoplastic resin in the electrode, is aprotic, and has a high dielectric constant. For example, ethers, ketones, nitriles, amides, sulfur compounds, chlorinated hydrocarbons, esters, phosphate ester compounds, phosphite compounds, carbonates, nitro compounds, etc. can be used. Among these, ethers, ketones, nitriles, chlorinated hydrocarbons, and carbonates are preferred. Representative examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, benzonitrile, 1,2-dichloroethane, and γ-butyrolactone. , dimethoxyethane, methylformate, propylene carbonate, ethylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, ethyl phosphate, methyl phosphate, ethyl phosphite, methyl phosphite, etc. However, it is not necessarily limited to these. These organic solvents may be used alone or as a mixed solvent of two or more. The amount of the dopant doped into the acetylene compound high polymer in the composite is 2 to 40 mol%, preferably 2 to 40 mol% per mole of the repeating unit (monomer) of the acetylene compound high polymer. It is 4 to 30 mol%, particularly preferably 5 to 20 mol%. Even if the amount of the doped dopant is less than 2 mol % or more than 40 mol %, a battery with a sufficiently large discharge capacity cannot be obtained. Generally, the electrical conductivity of a high polymer of conductive acetylene compound obtained by doping is
Approximately 10 -4 Ω -1 cm when used as an electrode for a primary battery
It is preferable that the electrical conductivity is larger than -1 . On the other hand, when used as an electrode of a secondary battery, there is no particular restriction on the electrical conductivity. The amount of doping can be freely controlled by measuring the amount of electricity flowing during electrolysis. The doping may be carried out either under constant current, constant voltage or under conditions of varying current and voltage. The current value, voltage value, doping time, etc. during doping vary depending on the bulk density and area of the electrode used, the type of dopant, the type of electrolyte, and the required electrical conductivity of the polymer composition. cannot be specified. The supporting electrolyte and solvent of the electrolyte of the battery of the present invention are the same as those used in the electrochemical doping, and the doping conditions are determined by the method described above or by a conventionally known method (JCS, Chem,
Commu., 1981 , 317). In the battery of the present invention, in addition to the electrolyte described above, a highly ion conductive organic solid electrolyte consisting of polyethylene oxide and NaI, NaSCN, etc., or a mixture of an electrolyte (dopant) with a saturation solubility or higher and an organic solvent may be used. I can do it. Furthermore, the concentration of the electrolyte used in the battery of the present invention cannot be unconditionally defined because it varies depending on the type of positive electrode or negative electrode used, charge/discharge conditions, operating temperature, type of electrolyte, type of organic solvent, etc. It may be either a homogeneously dissolved system or a heterogeneous system, but it is usually in the range of 0.001 to 10 mol/. As a specific example of the secondary battery of the battery of the present invention, when an acetylene polymer is used as the acetylene polymer in the composite, and if the acetylene polymer is ( CH ) )/LiClO 4 (electrolyte)/(CH) X (negative electrode), (CH) X (positive electrode)/LiBF 4
(Electrolyte) / Li (negative electrode), [(CH) +0.024 (ClO 4 ) - 0.0
twenty four 〕
X (positive electrode) / (n-Bu 4 N) +・(ClO 4 ) - (electrolyte) / [(n-Bu 4 N) + 0.024 (CH) -0.024 ] X (negative electrode)
,
[(CH) +0.06 (PF 6 ) - 0.06 ] X (positive electrode)/(n-
Bu 4 N) +・(PF 6 ) - (electrolyte)/[(n-Bu 4 N) + 0.06
(CH) -0.06 〕 X (negative electrode), [(CH) +0.050 (ClO 4 ) -0.0
50 〕 X
(Positive electrode) / (n-Bu 4 N) +・(ClO 4 ) - (Electrolyte) /
[(CH) +0.020 (ClO 4 ) -0.020 ] X (negative electrode), [(n-
Bu 4 N) +0.02 (CH) -0.02 ] X (Positive electrode)/(n-
Bu 4 N) +・(ClO 4 ) - (electrolyte)/[(n-Bu 4 N) + 0.07
(CH) -0.07 ] X (negative electrode), [(CH) +0.010 (I 3 ) -0.010
〕 X
(Positive electrode) / NaI (electrolyte) / [(CH) -0.010 (Na) +0.0
10 ] (negative electrode). As another specific example, if polyparaphenylene is (C 6 H 4 ) X and poly(2,5-thienylene) is (C 4 H 2 S) X , then ( CH ) H4 )
Examples include X. (CH) X /LiClO 4 /(C 4 H 2 S). Further, as an example of a primary battery, there can be mentioned one in which a molded body of a polymer composition is used as a positive electrode and a metal having a Pauling's electronegativity not exceeding 1.6 is used as a negative electrode. Examples of the metal used as the negative electrode active material include alkali metals such as lithium and sodium, aluminum, and magnesium. Among these, lithium and aluminum or alloys thereof are preferred. These metals may be used in sheet form as in general lithium batteries, or they may be crimped onto a nickel or stainless steel mesh. In the present invention, if necessary, a porous membrane made of synthetic resin such as glass, polyethylene, or polypropylene, or natural fiber paper may be used as the diaphragm. The battery of the present invention has high energy density, long cycle life, and good voltage flatness during discharge and charge/discharge efficiency. Furthermore, the battery according to the present invention is lightweight, compact, and has a high energy density, so it is suitable for use in portable devices, electric vehicles, gasoline vehicles, and power storage batteries. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 The glass crepe of 1 has a density of 0.93 g/cm 3 ,
Add 1 g of linear low-density polyethylene powder (MI8.2 g/10 min), 200 ml of toluene, 0.8 g (7 mmol) of triisobutylaluminum, and 1.2 g (3.5 mmol) of tetrabutyl titanate, stir at room temperature for 2 hours, and add acetylene gas. I blew it. After polymerization,
Separate the powder part, wash with toluene 6 times and dry.
