JPH0370849B2 - - Google Patents
Info
- Publication number
- JPH0370849B2 JPH0370849B2 JP1929383A JP1929383A JPH0370849B2 JP H0370849 B2 JPH0370849 B2 JP H0370849B2 JP 1929383 A JP1929383 A JP 1929383A JP 1929383 A JP1929383 A JP 1929383A JP H0370849 B2 JPH0370849 B2 JP H0370849B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- magnetic
- recording medium
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010409 thin film Substances 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 48
- 239000003575 carbonaceous material Substances 0.000 claims description 35
- 229920005989 resin Polymers 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 15
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 13
- 229920001187 thermosetting polymer Polymers 0.000 claims description 12
- 239000002131 composite material Substances 0.000 claims description 6
- 239000011148 porous material Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 14
- 238000004544 sputter deposition Methods 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 239000000314 lubricant Substances 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000010000 carbonizing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229910001257 Nb alloy Inorganic materials 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000011809 glassy carbon fiber Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3103—Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
- G11B5/3106—Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing where the integrated or assembled structure comprises means for conditioning against physical detrimental influence, e.g. wear, contamination
Landscapes
- Magnetic Heads (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Thin Magnetic Films (AREA)
Description
〔発明の属する技術分野〕
本発明は、磁気記録媒体に対して書込みおよび
読取りを行い、薄膜を有する磁気ヘツドに用いら
れる基体に関する。特に、高密度磁気記録を行う
に適する薄膜磁気ヘツドおよび垂直磁気記録方式
の磁気ヘツドに用いられる基体に関するものであ
る。
〔従来技術の説明〕
近年、情報量の増加に伴い磁気記録の高記録密
度化についての要求が高まつている。この高記録
密度化を達成させるために、磁気記録に係わる磁
気ヘツド等の諸部品の改良、新規磁気記録方式の
開発等に関する研究が活発化している。
磁気ヘツドについてみると、フエライトコアを
使用した汎用のリング型磁気ヘツドは、高密度磁
気記録において限界があると考えられており、こ
れに代わり高記録密度化を可能にする磁気ヘツド
として特開昭55−84018に開示されるような薄膜
磁気ヘツドが開発されている。
上記薄膜磁気ヘツドは、非磁性基体と、この非
磁性基体の一つの面の上に形成された書込みまた
は読取り用変換ギヤツプ層を含む複数の薄膜層で
作られた書込みまたは読取り変換器と、上記薄膜
層を被覆する非磁性保護板とを備えている。これ
らの薄膜層は、通常、非磁性基体上にスパツタリ
ングまたは蒸着により形成される。
また、磁気記録方式についてみると、従来の長
手磁気記録方式も高記録密度化には限界があるこ
とが示され、この記録方式に代わり、高記録密度
化を可能にする記録方式として垂直磁気記録方式
が提案されている。この垂直磁気記録に用いる磁
気ヘツドを製作する場合も、通常、非磁性基体上
に軟磁性薄膜がスパツタリングまたは蒸着により
形成される。
これらの磁気ヘツドに用いられる基体は、前述
したようにその上に薄膜を形成させるため、十分
な表面平滑性を必要とし、通常、その表面は鏡面
加工される。上記基体内に直径の大きな空孔が存
在したり、あるいは多くの空孔が存在すると、鏡
面加工を施したとしても、その基体表面は十分な
平滑度を得ることができず、この表面にスパツタ
リングまたは蒸着により形成された薄膜に円孔が
存在することになり、そのためこの薄膜は良好な
磁気特性を持つことができない。また空孔内のガ
スが抜け難いために、スパツタリングまたは蒸着
の際に必要とされる真空度を得ることが困難とな
る。
現在、これらの磁気ヘツド用基体としては、表
面平滑性が得られるアルミナ系セラミツクスの集
合体が一般に使用されている。しかしこのアルミ
ナ系セラミツクスの材料は硬度が高く、磁気記録
媒体との摺動の際に記録媒体の表面を傷付けやす
い欠点を有する。
この欠点を解消するため、従来、薄膜磁気ヘツ
ドが摺動する磁気記録媒体の表面には、潤滑剤が
