Nothing Special   »   [go: up one dir, main page]

JPH036907B2 - - Google Patents

Info

Publication number
JPH036907B2
JPH036907B2 JP58148778A JP14877883A JPH036907B2 JP H036907 B2 JPH036907 B2 JP H036907B2 JP 58148778 A JP58148778 A JP 58148778A JP 14877883 A JP14877883 A JP 14877883A JP H036907 B2 JPH036907 B2 JP H036907B2
Authority
JP
Japan
Prior art keywords
shape
laminate
cut
interlayer
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58148778A
Other languages
Japanese (ja)
Other versions
JPS6040250A (en
Inventor
Yasushi Ueda
Hideji Negishi
Yukinaga Sakamoto
Masamitsu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP58148778A priority Critical patent/JPS6040250A/en
Publication of JPS6040250A publication Critical patent/JPS6040250A/en
Publication of JPH036907B2 publication Critical patent/JPH036907B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は磁性体用アモルフアス金属薄帯からな
る屈曲積層体をその磁気特性を実質的に低下させ
ることなく切断することによるカツトコアの製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cut core by cutting a bent laminate made of amorphous metal ribbon for magnetic material without substantially reducing its magnetic properties.

アモルフアス金属は金属を融解状態から、結晶
化を経ないままに固化させて得られるものである
ため、超高速の冷却処理による固化の結果、最も
通常的には、薄帯状、薄膜状又は細粉状で得られ
る。
Amorphous metals are obtained by solidifying metals from a molten state without undergoing crystallization, and as a result of solidification through an ultra-high-speed cooling process, they are most commonly formed into ribbons, films, or fine powders. obtained in the form of

中でも、磁性体用アモルフアス金属(単一金属
及び合金の何れでも可)薄帯は高周波領域の鉄損
が小さいという特徴を有し、各種の電気機器、例
えば、トランス、モーター、発電機、計器等の鉄
芯(コア)として極めて有用であることが見出さ
れている。
Among them, amorphous metal (either a single metal or an alloy) ribbon for magnetic materials is characterized by low iron loss in the high frequency range, and is used in various electrical devices such as transformers, motors, generators, meters, etc. has been found to be extremely useful as an iron core.

ところが、磁性体用アモルフアス金属薄帯は常
識に反して結晶質金属、例えばケイ素鋼板よりも
4〜5倍硬く、しかも電気機器の磁性材料として
用いる分野の中には、焼鈍を要するものがあつ
て、この処理により硬いばかりか脆くなるので、
通常の切断手段だけによつては、磁気特性を実質
的に低下させることなく積層体を切断することは
殆んど不可能と考えられていた。しかも、用途に
よつては切断面同士を突合わせた場合に、その間
隙から光線が洩れているか否かを肉眼では識別で
きない程度に切口の平滑性が要求される。
However, contrary to common sense, amorphous metal ribbons for magnetic materials are 4 to 5 times harder than crystalline metals, such as silicon steel sheets, and in some fields where they are used as magnetic materials for electrical equipment, annealing is required. , as this treatment not only makes it hard but also brittle.
It was thought to be almost impossible to cut the laminate without substantially degrading the magnetic properties using conventional cutting means alone. Moreover, depending on the application, the cut surfaces are required to be so smooth that it is impossible to discern with the naked eye whether or not light rays are leaking through the gap when the cut surfaces are butted against each other.

本発明者等はアモルフアス金属積層体を切断時
に形状変化が実質的に生じない状態におけば、切
断による磁気特性の低下を防止できるのではない
かと考えて各種検討の結果、本発明に到達した。
The present inventors thought that if the amorphous metal laminate is kept in a state where the shape does not substantially change when cutting, it may be possible to prevent the deterioration of magnetic properties due to cutting, and as a result of various studies, the present invention was arrived at. .

本発明の方法によれば、該積層体を磁気特性を
保存しながら切断できるばかりでなく、切口の高
度な平滑性をも併せて実現できる。
According to the method of the present invention, it is possible not only to cut the laminate while preserving its magnetic properties, but also to achieve a high degree of smoothness at the cut end.