5 g of powder containing 20% by weight of thermoplastic polymer was obtained. When this composition was observed under an electron microscope, it was found to be fibrillar, and it is presumed that the composition was polymerized on the surface of the thermoplastic polymer. Press this powder to 100
Kg/cm 2 , from a molded body made from a polymer composition obtained by hot pressing at a temperature of 100°C, two small pieces with a width of 0.5 cm and a length of 2.0 cm were cut out, and the two pieces were separated into separate pieces. They were mechanically crimped and fixed to a platinum wire to form a positive electrode and a negative electrode, respectively. The concentration of E+4N・BF 4 is 1.5
Using an acetonitrile solution of mol/cm2 as the electrolyte, charging was carried out for 25 minutes at a constant current (5.0 mA/cm 2 ) (amount of electricity equivalent to 6 mol% doping amount for the acetylene polymer), and immediately after charging was completed, A repeated charging/discharging test was conducted in which the battery was discharged at a constant current (5.0 mA/cm 2 ) and when the voltage reached 1 V, it was charged again under the same conditions as above, and it was possible to repeat it up to 476 times. As a result of the 10th repeated test, the theoretical energy density for 1 kg of acetylene high polymer in the composite used was 116 W·hr/Kg, and the charge/discharge efficiency was 97%. Furthermore, the ratio of the amount of electricity discharged until the voltage decreased to 1.5V during discharge to the total amount of electricity discharged was 93%. Comparative Example 1 An acetylene high polymer was obtained by polymerizing in the same manner as in Example 1 except that the linear low-density polyethylene was not added. A sample for evaluation was prepared by molding in the same manner as in Example 1. [Battery experiment] was carried out in the same manner as in Example 1 except that the acetylene polymer obtained by the above method was used instead of the molded body used in Example 1.
After repeated charging and discharging tests, charging became impossible after the 169th time. After the test, when we removed the acetylene polymer from the electrode, we found that the membrane had been destroyed. In addition, as a result of the 10th repeated test, the theoretical energy density was 112W・hr/Kg, and the charge/discharge efficiency was
It was 93%. Further, the ratio of the amount of electricity discharged until the voltage decreased to 1.5V during discharge to the total amount of electricity discharged was 84%. Example 2 Instead of the linear low density polyethylene in Example 1, a material with a density of 0.95 g/m containing 5% carbon black was used.
cm 3 , MI 2.0 g/10 min polyethylene was ground into powder, 2 g, and instead of tetrabutyl titanate, 50 g of diethoxymagnesium and 10 g of tetrabutyl titanate were mixed in a vibrating ball mill (1
Approximately 50% of the internal volume is made up of magnetic balls with a diameter of 10 mm. ) Polymerization was carried out in the same manner except that 3 g of the powder pulverized with 3 g of powder was added to obtain 16 g of powder. The proportion of thermoplastic polymer in the resulting composition was about 12% by weight.
From the molded product obtained by molding in the same manner as in Example 1,
Cut out two small pieces with a width of 0.5 cm and a length of 2.0 cm, mechanically press and fix them to a platinum wire, and attach the positive electrode to the platinum wire.
