Nothing Special   »   [go: up one dir, main page]

JPH0371072B2 - - Google Patents

Info

Publication number
JPH0371072B2
JPH0371072B2 JP58177742A JP17774283A JPH0371072B2 JP H0371072 B2 JPH0371072 B2 JP H0371072B2 JP 58177742 A JP58177742 A JP 58177742A JP 17774283 A JP17774283 A JP 17774283A JP H0371072 B2 JPH0371072 B2 JP H0371072B2
Authority
JP
Japan
Prior art keywords
reaction tube
tube holder
holder
reaction
transfer path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58177742A
Other languages
Japanese (ja)
Other versions
JPS6069562A (en
Inventor
Tokio Kozono
Koichi Wakatake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittec KK
Original Assignee
Nittec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittec KK filed Critical Nittec KK
Priority to JP58177742A priority Critical patent/JPS6069562A/en
Priority to IT48906/84A priority patent/IT1177995B/en
Publication of JPS6069562A publication Critical patent/JPS6069562A/en
Publication of JPH0371072B2 publication Critical patent/JPH0371072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0462Buffers [FIFO] or stacks [LIFO] for holding carriers between operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、臨床血液検査を行う自動分析装置
に用いられる反応管ホルダに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reaction tube holder used in an automatic analyzer for performing clinical blood tests.

〔従来技術とその課題〕[Conventional technology and its issues]

従来生化学分析や免疫分析を行う自動分析装置
に用いられる反応管ホルダとしては、円板状に形
成されたものが知られており、この反応管ホルダ
を360度以上回転させることで、各反応管をサン
プリング位置から試薬分注位置、光学測定位置へ
と間欠移送するように構成されていた。
Conventionally, reaction tube holders used in automatic analyzers for biochemical analysis and immunoassay are known to be shaped like a disk.By rotating this reaction tube holder more than 360 degrees, each reaction It was configured to intermittently transport the tube from the sampling position to the reagent dispensing position to the optical measurement position.

しかしながら、上記従来の反応管ホルダにあた
つては、該反応管ホルダが、反応管ホルダを回転
駆動させるパルスモータ等の駆動装置と直結され
た構成であるため、多検体を迅速に処理しようと
する場合には、反応管の数を増やさなければなら
ず、これでは、反応管ホルダの平面面積が拡大し
て装置が大型化するばかりでなく、反応管に収容
された各試料の反応タイムコースも、反応管ホル
ダに保持された反応管の数と対応する回数分だけ
しか構造的に得られないため、タイムコースの精
度にも限界がある、という問題を有していた。
However, in the conventional reaction tube holder described above, since the reaction tube holder is directly connected to a drive device such as a pulse motor that rotationally drives the reaction tube holder, it is difficult to process multiple samples quickly. In this case, the number of reaction tubes must be increased, which not only increases the planar area of the reaction tube holder and increases the size of the apparatus, but also reduces the reaction time course of each sample contained in the reaction tube. However, there was also a problem in that there was a limit to the accuracy of the time course because structurally only the number of times corresponding to the number of reaction tubes held in the reaction tube holder could be obtained.

この発明はかかる現状に鑑み創案されたもので
あつて、その目的とするところは、こ種の自動分
析装置の平面占有面積を大幅に縮小し、かつ、検
体の処理を大幅に増加させることができると共
に、精度の高いタイムコースを求めるのに好適な
反応管ホルダを提供しようとするものである。
This invention was devised in view of the current situation, and its purpose is to significantly reduce the surface area occupied by this type of automatic analyzer and to significantly increase the amount of sample processing required. It is an object of the present invention to provide a reaction tube holder that is suitable for determining time courses with high accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

かかる目的を達成するため、この発明にあつて
は、検体が収容された反応管を直列に収納し保持
する平面略C字状の反応管ホルダの周面に、縦形
円筒状に形成された反応管移送路に配設してなる
駆動ギアと噛合するギアを刻設し、かつ上記反応
管ホルダには、該反応管ホルダを上記反応管移送
路内に立設された光源保持体の軸線と交叉する方
向へ排出するための切欠部が形成したことを特徴
とするものである。
In order to achieve this object, the present invention provides a reaction tube formed in a vertical cylindrical shape on the circumferential surface of a reaction tube holder having a substantially C-shaped plan view for storing and holding reaction tubes containing specimens in series. The reaction tube holder is provided with a gear that meshes with a drive gear disposed in the tube transfer path, and the reaction tube holder is aligned with the axis of the light source holder installed upright in the reaction tube transfer path. It is characterized in that a notch is formed for discharging in intersecting directions.