塗布されたり、あるいは磁気記録媒体表面に保護
膜が被覆されたりしているが、潤滑剤を塗布して
も揮散等により潤滑作用を長時間持続させておく
ことは困難で、定期的に潤滑剤を再塗布しなけれ
ばならない欠点があり、記録媒体に保護膜を設け
ることは保護膜を被覆するための工程が増え、か
つ薄膜磁気ヘツドと記録媒体との間隔を増大させ
る欠点があつた。
〔発明の目的〕
本発明は、極めて高い表面平滑性を有し、鏡面
加工した面に、良好な磁気特性を持つ薄膜を形成
させることを可能にし、かつ磁気記録媒体の表面
に潤滑剤を塗布することなく、また磁気記録媒体
の表面に保護膜を形成することなく磁気記録媒体
の表面を永久的に損傷させず、磁気記録媒体との
接触面の摩耗が少ない磁気ヘツド用基体を提供す
ることを目的とする。
〔発明の特徴〕
第一発明の特徴は、薄膜の形成される面が極め
て高い平滑性を有し、密度が1.40g/cm3以上のガ
ラス状カーボン材料集合体で構成された磁気ヘツ
ド用基体である点にあり、また第二発明の特徴
は、薄膜の形成される面が極めて高い平滑性を有
し、密度が1.40g/cm3以上のガラス状カーボン材
料および熱硬化性樹脂を含む複合材料集合体で構
成された磁気ヘツド用基体である点にある。
なお本明細書で「極めて高い平滑性」とは、薄
膜が形成される面に直径0.5μm以上の空孔が形成
されていないことをいう。
本発明の磁気ヘツド用基体は、薄膜が形成され
る面に直径が0.5μm以上の空孔が形成されていな
いために基体表面に磁気特性の良い薄膜を形成さ
せることができる。また基体の密度は、磁気特性
の良好な薄膜の形成とは直接には関係しないが、
1.40g/cm3未満の低密度の基体は、薄膜が形成さ
れる面に直径0.5μm以上の空孔を持たない場合で
も、薄膜形成面以外の面あるいは基体内部に多数
の空孔が形成されていて、この基体を用いた場合
は、スパツタリングまたは蒸着に必要とされる真
空度を得ることが困難となるが、または磁気記録
媒体との接触の際に摩耗減量が大きくなり、本発
明の目的を達成することができない。なお、薄膜
が形成される面に直径0.1μm以上の空孔を持たな
ければ、この基体表面に磁気特性のより良好な薄
膜を形成させることができる。
以下、本発明を補足的に説明すると、本発明に
係わるカーボン材料は、熱硬化性樹脂を炭素化し
て得られるカーボン材料、共重合や共縮合などに
より熱硬化するように変性された樹脂を炭素化し
て得られるカーボン材料、硬化あるいは炭素化の
過程で化学処理により結晶化を著しく妨げること
により得られるカーボン材料、メタン、エチレ
ン、ベンゼン等の低分子量炭化水素類を気相で熱
分解して得られるカーボン材料等であり、具体的
には、ポリアクリロニトリル系カーボン材料、レ
ーヨン系カーボン材料、ピツチ系カーボン材料、
リグニン系カーボン材料、フエノール系カーボン
材料、フラン系カーボン材料、アルキツド樹脂系
カーボン材料、不飽和ポリエステル系カーボン材
料、キシレン樹脂系カーボン材料等が挙げられ
る。
また本発明に用いられる熱硬化性樹脂として
は、フエノール樹脂、エポキシ樹脂、ポリエステ
ル樹脂、フラン樹脂、ユリア樹脂、メラミン樹
脂、アルキツド樹脂、キシレン樹脂等を挙げるこ
とができる。
これらの熱硬化性樹脂を前記ガラス状カーボン
材料と複合すれば、熱硬化性樹脂はガラス状カー
ボン材料同士を固着するバインダとして作用し、
衝突等の機械的破壊に対して強度のある堅牢な非
磁性基体を得ることができる。しかし、熱硬化性
樹脂をガラス状カーボン材料に対して多量に複合
させると、摩耗の大きい非磁性基体となるため、
複合材料中にはガラス状カーボン材料を40容量%
以上、好ましくは50容量%以上含ませることがよ
い。
本発明の磁気ヘツド用基体は、上記カーボン材
料の集合体、あるいはカーボン材料と熱硬化性樹
脂の複合物の集合体で構成される。これらの集合
体の製造方法としては、注型、圧縮、押出し等の
広く知られた各種成型法が採られるが、直径0.5μ
m以上の空孔を持たず、かつ密度が1.40g/cm3以
上の集合体を得るには、注型法による場合は、例
えばカーボン材料の前駆体(熱硬化性樹脂を硬化
剤あるいは熱で硬化させた状態のもの)を得る段
階において、硬化剤を均一に分散させ、あるいは
均一に加熱し、かつ硬化速度があまり速くならな
いように調整することにより得られる。また圧縮
あるいは押出し成型法の場合は、例えばカーボン
材料を熱硬化性樹脂で濡らして空隙を極力減少さ
せて成型することにより得られる。
〔発明の効果〕
以上述べたように、本発明の磁気ヘツド用基体
は、この基体上に薄膜を形成させるために要求さ
れる表面平滑性を有し、鏡面加工により十分な平
滑度を得ることができ、しかも基体上に良好な磁
気特性を持つ薄膜をスパツタリングあるいは蒸着
により形成させることができる。また磁気記録媒
体との間で潤滑剤を用いることなく潤滑性を長時
間持続させることができ、磁気記録媒体の表面を
損傷させず摩耗減量も少ない。さらにカーボン材
料の導電性により静電気が発生せず、基体および
磁気記録媒体に塵埃が付着しない効果もある。
本発明に関する前述のカーボン材料集合体また
は複合材料集合体を磁気記録媒体と接触する基体
以外の部分、例えば薄膜磁気ヘツドの保護板、垂
直磁気記録用ヘツドの軟磁性薄膜の支持体等に使
用すると、磁気記録媒体間に持続性のある潤滑性
が付与されることになり、好ましいといえる。
〔実施例による説明〕
以下本発明の磁気ヘツド用基体の具体的態様を
示すために、本発明を実施例によりさらに詳細に
説明するが、以下に示す例はあくまでも一例であ
つて、これにより本発明の技術的範囲を限定する
ものではない。
実施例
注型成型により製造された密度1.49g/cm3、シ
ヨア硬度112、熱伝導率3kcal/mhr℃の特性を有
するフラン系ガラス状カーボン材料集合体を図に
示される形状および寸法に切り出し、記録媒体と
の摺動面Aおよび薄膜を形成させる面Bを粗研磨
から徐々に微細研磨して行き、最終的にエメリー
紙#15000で鏡面仕上げを行つてモデル基板1を
作製した。鏡面仕上げされた面Bを走査型電子顕
微鏡で観察したところ、この表面には直径0.5μm
以上の空孔は見られず、直径0.01μm以下の空孔
が見られるのみであつた。
このモデル基板1と磁気記録媒体との摩擦性を
評価するために、基板1のA面と、Co−被着γ
−Fe2O3塗布膜、Ni−Pメツキ薄膜およびCo−
Crスパツタリング薄膜との動摩擦特性を摩擦試
験装置により測定し、基板1のA面および上記磁
気記録媒体の表面の状態を肉眼で観察した。この
結果を第1表に示す。なお、測定に使用した摩擦
試験装置は特開昭55−128142に記載される実際の
使用状態に近い状態で動摩擦特性を測定し得る装