It was used as a negative electrode. The concentration of E+4N・BF 4 is 1.5 mol/
Using an acetonitrile solution as an electrolyte, charging was carried out at a constant current (3.0 mA/cm 2 ) (amount of electricity equivalent to a doping amount of 6 mol%), and after charging was completed,
The battery was immediately discharged under a constant current (3.0 mA/cm 2 ), and when the voltage reached 1.0 V, it was charged again under the same conditions as described above. A repeated charging/discharging test was possible up to 493 times. As a result of the 10th repeated charge/discharge test, the theoretical energy density for 1 kg of active material used was
It was 118W・hr/Kg, and the charge/discharge efficiency was 98%. Further, the ratio of the amount of electricity discharged until the voltage decreased to 1.5V during discharge to the total amount of electricity discharged was 93%. Comparative Example 2 Polymerization was carried out in the same manner as in Example 1 except that 20 g of polystyrene having a weight average molecular weight of 200,000 was added and dissolved in place of the linear low density polyethylene in Example 1 to obtain 4 g of powder. Infrared spectroscopy revealed that 5% by weight of polystyrene was present in the powder. When the resulting powder was observed under an electron microscope, it was found that in addition to the fibrillar portions inherent to the acetylene polymer, polystyrene-shaped portions were non-uniformly dispersed. This powder was heated to a pressure of 500Kg/cm 2 ,
Example 1 except that a composite of polyacetylene and polystyrene obtained by molding at a temperature of 200°C was used.
When we conducted a [battery experiment] in the same manner as
Charging became impossible after the 258th time. When the electrode was taken out after the test, it was found that the electrode membrane had been destroyed. Furthermore, as a result of the 10th repeated test, the theoretical energy density was 109 W·hr/Kg, and the charge/discharge efficiency was 91%. Further, the ratio of the amount of electricity discharged until the voltage decreased to 1.5V during discharge to the total amount of electricity discharged was 89%. Examples 3 to 5 Comparative Example 3 A battery for evaluation was polymerized and molded in the same manner as in Example 1 except that the amount of linear low-density polyethylene powder was changed as shown in Table 1. was created. Then, a repeated charging/discharging test was conducted, and the results are also shown in Table 1.
Claims (1)
合物が重合しているフイブリル状の重合体組成物
であつて、この全重合体組成物に対する前記熱可
塑性重合体粉末の割合が1重量%乃至60重量%で
ある成型体を正極または負極の少なくとも一つの
電極に用いた電池。1 A fibrillar polymer composition in which an acetylene compound is polymerized on the surface of a thermoplastic polymer powder, wherein the proportion of the thermoplastic polymer powder to the total polymer composition is 1% by weight to 60% by weight. % in at least one of the positive and negative electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58069939A JPS59196582A (en) | 1983-04-22 | 1983-04-22 | Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58069939A JPS59196582A (en) | 1983-04-22 | 1983-04-22 | Battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59196582A JPS59196582A (en) | 1984-11-07 |
JPH0373992B2 true JPH0373992B2 (en) | 1991-11-25 |
Family
ID=13417131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58069939A Granted JPS59196582A (en) | 1983-04-22 | 1983-04-22 | Battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59196582A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293991A (en) * | 1992-08-14 | 1994-10-21 | Sony Corp | Aluminum nonaqueous electrolyte, battery using the electrolyte and aluminum electrodepositing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57123659A (en) * | 1980-10-22 | 1982-08-02 | Rohm & Haas | Nonaqueous battery |
JPS5854554A (en) * | 1981-09-28 | 1983-03-31 | Showa Denko Kk | Battery |
-
1983
- 1983-04-22 JP JP58069939A patent/JPS59196582A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57123659A (en) * | 1980-10-22 | 1982-08-02 | Rohm & Haas | Nonaqueous battery |
JPS5854554A (en) * | 1981-09-28 | 1983-03-31 | Showa Denko Kk | Battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293991A (en) * | 1992-08-14 | 1994-10-21 | Sony Corp | Aluminum nonaqueous electrolyte, battery using the electrolyte and aluminum electrodepositing method |
Also Published As
Publication number | Publication date |
---|---|
JPS59196582A (en) | 1984-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4544615A (en) | Battery having electrode made of polymeric compound having conjugated double bonds | |
US4537843A (en) | Secondary battery | |
EP0076119B1 (en) | Reinforced acetylene high polymers, process for preparing same and battery having same | |
EP0058469B1 (en) | Battery having acetylene high polymer electrode | |
JPH0530026B2 (en) | ||
JPH0373992B2 (en) | ||
JPS5942784A (en) | Battery | |
JPS593874A (en) | Battery | |
JPS59196573A (en) | Cell | |
JPS593871A (en) | Battery | |
JPS593872A (en) | Battery | |
JPS59196572A (en) | Cell | |
JPS59112584A (en) | Battery | |
JPS59196566A (en) | Cell | |
JPS59160965A (en) | Battery | |
JPS59119682A (en) | Battery | |
JPH0527232B2 (en) | ||
JPS59211971A (en) | Cell | |
JPS58206078A (en) | Battery | |
JPS58206065A (en) | Battery | |
JPS59196571A (en) | Cell | |
JPS58206064A (en) | Battery | |
JPH0582032B2 (en) | ||
JPS59196567A (en) | Cell | |
JPS59226473A (en) | Secondary battery |