〔実施例〕〔Example〕

以下、添付図面に示す一実施例に基づきこの発
明を詳細に説明する。
Hereinafter, the present invention will be described in detail based on an embodiment shown in the accompanying drawings.

第1図に示すように、この実施例に係る反応管
ホルダ10は、平面略C字状に形成されており、
該反応管ホルダ10には、所要間隔毎に所要数の
小孔11が開設され、該小孔11には、第2図に
示すように、複数本の反応管12が挿脱自在に保
持されている。尚、これらの各反応管12は、上
記反応管ホルダ10の上面及び下面から突出しな
い状態で保持される高さ寸法を有して構成されて
いるのが望ましい。
As shown in FIG. 1, the reaction tube holder 10 according to this embodiment has a substantially C-shaped planar shape.
A required number of small holes 11 are formed in the reaction tube holder 10 at required intervals, and a plurality of reaction tubes 12 are held in the small holes 11 in a freely insertable and removable manner, as shown in FIG. ing. It is preferable that each of these reaction tubes 12 has a height dimension that allows the reaction tubes 12 to be held without protruding from the upper and lower surfaces of the reaction tube holder 10.

また、上記反応管ホルダ10の各小孔11に
は、各孔11の軸方向と直交する方向に光軸孔1
3が貫通して開設されており、後記する光源Kか
らの測定光が光軸孔13から反応管12内の血清
検体を透過した後再び光軸孔13を経て受光素子
44(第6図参照)へと入射されるように構成さ
れている。
In addition, each small hole 11 of the reaction tube holder 10 has an optical axis hole 1 in a direction perpendicular to the axial direction of each hole 11.
3 is opened through the optical axis hole 13, and after the measurement light from the light source K (described later) passes through the optical axis hole 13 and the serum sample in the reaction tube 12, it passes through the optical axis hole 13 again and passes through the light receiving element 44 (see Fig. 6). ).

このように構成されてなる反応管ホルダ10の
外周面には、その周方向に沿つてギヤ14が刻設
されており、ギヤ14は、後記する光学測定位置
において、後記する駆動ギア45,45′と噛合
して反応管ホルダ10を少なくとも一回転させる
ように構成されている。
A gear 14 is carved along the circumferential direction on the outer peripheral surface of the reaction tube holder 10 configured in this way, and the gear 14 is connected to drive gears 45, 45 (described later) at an optical measurement position (described later). ' is configured to rotate the reaction tube holder 10 at least once.

また、上記反応管ホルダ10には、後記する測
定移送路40に立設された光源保持体42の軸線
と交叉する方向へ、該反応管ホルダ10を排出す
るための切欠部10′が形成されている。
Further, the reaction tube holder 10 is formed with a notch 10' for discharging the reaction tube holder 10 in a direction intersecting the axis of a light source holder 42 erected in a measurement transfer path 40, which will be described later. ing.

このように構成された反応管ホルダ10は、例
えば、第2図以下に示す自動分析装置に用いられ
る。
The reaction tube holder 10 configured in this manner is used, for example, in an automatic analyzer shown in FIG. 2 and subsequent figures.

即ち、上記反応管ホルダ10は、先ず、サンプ
リング位置に配設された縦断面″〓状のホルダ保
持体15に嵌装保持される。
That is, the reaction tube holder 10 is first fitted and held in a holder holder 15 having a ``cross-shaped'' vertical cross section, which is disposed at the sampling position.

このホルダ保持体15は、モータ等の回転手段
16で回転制御される。この制御は制御装置
(CPU)を介して行われる。
This holder holder 15 is rotationally controlled by a rotating means 16 such as a motor. This control is performed via a control device (CPU).

このようにホルダ保持体15が回転制御され、
反応管ホルダ10に保持された各反応管12がサ
ンプリング位置に停止すると、該ホルダ保持体1
5に隣設されたサンプラ20のサンプルカツプ2
1内に収容された血清検体(以下、単に検体とい
う。)が、ピペツト装置Pを介して所要量ずつ分
注される。
In this way, the rotation of the holder holder 15 is controlled,
When each reaction tube 12 held by the reaction tube holder 10 stops at the sampling position, the holder holder 1
Sample cup 2 of sampler 20 adjacent to 5
A serum specimen (hereinafter simply referred to as specimen) contained in the chamber 1 is dispensed in required amounts via a pipette P.