置である。
次いでこのモデル基板1を図の破線C−C′に沿
つて切断し、一方の切断片のB面に厚さ1μmの
Co−Zr−Nbの合金薄膜をスパツタリングにより
形成させ、もう一方の切断片のB面に厚さ0.3μm
のCo−Zr−Nbの合金薄膜を同じくスパツタリン
グにより形成させた。回転磁界中でこれらの薄膜
を熱処理を行つた後、軟磁性薄膜用の振動型磁気
測定装置を用いて各薄膜の保持力Hcを測定した。
その結果を第2表に示す。
実施例
注型成型により製造された密度1.47g/cm3、シ
ヨア硬度、100、熱伝導率7kcal/mhr℃の特性を
有するフラン系ガラス状カーボン材料集合体を実
施例1と同様の方法で処理して図示するようなモ
デル基板1を作製し、面Bを走査型電子顕微鏡で
観察したところ、この表面には直径0.5μm以上の
空孔は見られず、直径0.05μm以下の空孔が見ら
れるのみであつた。
以下実施例と同様にモデル基板1と磁気記録
媒体との摩擦性および薄膜の保磁力を測定した。
なお薄膜は実施例と同一の方法で作られたもの
である。これらの結果を第1表および第2表に示
す。
実施例
注型成型によつて製造された密度1.45g/cm3、
シヨア硬度78、熱伝導率15kcal/mhr℃の特性を
有するフエノール系ガラス状カーボン材料集合体
を実施例1と同様の方法で処理して図示するよう
なモデル基板1を作製し、面Bを走査型電子顕微
鏡で観察したところ、この表面には直径0.5μm以
上の空孔は見られず、直径0.2μm程度の空孔が見
られるのみであつた。
以下実施例と同様にモデル基板1と磁気記録
媒体との摩擦性および薄膜の保磁力を測定した。
なお薄膜は実施例と同一の方法で作られたもの
である。これらの結果を第1表および第2表に示
す。
実施例
フエノール系ガラス状炭素繊維(日本カイノー
ル(株)製、登録商標名カイノール)70容量%と積層
用汎用レゾール樹脂30容量%とにより構成され、
圧縮成型で成型された密度1.46g/cm3の複合ガラ
ス状カーボン材料集合体を実施例と同様の方法
で処理して図示するようなモデル基板1を作製
し、面Bを走査型電子顕微鏡で観察したところ、
この表面には直径0.5μm以上の空孔は見られず、
直径0.4μm以下の空孔が見られるのみであつた。
以下実施例と同様にモデル基板1と磁気記録
媒体との摩擦性および薄膜の保磁力を測定した。
なお薄膜は実施例と同一の方法で作られたもの
である。これらの結果を第1表および第2表に示
す。
比較例
注型成型により製造された密度1.37g/cm3、シ
ヨア硬度80、熱伝導率10kcal/mhr℃の特性を有
するフラン系ガラス状カーボン材料集合体を実施
例と同様の方法で処理して図示するようなモデ
ル基板1を作製し、面Bを金属顕微鏡で観察した
ところ、この表面には直径0.5μm未満の空孔も見
られたが、その他にも直径0.6〜0.7μmの空孔も
見られた。
以下実施例と同様にモデル基板1と磁気記録
媒体の薄膜の保磁力を測定した。なお薄膜は実施
例と同一の方法で作られたものである。この結
果を第2表に示す。
比較例
注型成型により製造された密度1.35g/cm3、シ
ヨア硬度70、熱伝導率13kcal/mhr℃の特性を有
するフエノール系ガラス状カーボン材料集合体を
実施例1と同様の方法で処理して図示するような
モデル基板1を作製し、面Bを金属顕微鏡で観察
したところ、この表面には直径0.5μm未満の空孔
も見られたが、その他にも直径0.9〜1.1μmの空
孔も見られた。
以下実施例と同様にモデル基板1と磁気記録
媒体の薄膜の保磁力を測定した。なお薄膜は実施
例と同一の方法で作られたものである。この結
果を第2表に示す。
比較例
アルミナ系セラミツクス(日本電気硝子(株)製、
商品名ネオセラム)を実施例と同様の方法で処
理して図示するようなモデル基板1を作製し、面
Bを走査型電子顕微鏡で観察したところ、この表
面には直径0.5μm以上の空孔も見られず、直径
0.01μm以下の空孔が見られるのみであつた。
以下実施例と同様にモデル基板1と磁気記録
媒体との摩擦性を測定した。この結果を第1表に
示す。
(試験結果)
第1表および第2表で明らかなように、本発明
の磁気ヘツド用基板は、磁気記録媒体との潤滑性
に優れ、かつヘツド摺動面および記録媒体を損傷
させず、さらに保磁力が小さく磁気特性にも優れ
ていることが判る。
[Technical Field to Which the Invention Pertains] The present invention relates to a substrate used in a magnetic head that writes to and reads from a magnetic recording medium and has a thin film. In particular, the present invention relates to a substrate used in a thin film magnetic head suitable for performing high-density magnetic recording and a magnetic head of perpendicular magnetic recording method. [Description of Prior Art] In recent years, with the increase in the amount of information, there has been an increasing demand for higher recording densities in magnetic recording. In order to achieve this high recording density, research is being actively conducted on the improvement of various parts related to magnetic recording, such as magnetic heads, and the development of new magnetic recording methods. Regarding magnetic heads, general-purpose ring-type magnetic heads using ferrite cores are thought to have limitations in high-density magnetic recording, and as an alternative magnetic head that enables