本発明は磁性体用アモルフアス金属薄帯の屈曲
積層体の少なくとも内側に、その内壁面に接しな
い大きさ及び形状の切削性物体を間装し、両者の
間隙に、固化可能な形状固定材料を緊密に充填
し、次に固化させることにより積層の形状を固定
した後、積層屈曲体を間装体と共に切断すること
を特徴とするカツトコアの製造法に関するもので
ある。
The present invention interposes a cuttable object of a size and shape that does not touch the inner wall surface at least inside a bent laminate of amorphous metal ribbons for magnetic materials, and a solidifiable shape-fixing material is placed in the gap between the two. The present invention relates to a method for manufacturing a cut core, characterized in that the laminated bent body is cut together with the interlayer body after the laminated shape is fixed by tightly filling the laminated body and then solidifying the laminated body.

勿論、屈曲体の外側をも固定材料で併せ固定す
ることは差支えない。
Of course, the outside of the bending body may also be fixed with a fixing material.

本発明方法の最重要点は積層体の形状固定を既
製の中子の嵌装ではなく、樹脂等の充填によつて
行なうようにした点にある。その結果、形状固定
用材料が屈曲体表面の状態又は形状によらず、該
表面に極めて高度に密着することができ、しかも
充填に際して屈曲体にほとんど歪を生じさせず、
磁気特性をほとんど低下させないことである。
The most important point of the method of the present invention is that the shape of the laminate is fixed not by fitting a ready-made core, but by filling it with resin or the like. As a result, the shape-fixing material can adhere to the surface of the bent body to an extremely high degree regardless of the condition or shape of the surface, and also causes almost no distortion in the bent body during filling.
The objective is to cause almost no deterioration in magnetic properties.

木製中子等を間装することは従来から知られて
いるが、本発明方法における間装体は積層屈曲体
の変形を防止するものではない点で、中子とは全
く異なる。すなわち、本発明方法においては、間
装体は屈曲体の内壁に接触しない大きさ及び形状
のものであることを要するから、屈曲体の形状保
持機能を実質的に発揮し得ない。
Although it has been known in the past to interpose wooden cores, etc., the interlayer used in the method of the present invention is completely different from the core in that it does not prevent deformation of the laminated bent body. That is, in the method of the present invention, the interlayer body is required to have a size and shape that does not come into contact with the inner wall of the bending body, and therefore cannot substantially exhibit the function of maintaining the shape of the bending body.

本発明方法における間装体の役割は各種考えら
れるが、その代表的なものとしては、形状固定用
材料切断時に生ずる切断刃の目詰り及び刃側面に
強固に粘着した該固定用材料の除去を挙げること
ができる。換言すれば、形状固定用材料として一
般に用いられるエポキシ樹脂等が備えている粘着
性は切削困難を招き、切断刃を鈍化させるのであ
るが、この切断刃の鈍化が切削性間装体を切断す
る際に解消されることが間装体使用の効果であ
る。
Various roles can be considered for the interlayer in the method of the present invention, but typical ones include clogging of the cutting blade that occurs when cutting the shape-fixing material and removing the fixing material that firmly adheres to the side of the blade. can be mentioned. In other words, the adhesiveness of epoxy resins, etc., which are commonly used as shape fixing materials, makes cutting difficult and dulls the cutting blade, and this dulling of the cutting blade cuts the machinable interlayer. The effect of using an interlayer is that the problem can be resolved at the same time.

間装体の材質は特に限定されないが、屈曲体と
共に切断されてしまうものであるから、高価な材
料である必要は、通常ない。また、切断刃を激し
く損耗させるような高硬度材料又は易欠損性の脆
性材料が好ましくないことは勿論であるから、通
常はケイ素鋼等のコア屑片を用いれば足りる。
The material of the interlayer is not particularly limited, but since it will be cut together with the bending body, it usually does not need to be an expensive material. Furthermore, since it goes without saying that highly hard materials that cause severe wear on the cutting blade or brittle materials that are easily broken are not preferred, it is usually sufficient to use core scraps such as silicon steel.