このピペツト装置Pは、サンプルカツプ21の
開口径に対応する所要本数のピペツトP1,P2
Poから構成されている。
This pipette device P has a required number of pipettes P 1 , P 2 , . . . corresponding to the opening diameter of the sample cup 21.
It consists of P o .

これらの各ピペツトP1,P2…Poは、サンプル
カツプ21の上部、つまり検体吸引位置では束ね
られた状態に集合されて昇降案内され、サンプル
カツプ21内の検体を所要量ずつ夫々吸引した
後、水平方向へ回動して検体分注位置まで移送さ
れ、該検体分注位置で所要間隔毎に展開された後
下降して、吸引された各検体を所要量ずつ対応す
る反応管12内に分注する。この時、各ピペツト
P1,P2…Poからは、分析項目に対応する第1試
薬又は希釈液R1が所要量ずつ対応反応管12に
分注される。
These pipettes P 1 , P 2 . . . P o are collected in a bundle at the upper part of the sample cup 21, that is, at the sample suction position, and are guided up and down to aspirate the required amount of the sample in the sample cup 21, respectively. After that, it is rotated in the horizontal direction and transferred to the sample dispensing position, where it is expanded at required intervals and then lowered to transfer the required amount of each aspirated sample into the corresponding reaction tube 12. Dispense. At this time, each pipette
From P 1 , P 2 . . . P o , a required amount of the first reagent or diluent R 1 corresponding to the analysis item is dispensed into the corresponding reaction tube 12.

尚、ピペツトP1,P2…Poの本数が反応管ホル
ダ10に保持された反応管12の数より少ない場
合、例えば、ピペツトの本数が8本で反応管12
の数が32本である場合には、前記ホルダ保持体1
5は、8本のピペツトによる検体の吸引・分注作
業が終了する毎に所要角度ずつ4回回動するよう
に制御装置(CPU)で駆動制御される。勿論、
この分注作業時間を短縮する場合には、上記8本
のピペツトを有する4基PA,PB,PC,PDのピペ
ツト装置Pを配設し、これらを同時に駆動制御す
ることで可能である。この場合、検体aはピペツ
ト装置PAを介して第3図θ1の範囲にある8本の反
応管12内に、検体bはピペツト装置PBを介し
て第3図θ2の範囲にある8本の反応管12内に、
検体cはピペツト装置PCを介して第3図θ3の範囲
にある8本の反応管12内に、検体dはピペツト
装置PDを介して第3図θ4の範囲にある8本の反応
管12内に分注される。
Note that if the number of pipettes P 1 , P 2 ...P o is smaller than the number of reaction tubes 12 held in the reaction tube holder 10, for example, if the number of pipettes is 8,
When the number of the holder holder 1 is 32, the holder holder 1
5 is driven and controlled by a control device (CPU) so that it rotates four times by the required angle each time the sample suction/dispensing work using the eight pipettes is completed. Of course,
In order to shorten this dispensing work time, it is possible to install the four pipette devices P A , P B , P C , PD having the above-mentioned eight pipettes and drive and control them simultaneously. It is. In this case, the sample a is placed in the eight reaction tubes 12 in the range of θ 1 in Fig. 3 via the pipette P A , and the sample b is placed in the range of θ 2 in Fig. 3 via the pipettor P B. In the eight reaction tubes 12,
The sample c is transferred to the eight reaction tubes 12 in the range of θ 3 in FIG . It is dispensed into the reaction tube 12.

このようにして各分注作業が終了したピペツト
P1,P2…Poは、図示しないピペツト洗浄装置で
洗浄される。
The pipette after each dispensing work has been completed in this way.
P 1 , P 2 . . . P o are washed with a pipette washing device (not shown).

また、上記のようにして検体及び測定項目に対
応する第1試薬等が分注された反応管12を保持
してなる反応管ホルダ10は、縦型筒状の反応移
送路30へと移送される。この差し換え作業手段
としては、手作業又は公知の機械手段、例えば所
要タイミングで作動するベルトコンベアと把持装
置との組合せよりなる移送機構等種々の公知機構
を適用することができる。
Further, the reaction tube holder 10 holding the reaction tube 12 into which the sample and the first reagent corresponding to the measurement item have been dispensed as described above is transferred to the vertical cylindrical reaction transfer path 30. Ru. As this replacement operation means, various known mechanisms such as manual or known mechanical means, such as a transfer mechanism consisting of a combination of a belt conveyor and a gripping device that operate at a required timing, can be applied.