higher recording densities, JP-A No. Thin film magnetic heads have been developed, such as that disclosed in No. 55-84018. The thin film magnetic head includes a non-magnetic substrate, a write or read transducer made of a plurality of thin film layers including a write or read transducer gap layer formed on one side of the non-magnetic substrate, and and a non-magnetic protection plate covering the thin film layer. These thin film layers are typically formed by sputtering or vapor deposition on non-magnetic substrates. Furthermore, regarding magnetic recording methods, it has been shown that the conventional longitudinal magnetic recording method has a limit in increasing the recording density. A method has been proposed. When manufacturing a magnetic head for use in perpendicular magnetic recording, a soft magnetic thin film is usually formed on a nonmagnetic substrate by sputtering or vapor deposition. The substrates used in these magnetic heads require sufficient surface smoothness in order to form a thin film thereon as described above, and their surfaces are usually mirror-finished. If there are pores with a large diameter or a large number of pores in the above-mentioned substrate, even if mirror finishing is applied, the surface of the substrate will not have sufficient smoothness, and sputtering will occur on this surface. Alternatively, circular holes are present in the thin film formed by vapor deposition, and therefore, this thin film cannot have good magnetic properties. Furthermore, since gas in the pores is difficult to escape, it is difficult to obtain the degree of vacuum required during sputtering or vapor deposition. Currently, aggregates of alumina-based ceramics, which provide a smooth surface, are generally used as substrates for these magnetic heads. However, this alumina-based ceramic material has high hardness and has the disadvantage that it easily scratches the surface of the recording medium when sliding with the magnetic recording medium. To overcome this drawback, conventionally, the surface of the magnetic recording medium on which the thin-film magnetic head slides is coated with a lubricant, or the surface of the magnetic recording medium is coated with a protective film. Even if lubricant is applied, it is difficult to maintain the lubricant effect for a long time due to volatilization, etc., and the lubricant has to be reapplied periodically. This method has disadvantages in that it increases the number of coating steps and increases the distance between the thin film magnetic head and the recording medium. [Object of the Invention] The present invention makes it possible to form a thin film with extremely high surface smoothness and good magnetic properties on a mirror-finished surface, and to apply a lubricant to the surface of a magnetic recording medium. To provide a base for a magnetic head that does not cause permanent damage to the surface of