このような観点から好ましい材料は通常、鉄又
はその合金、例えば軟鋼、炭素鋼、ケイ素鋼、パ
ーライト及びフエライトである。
Preferred materials from this point of view are usually iron or its alloys, such as mild steel, carbon steel, silicon steel, pearlite, and ferrite.

間装体の形状は特に限定されず、屈曲体の内側
に接触せずに収容可能なものであれば用い得る。
なお、屈曲体内壁と間装体外壁との間隔は形状固
定用材料装入の便宜上からも、むしろ広い方が好
ましい。例えば内長径5cm、内短径3cm程度の長
方形環状屈曲体に対しては間隔を通常、約5mm程
度に設定する。内長径及び内短径の少なくとも一
方が上記の1/2以下程度の場合には、間装体と屈
曲体内壁との狭い部分の間隔を1mm程度しか設け
ない場合も生ずるが、この場合にも、本発明方法
が適用可能であることは勿論である。
The shape of the spacer is not particularly limited, and any shape that can be accommodated without contacting the inside of the bending body can be used.
Incidentally, it is preferable that the interval between the bent inner wall and the outer wall of the intervening body be wide, in view of the convenience of charging the shape fixing material. For example, for a rectangular annular bent body with an inner major axis of about 5 cm and an inner minor axis of about 3 cm, the interval is usually set to about 5 mm. If at least one of the inner major axis and the inner minor axis is about 1/2 or less of the above value, the gap between the narrow part of the interleaving body and the bent body wall may be only about 1 mm, but in this case as well. , it goes without saying that the method of the present invention is applicable.

また、間装体の厚さは屈曲体のそれと同程度に
選ぶことが実用上からは好ましいが、多少の厚過
ぎ又は薄過ぎは切断にとつて何等の問題を生じな
い。従つて、通常は屈曲体の厚さの約0.5倍〜1.5
倍の厚さの間装体を用いれば十分である。
Further, from a practical point of view, it is preferable to select the thickness of the interlayer to be the same as that of the bending body, but if the thickness is a little too thick or too thin, it will not cause any problems in cutting. Therefore, it is usually about 0.5 to 1.5 times the thickness of the bent body.
It is sufficient to use an interlayer of twice the thickness.

本発明において用いられる金属積層体の形状固
定用材料としては、切断時に固状を呈する物質で
あつて、充填時には液状又はグリース状を呈する
ものであればその種類を問わない。この形状固定
用材料は、切断時すなわち固化後は、積層体に加
えられる切断刃の衝撃及び押圧力に抗して積層体
の形状を保持する機能を果すべきことから変形し
難い合成物質であつて、しかも衝撃によつて破砕
され難い粘結性を備えていることを要する。ま
た、充填時に液状又はグリース状(ペースト状)
であるという条件は、物質それ自身が液状又はグ
リース状を呈する場合ばかりでなく、それ自体は
固状であつても、適当な溶媒の添加又は加熱等に
よつてこの状態に変えることができ、切断時には
再び上記の固状に戻り得る場合をも含むものであ
る。
The material for fixing the shape of the metal laminate used in the present invention is not limited to any material as long as it is solid when cut and liquid or grease-like when filled. This shape-fixing material is a synthetic material that does not easily deform during cutting, that is, after solidification, because it must function to maintain the shape of the laminate against the impact and pressing force of the cutting blade applied to the laminate. Moreover, it is required to have a caking property that is difficult to be crushed by impact. In addition, it is liquid or grease-like (paste-like) when filling.
This condition applies not only when the substance itself is liquid or grease-like, but even if the substance itself is solid, it can be changed to this state by adding an appropriate solvent or heating, etc. This also includes the case where the material can return to the above-mentioned solid state again upon cutting.