反応移送路30は、恒温槽としての機能を有し
ており、その内径は、反応管ホルダ10の外径よ
りも若干大径に形成されており、前記検体及び試
薬等の分注が終了した反応管ホルダ10は、該反
応移送路30の最下部に開設された開口32から
反応移送路30内へと挿入される。
The reaction transfer path 30 has a function as a constant temperature bath, and its inner diameter is formed to be slightly larger than the outer diameter of the reaction tube holder 10, and the reaction transfer path 30 has a function as a constant temperature bath. The reaction tube holder 10 is inserted into the reaction transfer path 30 through an opening 32 formed at the bottom of the reaction transfer path 30 .

このように反応移送路30に移送された反応管
ホルダ10は、反応移送路30内の底部付近に配
設された押し上げ機構31によつて順次上方へ押
し上げられる。この押し上げ動作は、次の反応管
ホルダ10の反応移送路30への移送作業が妨げ
られないタイミングで、かつ、少なくとも反応管
ホルダ10の高さ寸法より大きな上昇距離で行な
われる。
The reaction tube holders 10 transferred to the reaction transfer path 30 in this manner are successively pushed upward by the push-up mechanism 31 disposed near the bottom of the reaction transfer path 30. This lifting operation is performed at a timing that does not prevent the next transfer operation of the reaction tube holder 10 to the reaction transfer path 30, and at a lifting distance that is at least larger than the height dimension of the reaction tube holder 10.

このようにして上方へ押し上げられた反応管ホ
ルダ10は、反応移送路30の側部開口32の上
部位置に内設された爪体33により保持される。
The reaction tube holder 10 pushed upward in this manner is held by a claw body 33 provided inside at an upper position of the side opening 32 of the reaction transfer path 30.

この爪体33は、スプリングによつて、反応管
ホルダ10の上昇を許容し、かつ、下降は阻止す
るように取り付けられている。これにより上記反
応管ホルダ10は、反応移送路30内の上下方向
に沿つて密に積層された状態で収納され、かつ、
所定タイミングで上昇移送される。
This claw body 33 is attached by a spring so as to allow the reaction tube holder 10 to rise and prevent it from falling. As a result, the reaction tube holders 10 are housed in a densely stacked state along the vertical direction within the reaction transfer path 30, and
It is transported upward at a predetermined timing.

こうして順次押し上げ移送される過程で各反応
管ホルダ10に保持された血液等は生体温度に保
温される。
In this way, the blood and the like held in each reaction tube holder 10 are kept at the body temperature during the process of being sequentially pushed up and transferred.

即ち、上記反応移送路30に、電熱ヒータや温
水循環等による加熱手段34が付設されており、
該加熱手段34によつて反応移送路30内の反応
管ホルダ10の保持された反応管12内の血液等
は生体温度に加熱保持される。
That is, the reaction transfer path 30 is provided with a heating means 34 such as an electric heater or hot water circulation.
The heating means 34 heats and maintains the blood and the like in the reaction tube 12 held by the reaction tube holder 10 in the reaction transfer path 30 at the body temperature.

そして、反応管ホルダ10が反応移送路30の
最上部まで移送されると、該反応管ホルダ10は
反応移送路30に隣設された縦型筒状の測定移送
路40に移しかえられる。この移しかえ作業は、
手作業若くは公知の水平押し出し機構等の機械機
構で行うことができる。
When the reaction tube holder 10 is transferred to the top of the reaction transfer path 30, the reaction tube holder 10 is transferred to the vertical cylindrical measurement transfer path 40 adjacent to the reaction transfer path 30. This transfer work is
This can be carried out manually or by a known mechanical mechanism such as a horizontal extrusion mechanism.

このようにして測定移送路40に移し換えられ
た反応管ホルダ10の各反応管12には、第5図
に示すように、その最上部において、前記ピペツ
ト装置Pと同様に構成さてなるピペツト装置P′を
介して分析項目に対応する第2試薬又は第2希釈
液R2が所要量づつ分注される。
As shown in FIG. 5, each reaction tube 12 of the reaction tube holder 10 transferred to the measurement transfer path 40 is provided with a pipette device configured similarly to the pipette device P at its top. A required amount of the second reagent or second diluent R2 corresponding to the analysis item is dispensed via P'.