a magnetic recording medium without damaging the surface of the magnetic recording medium without forming a protective film on the surface of the magnetic recording medium, and has less wear on the contact surface with the magnetic recording medium. With the goal. [Features of the Invention] The first feature of the invention is a magnetic head substrate comprising a glassy carbon material aggregate having an extremely smooth surface on which a thin film is formed and a density of 1.40 g/cm 3 or more. The second invention is characterized in that the surface on which the thin film is formed has extremely high smoothness, and the composite material contains a glassy carbon material and a thermosetting resin with a density of 1.40 g/cm 3 or more. The main feature is that it is a magnetic head base made of an aggregate of materials. In this specification, "extremely high smoothness" means that no pores with a diameter of 0.5 μm or more are formed on the surface on which the thin film is formed. Since the substrate for a magnetic head of the present invention has no holes with a diameter of 0.5 μm or more on the surface on which the thin film is formed, a thin film with good magnetic properties can be formed on the surface of the substrate. Furthermore, although the density of the substrate is not directly related to the formation of a thin film with good magnetic properties,
Even if a substrate with a low density of less than 1.40 g/cm 3 does not have pores with a diameter of 0.5 μm or more on the surface on which the thin film is formed, many pores may be formed on surfaces other than the surface on which the thin film is formed or inside the substrate. However, if this substrate is used, it is difficult to obtain the degree of vacuum required for sputtering or vapor deposition, or the loss of wear due to contact with a magnetic recording medium is large, which may impede the purpose of the present invention. cannot be achieved. Note that if the surface on which the thin film is formed does not have pores with a diameter of 0.1 μm or more, a thin film with better magnetic properties can be formed on the surface of the substrate. To further explain the present invention, the carbon material according to the present invention includes a carbon material obtained by carbonizing a thermosetting resin, a carbon material obtained by carbonizing a thermosetting resin, and a carbon material obtained by carbonizing a thermosetting resin by copolymerization, cocondensation, etc. Carbon materials obtained by curing or by significantly inhibiting crystallization through chemical treatment during the hardening or carbonization process, and carbon materials obtained by thermally decomposing low molecular weight hydrocarbons such as methane, ethylene, and benzene in the gas phase. Specifically, polyacrylonitrile-based carbon materials, rayon-based carbon materials, pitch-based carbon materials, etc.