そして、この第2試薬等が分注された反応管1
2を保持する反応管ホルダ10は、この後、測定
移送路40に沿つて順次間欠的に下方へ所要タイ
ミングで一段階(つまり反応管ホルダ10の高さ
寸法分)つづ移送される。この移送は、同所要タ
イミングで上記移送路40の最下部から反応管ホ
ルダ10が1個ずつ抜き取られることで行われ
る。勿論、この場合には、抜き取られる反応管ホ
ルダ10によつて、この反応管ホルダ10より上
方に位置する反応管ホルダ10が振動したりしな
いように、例えば、公知のストツパーを配設し、
最下部の反応管ホルダ10が抜き取られるまでの
間、原高さ位置を保持するように構成するのが望
ましい。
Then, the reaction tube 1 into which this second reagent etc. was dispensed
Thereafter, the reaction tube holder 10 holding the reaction tube holder 2 is sequentially and intermittently transferred downward along the measurement transfer path 40 one step at a time (that is, by the height of the reaction tube holder 10) at a required timing. This transfer is performed by pulling out the reaction tube holders 10 one by one from the lowest part of the transfer path 40 at the same required timing. Of course, in this case, for example, a known stopper is provided to prevent the reaction tube holder 10 positioned above the reaction tube holder 10 from vibrating due to the reaction tube holder 10 being pulled out.
It is desirable to maintain the original height position until the reaction tube holder 10 at the bottom is removed.

また、上記反応管ホルダ10は、測定移送路4
0に移しかえられる際に、反応管ホルダ10の切
欠部10′が上記移送路40の最上部に設けられ
た突起41に嵌装され位置決められる。この位置
決め手段としては、例えば、適宜の回転手段によ
つて行なうことができる。
Further, the reaction tube holder 10 is connected to the measurement transfer path 4.
0, the notch 10' of the reaction tube holder 10 is fitted into the projection 41 provided at the top of the transfer path 40 and positioned. As this positioning means, for example, suitable rotation means can be used.

このように構成されてなる測定移送路40の中
途には、光学測定部41が所要段階(図示の実施
例では4段)配設されている。
In the middle of the measurement transfer path 40 configured as described above, optical measuring sections 41 are arranged at required stages (four stages in the illustrated embodiment).

この光学測定部41の各段部に配設される光学
測定装置Kは、正面L字状の光源保持体42と、
この光源保持体42の垂直部分であつて各段部に
対応する部位に配設された光源43と、から構成
されてなり、各光源43から水平方向に照射され
る測定光lは、各段部に位置する反応管ホルダ1
0の光軸孔13から反応管12内の検体を透過し
て受光素子44へと入射され、測定項目に対応す
る波長部分の吸光度が演算測定される。そして、
その分析結果は、必要に応じてCRT等のデイス
プレイに表示され、或は、プリントアウトされ
る。
The optical measuring device K disposed at each step of the optical measuring section 41 includes a light source holder 42 having an L-shaped front surface,
A light source 43 is disposed in a vertical portion of the light source holder 42 corresponding to each step, and the measurement light l emitted horizontally from each light source 43 is transmitted to each step. Reaction tube holder 1 located in
The light passes through the sample in the reaction tube 12 through the optical axis hole 13 of 0 and enters the light receiving element 44, and the absorbance of the wavelength portion corresponding to the measurement item is calculated and measured. and,
The analysis results are displayed on a display such as a CRT or printed out as necessary.

このように各段部に配設さた光学測定部41の
位置に反応管ホルダ10が移送されると、該位置
に配設された各駆動ギア45,45′が反応管ホ
ルダ10のギヤ14と夫々噛合し、該反応管ホル
ダ10を少なくとも一回転させる。この駆動ギア
45,45′は、モータMを介して反応管ホルダ
10が正確に原位置へと復帰するよう回転制御さ
れる。
When the reaction tube holder 10 is transferred to the position of the optical measuring section 41 disposed at each step, each drive gear 45, 45' disposed at the position moves to the gear 14 of the reaction tube holder 10. and rotate the reaction tube holder 10 at least once. The drive gears 45, 45' are rotationally controlled by the motor M so that the reaction tube holder 10 accurately returns to its original position.