Examples include lignin-based carbon materials, phenol-based carbon materials, furan-based carbon materials, alkyd resin-based carbon materials, unsaturated polyester-based carbon materials, and xylene resin-based carbon materials. Examples of the thermosetting resin used in the present invention include phenolic resin, epoxy resin, polyester resin, furan resin, urea resin, melamine resin, alkyd resin, and xylene resin. When these thermosetting resins are combined with the glassy carbon material, the thermosetting resin acts as a binder that binds the glassy carbon materials together,
A robust non-magnetic substrate that is strong against mechanical damage such as collision can be obtained. However, when a large amount of thermosetting resin is combined with glassy carbon material, it becomes a non-magnetic substrate that is subject to high wear.
40% by volume of glassy carbon material in composite material
The content is preferably 50% by volume or more. The magnetic head substrate of the present invention is composed of an aggregate of the above-mentioned carbon material or a composite of a carbon material and a thermosetting resin. Various well-known molding methods such as casting, compression, and extrusion are used to manufacture these aggregates, but with a diameter of 0.5μ
In order to obtain an aggregate with a density of 1.40 g/cm 3 or more and no pores larger than m or more, when using the casting method, for example, a carbon material precursor (thermosetting resin with a curing agent or heat) can be obtained. In the step of obtaining a cured product, the curing agent is uniformly dispersed or heated uniformly, and the curing speed is adjusted so as not to become too fast. In the case of compression or extrusion molding, it can be obtained, for example, by wetting a carbon material with a thermosetting resin and molding it with as few voids as possible. [Effects of the Invention] As described above, the magnetic head substrate of the present invention has the surface smoothness required for forming a thin film on the substrate, and sufficient smoothness can be obtained by mirror finishing. Furthermore, a thin film with good magnetic properties can be formed on a substrate by sputtering or vapor deposition. Furthermore, the lubricity between the magnetic recording medium and the magnetic recording medium can be maintained for a long time without using a lubricant, and the surface of the magnetic recording medium is not damaged and the amount of loss due to wear is small. Furthermore, due to the conductivity of the carbon material, static electricity is not generated, and there is an effect that dust does not adhere to the substrate and the magnetic recording medium. When the above-mentioned carbon material aggregate or composite material aggregate according to the present invention is used in a part other than the base that comes into contact with a magnetic recording medium, for example, a protective plate of a thin film magnetic head, a support of a soft magnetic thin film of a perpendicular magnetic recording head, etc. This can be said to be preferable because it provides sustainable lubricity between the magnetic recording media. [Explanation based on Examples] Hereinafter, the present invention will be explained in more detail using Examples in order to show specific embodiments of the magnetic head substrate of the present invention. It does not limit the technical scope of the invention. Example A furan-based glassy carbon material aggregate manufactured by cast molding and having characteristics of density 1.49 g/cm 3 , Shore hardness 112, and thermal conductivity 3 kcal/mhr°C was cut into the shape and dimensions shown in the figure, The sliding surface A with the recording medium and the surface B on which the thin film is formed were roughly polished and then gradually finely polished, and finally mirror-finished with #15000 emery paper to prepare a model substrate 1. When mirror-finished surface B was observed using a scanning electron microscope, it was found that this surface had a diameter of 0.5 μm.
No pores larger than this were observed, and only pores with a diameter of 0.01 μm or less were observed. In order to evaluate the friction between this model substrate 1 and the magnetic recording medium, the A side of the substrate 1 and the Co-adhered γ
-Fe 2 O 3 coating film, Ni-P plating thin film and Co-
The dynamic friction characteristics with respect to the Cr sputtering thin film were measured using a friction tester, and the condition of the surface A of the substrate 1 and the surface of the magnetic recording medium was observed with the naked eye. The results are shown in Table 1. The friction testing device used in the measurements is a device that can measure dynamic friction characteristics under conditions close to actual usage conditions, as described in Japanese Patent Laid-Open No. 55-128142. Next, this model substrate 1 was cut along the broken line C-C' in the figure, and a 1 μm thick layer was placed on the B side of one of the cut pieces.
A Co-Zr-Nb alloy thin film was formed by sputtering to a thickness of 0.3 μm on the B side of the other cut piece.
A Co-Zr-Nb alloy thin film was also formed by sputtering. After heat-treating these thin films in a rotating magnetic field, the coercive force Hc of each thin film was measured using a vibrating magnetometer for soft magnetic thin films.
The results are shown in Table 2. Example A furan-based glassy carbon material aggregate manufactured by cast molding and having a density of 1.47 g/cm 3 , a Shore hardness of 100, and a thermal conductivity of 7 kcal/mhr°C was treated in the same manner as in Example 1. When a model substrate 1 as shown in the figure was prepared and surface B was observed using a scanning electron microscope, no pores with a diameter of 0.5 μm or more were found on this surface, but pores with a diameter of 0.05 μm or less were observed on this surface. All I could do was get caught. Thereafter, the friction between the model substrate 1 and the magnetic recording medium and the coercive force of the thin film were measured in the same manner as in the examples.
Note that the thin film was made by the same method as in the example. These results are shown in Tables 1 and 2. Example Density 1.45 g/cm 3 manufactured by cast molding,
A phenolic glassy carbon material aggregate having properties of Shore hardness of 78 and thermal conductivity of 15 kcal/mhr°C was treated in the same manner as in Example 1 to prepare a model substrate 1 as shown in the figure, and surface B was scanned. When observed using an electron microscope, no pores with a diameter of 0.5 μm or more were observed on this surface, and only pores with a diameter of about 0.2 μm were observed. Thereafter, the friction between the model substrate 1 and the magnetic recording medium and the coercive force of the thin film were measured in the same manner as in the examples.
Note that the thin film was made by the same method as in the example. These results are shown in Tables 1 and 2. Example Consisting of 70% by volume of phenolic glassy carbon fiber (manufactured by Nippon Kynor Co., Ltd., registered trademark name: Kynol) and 30% by volume of general-purpose resol resin for lamination,
A composite glass-like carbon material aggregate having a density of 1.46 g/cm 3 molded by compression molding was processed in the same manner as in the example to prepare a model substrate 1 as shown in the figure, and surface B was examined using a scanning electron microscope. When I observed it,
No pores with a diameter of 0.5 μm or more were found on this surface.
Only pores with a diameter of 0.4 μm or less were observed. Thereafter, the friction between the model substrate 1 and the magnetic recording medium and the coercive force of the thin film were measured in the same manner as in the examples.
Note that the thin film was made by the same method as in the example. These results are shown in Tables 1 and 2. Comparative Example A furan-based glassy carbon material aggregate manufactured by casting and having a density of 1.37 g/cm 3 , a Shore hardness of 80, and a thermal conductivity of 10 kcal/mhr°C was treated in the same manner as in the example. When a model substrate 1 as shown in the figure was prepared and surface B was observed with a metallurgical microscope, pores with a diameter of less than 0.5 μm were observed on this surface, but there were also pores with a diameter of 0.6 to 0.7 μm. It was seen. The coercive forces of the model substrate 1 and the thin film of the magnetic recording medium were then measured in the same manner as in the examples. Note that the thin film was made by the same method as in the example. The results are shown in Table 2. Comparative Example A phenolic glassy carbon material aggregate manufactured by casting and having a density of 1.35 g/cm 3 , a Shore hardness of 70, and a thermal conductivity of 13 kcal/mhr°C was treated in the same manner as in Example 1. When a model substrate 1 as shown in the figure was prepared and surface B was observed with a metallurgical microscope, pores with a diameter of less than 0.5 μm were observed on this surface, but there were also pores with a diameter of 0.9 to 1.1 μm. was also seen. Thereafter, the coercive force of the model substrate 1 and the thin film of the magnetic recording medium was measured in the same manner as in the example. Note that the thin film was made by the same method as in the example. The results are shown in Table 2. Comparative example Alumina ceramics (manufactured by Nippon Electric Glass Co., Ltd.)
A model substrate 1 as shown in the figure was prepared by treating Neoceram (trade name) in the same manner as in the example, and when surface B was observed with a scanning electron microscope, it was found that there were also pores with a diameter of 0.5 μm or more on this surface. not seen, diameter
Only pores of 0.01 μm or less were observed. Hereinafter, the friction between the model substrate 1 and the magnetic recording medium was measured in the same manner as in the example. The results are shown in Table 1. (Test Results) As is clear from Tables 1 and 2, the magnetic head substrate of the present invention has excellent lubricity with the magnetic recording medium, does not damage the head sliding surface and the recording medium, and It can be seen that the coercive force is small and the magnetic properties are excellent.
【表】【table】
【表】【table】
【表】
上を超えることを意味する。
[Table] Means exceeding the above.
図は本発明実施例磁気ヘツドに用いられる材料
により形成されたモデル基板の外観斜視図。
1……モデル基板。
The figure is an external perspective view of a model board made of a material used in a magnetic head according to an embodiment of the present invention. 1...Model board.