それ故、該反応管ホルダ10に保持された各反
応管12内の各検体は、各段部に配設された光学
測定部41において、反応管ホルダ10が一回転
する毎に光学測定されるため、より精度の高い各
検体の反対のタイムコースを容易に得ることがで
きる。
Therefore, each sample in each reaction tube 12 held in the reaction tube holder 10 is optically measured every time the reaction tube holder 10 rotates once in the optical measurement section 41 disposed at each step. Therefore, it is possible to easily obtain the opposite time course for each sample with higher accuracy.

このようにして各段における光学測定が終了
し、かつ、測定移送路40の最下部に到来した反
応管ホルダ10は、アクチユエータ等を利用した
公知の機構からなる押し出し装置50を介して同
移送路40外へと送出され、洗浄位置Wへと移送
される。この時、上記反応管ホルダ10の中心部
位には光源保持体42が立設されているが、光源
保持体42の胴部直径fは反応管ホルダ10の切
欠部10′の開口寸法Fより小径に形成されてい
るので、該反応管ホルダ10は、光源保持体42
の軸線と交叉する方向へスムーズに送出される。
In this way, the optical measurement at each stage has been completed, and the reaction tube holder 10, which has reached the lowest part of the measurement transfer path 40, is moved through the same transfer path via a pushing device 50 consisting of a known mechanism using an actuator or the like. 40 and transferred to the cleaning position W. At this time, a light source holder 42 is erected at the center of the reaction tube holder 10, but the diameter f of the body of the light source holder 42 is smaller than the opening dimension F of the notch 10' of the reaction tube holder 10. Since the reaction tube holder 10 is formed with a light source holder 42
It is sent out smoothly in a direction that intersects the axis of the

洗浄位置Wでは、反応管ホルダ10の各反応管
12に収容されていた検体等は全て吸引されて捨
てられた後、公知の超音波洗浄装置等により洗浄
され、再使用に供与される。尚、洗浄精度を高め
ようとする場合には、洗浄装置を、第7図に示す
ように複数台配設することにより可能である。
At the cleaning position W, all the specimens and the like contained in each reaction tube 12 of the reaction tube holder 10 are suctioned and discarded, and then cleaned by a known ultrasonic cleaning device or the like and provided for reuse. In addition, if it is desired to improve the cleaning accuracy, it is possible to do so by arranging a plurality of cleaning apparatuses as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

この発明に係る反応管ホルダは、以上説明した
ように構成されているので、反応管ホルダの平面
面積を大きく形成することなく、多くの検体を迅
速に処理することができ、また、該反応管ホルダ
は、それ自体が移送の対象とされるため、光学測
定位置を複数箇所設置することで、反応管ホルダ
に保持される反応管の数に関係なくより精密な反
応のタイムコースを容易に求めることができる、
という優れた効果を奏する。
Since the reaction tube holder according to the present invention is configured as described above, it is possible to quickly process many samples without increasing the planar area of the reaction tube holder, and Since the holder itself is the object of transfer, by installing multiple optical measurement positions, a more precise reaction time course can be easily determined regardless of the number of reaction tubes held in the reaction tube holder. be able to,
It has this excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る反応管ホル
ダの平面図、第2図は同反応管ホルダをサンプラ
ーにセツトした状態を示す断面説明図、第3図は
サンプルカツプ内の血清試料を反応管ホルダの反
応管に分注する際の分配態様の一例を示す平面説
明図、第4図は上記反応管ホルダ好適な自動分析
装置の全体機構を示す概略説明図、第5図は測定
移送路の構成説明図、第6図は第5図−線断
面図、第7図は自動分析装置全体の平面配置図で
ある。 〔符号の説明〕、10……反応管ホルダ、1
0′……切欠部、12……反応管、14……ギア、
42……光源保持体、45,45′……駆動ギア。
Fig. 1 is a plan view of a reaction tube holder according to an embodiment of the present invention, Fig. 2 is a cross-sectional view showing the reaction tube holder set in a sampler, and Fig. 3 shows a serum sample in a sample cup. An explanatory plan view showing an example of the dispensing mode when dispensing into the reaction tubes of the reaction tube holder, FIG. 4 is a schematic explanatory view showing the overall mechanism of the automatic analyzer suitable for the reaction tube holder, and FIG. 5 is a measurement transfer diagram. 6 is a sectional view taken along the line of FIG. 5, and FIG. 7 is a plan layout diagram of the entire automatic analyzer. [Explanation of symbols], 10...Reaction tube holder, 1
0'... Notch, 12... Reaction tube, 14... Gear,
42... Light source holder, 45, 45'... Drive gear.