Claims (1)
行う書込み・読取り変換器を構成する薄膜が一つ
の面に形成される磁気ヘツド用基体において、 上記薄膜が形成される面は極めて高い平滑性を
有し、 密度が1.40g/cm3以上のガラス状カーボン材料
集合体で構成された ことを特徴とする磁気ヘツド用基体。 2 磁気記録媒体に対して書込みまたは読取りを
行う書込み・読取り変換器を構成する薄膜が一つ
の面に形成される磁気ヘツド用基体において、 上記薄膜が形成される面は極めて高い平滑性を
有し、 密度が1.40g/cm3以上のガラス状カーボン材料
および熱硬化性樹脂を含む複合材料集合体で構成
された ことを特徴とする磁気ヘツド用基体。[Claims] 1. In a magnetic head substrate in which a thin film constituting a write/read converter for writing to or reading from a magnetic recording medium is formed on one surface, the surface on which the thin film is formed is extremely A substrate for a magnetic head, characterized in that it is composed of a glassy carbon material aggregate having high smoothness and a density of 1.40 g/cm 3 or more. 2. In a magnetic head substrate in which a thin film constituting a write/read converter for writing to or reading from a magnetic recording medium is formed on one surface, the surface on which the thin film is formed has extremely high smoothness. A substrate for a magnetic head, comprising a composite material aggregate containing a glassy carbon material having a density of 1.40 g/cm 3 or more and a thermosetting resin.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1929383A JPS59144019A (en) | 1983-02-08 | 1983-02-08 | Magnetic head substrate |
DE8383110808T DE3375435D1 (en) | 1982-11-04 | 1983-10-28 | Magnetic head |
EP83110808A EP0108355B1 (en) | 1982-11-04 | 1983-10-28 | Magnetic head |
US06/548,566 US4642720A (en) | 1982-11-04 | 1983-11-03 | Magnetic head comprised of an improved base substance for high density magnetic recording |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1929383A JPS59144019A (en) | 1983-02-08 | 1983-02-08 | Magnetic head substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59144019A JPS59144019A (en) | 1984-08-17 |
JPH0370849B2 true JPH0370849B2 (en) | 1991-11-11 |
Family
ID=11995378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1929383A Granted JPS59144019A (en) | 1982-11-04 | 1983-02-08 | Magnetic head substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59144019A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60214407A (en) * | 1984-04-10 | 1985-10-26 | Tokai Carbon Co Ltd | Base material for magnetic head |
JPH0725526B2 (en) * | 1985-08-06 | 1995-03-22 | 花王株式会社 | Glass-like carbon material, method for producing the same, and sliding contact parts for recording media using the same |
-
1983
- 1983-02-08 JP JP1929383A patent/JPS59144019A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59144019A (en) | 1984-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910006150B1 (en) | Magnetic recording medium and producing method | |
JPH0241090B2 (en) | ||
US4716078A (en) | Substrate for a magnetic disc and method manufacturing same | |
JPH0370849B2 (en) | ||
JPS60119609A (en) | Magnetic head of vertical magnetic recording system | |
JPH0410124B2 (en) | ||
EP0108355B1 (en) | Magnetic head | |
JP2759456B2 (en) | Magnetic media recording device | |
JP2525161B2 (en) | Glass-like carbon composite material and method for producing the same | |
JPH077487B2 (en) | Longitudinal recording type magnetic head | |
JPH05334666A (en) | Production of magnetic disk and magnetic disk | |
JPH0512763B2 (en) | ||
JPH0345687B2 (en) | ||
JPH1021539A (en) | Producing device for magnetic recording medium, production of magnetic recording medium, and magnetic recording medium | |
JPH04310628A (en) | Production of magnetic disk and magnetic disk | |
JPS60214407A (en) | Base material for magnetic head | |
JPH04157616A (en) | Magnetic recording medium | |
JPH0476815A (en) | Magnetic recording medium and prouction thereof | |
JPH0352113A (en) | Thin-film magnetic head | |
JPH04192117A (en) | Amorphous carbon substrate for magnetic disk | |
JPH087865B2 (en) | Amorphous carbon substrate for magnetic disk | |
JPH05205254A (en) | Magnetic recording medium and its manufacture | |
JPH01184622A (en) | Substrate for magnetic disk | |
JPS59124025A (en) | Magnetic recording medium | |
JPH04167222A (en) | Magnetic recording medium |