Claims (1)

【特許請求の範囲】[Claims] 1 検体が収容された反応管を直列に収納し保持
する平面略C字状の反応管ホルダの周面に、縦形
円筒状に形成された反応管移送路に配設してなる
駆動ギアと噛合するギアを刻設し、かつ、上記反
応管ホルダには、該反応管ホルダを上記反応管移
送路内に立設された光源保持体の軸線と交叉する
方向へ排出するための切欠部が形成されてことを
特徴とする反応管ホルダ。
1. A driving gear arranged in a reaction tube transfer path formed in a vertical cylindrical shape is engaged with the circumferential surface of a reaction tube holder having a substantially C-shaped plane for storing and holding reaction tubes containing samples in series. The reaction tube holder is provided with a notch for discharging the reaction tube holder in a direction intersecting the axis of the light source holder installed upright within the reaction tube transfer path. A reaction tube holder characterized by:
JP58177742A 1983-09-26 1983-09-26 Disc for holding vessel in automatic analyzing device Granted JPS6069562A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58177742A JPS6069562A (en) 1983-09-26 1983-09-26 Disc for holding vessel in automatic analyzing device
IT48906/84A IT1177995B (en) 1983-09-26 1984-09-26 PRODUCTION FOR PURIFYING RUBBER POLYMERS FROM CATALYST RESIDUES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58177742A JPS6069562A (en) 1983-09-26 1983-09-26 Disc for holding vessel in automatic analyzing device

Publications (2)

Publication Number Publication Date
JPS6069562A JPS6069562A (en) 1985-04-20
JPH0371072B2 true JPH0371072B2 (en) 1991-11-11

Family

ID=16036322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58177742A Granted JPS6069562A (en) 1983-09-26 1983-09-26 Disc for holding vessel in automatic analyzing device

Country Status (2)

Country Link
JP (1) JPS6069562A (en)
IT (1) IT1177995B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187660A (en) * 1985-02-15 1986-08-21 Nippon Tectron Co Ltd Simple and automatic blood analyser
JPS61247972A (en) * 1985-04-26 1986-11-05 Nippon Tectron Co Ltd Automatic analyzing device
JPS61247973A (en) * 1985-04-26 1986-11-05 Nippon Tectron Co Ltd Holding device for reaction container
JPH0623769B2 (en) * 1988-08-31 1994-03-30 株式会社島津製作所 Automatic analyzer
EP2755035A1 (en) * 2013-01-09 2014-07-16 Siemens Healthcare Diagnostics Products GmbH Device for transporting reaction vessels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942789U (en) * 1972-07-18 1974-04-15

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339651Y2 (en) * 1981-03-20 1988-10-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942789U (en) * 1972-07-18 1974-04-15

Also Published As

Publication number Publication date
IT1177995B (en) 1987-09-03
IT8448906A0 (en) 1984-09-26
JPS6069562A (en) 1985-04-20
IT8448906A1 (en) 1986-03-26

Similar Documents

Publication Publication Date Title
EP0216026B1 (en) Automatic analysis apparatus
JPH027420B2 (en)
JPH0480338B2 (en)
WO2010106885A1 (en) Automatic analytical device
JPH0371072B2 (en)
JPH0565825B2 (en)
JP2011021993A (en) Autoanalyzer and probe cleaning mechanism
JPH04106472A (en) Automatic chemical analyzer
JPH0275959A (en) Automatic analysis apparatus
JPH0720132A (en) Reagent bottle cover structure for reagent supply system
JPH0360066B2 (en)
JPH05172828A (en) Automatic analyser
JPH0376711B2 (en)
JPS6249259A (en) Automatic analyzer
JPH0639266A (en) Method and device for agitating liquid
JPH0420145B2 (en)
JPH0552854A (en) Automatic analyzer
JPH0146030B2 (en)
JPH08105901A (en) Automatic analyzing device
JP2774052B2 (en) Liquid sample automatic analyzer
JPS6069560A (en) Method for transferring vessel of automatic analyzing device
JPH03202773A (en) Reagent pipetting apparatus of automatic analyser
JPH0468589B2 (en)
JPH0353174Y2 (en)
JPS6314904Y2 (en)