この形状固定用材料として用いるのに好適な物
質の例として樹脂を挙げることができる。しか
し、この形状固定用材料は、樹脂に限らず、切断
時において曲げ強度(ASTM D 790により測
定)250Kg/cm2以上でしかも圧縮強度(ASTM
D 695により10%歪点で測定)300Kg/cm2以上の
強度を示すものであれば、いわゆる樹脂、ゴム、
切断を妨害しない充填剤入りのそれらであるか否
かを問わず、本発明の形状固定用材料として好適
である。
Resin can be cited as an example of a substance suitable for use as the shape fixing material. However, this shape fixing material is not limited to resin, and has a bending strength (measured by ASTM D 790) of 250 kg/cm 2 or more when cutting, and a compressive strength (ASTM
D695 (measured at 10% strain point) If it shows a strength of 300Kg/cm2 or more , it can be used as a so-called resin, rubber,
Regardless of whether or not they contain a filler that does not interfere with cutting, they are suitable as the shape fixing material of the present invention.

熱硬化性樹脂の好適例としては、エポキシ樹
脂、フエノール樹脂、ウレタン樹脂、メラミン樹
脂、グリプタル樹脂、ポリイミド樹脂等である。
これらの樹脂はその最大強度を発揮する必要はな
く、前記の曲げ強度及び圧縮強度の双方を充足す
れば好適材料に含め得る。
Suitable examples of the thermosetting resin include epoxy resin, phenol resin, urethane resin, melamine resin, glyptal resin, and polyimide resin.
These resins do not need to exhibit their maximum strength, and can be included as suitable materials as long as they satisfy both the bending strength and compressive strength.

熱可塑性樹脂としては、高密度ポリスチレン、
ポリスルホン、ポリアミド、ポリエチレンテレフ
タレート、ポリフエニレンエーテル、ポリカーボ
ネート、ABS等をあげることができる。勿論、
これらの2種以上の混合物であつてもよい。
Thermoplastic resins include high-density polystyrene,
Examples include polysulfone, polyamide, polyethylene terephthalate, polyphenylene ether, polycarbonate, and ABS. Of course,
It may be a mixture of two or more of these.

本発明方法においては、通常、磁性体用アモル
フアス金属薄帯を重ねて作られた環状(本発明で
いう「環状」とは円環状に限らず「閉曲線状」を
すべて含む)積層体の内側に、それと接触しない
大きさ及び形状の間装体を設置し、両者の間隙に
特定の固定用材料を緊密に充填して屈曲体の形状
を固定した後、間装体諸共に環状積層体を切断す
ることにより、一対のカツトコアを製作するので
あるが、本発明方法の適用対象は環状体に限ら
ず、不同長の薄帯を曲げてなるU型体の内側に間
装体を設置し、両者間に固定用材料を緊密に充填
して固定化後に、その両端部を必要長になるよう
に切除し、これらを複数枚積層するとか、又は不
同長の薄帯の積層体からなる両端不整のU字型又
はC字型素材であつてもよい。
In the method of the present invention, the inner side of a ring-shaped ("ring-shaped" in the present invention is not limited to a circular shape but also includes all "closed curved shapes") laminate made by stacking amorphous metal thin strips for magnetic materials. , install an intermediary body of a size and shape that does not come into contact with it, and after fixing the shape of the bent body by tightly filling the gap between the two with a specific fixing material, cut the annular laminate together with the intermediary bodies. By doing this, a pair of cut cores are manufactured. However, the object of the present invention is not limited to annular bodies; an interlayer body is installed inside a U-shaped body made by bending thin strips of unequal length, and both After fixing by tightly filling the fixing material between the gaps, both ends of the fixing material are cut to the required length, and a plurality of these are laminated, or a laminate of thin strips of unequal length is used to fix the material. It may be a U-shaped or C-shaped material.

該素材の両端面を本発明方法により切断して得
られる両端面の整つたU文字型積層体を2個向い
合わせに用いれば一対の環状コアを形成し得る。
A pair of annular cores can be formed by using two U-shaped laminates with aligned end faces, obtained by cutting both end faces of the material by the method of the present invention, facing each other.

本発明にあつては、屈曲後に熱処理面等を施し
て、内部歪を除くことが好ましい。
In the present invention, it is preferable to perform a heat treatment on the surface after bending to remove internal strain.

(実施例) 次に、本発明の一実施例に係るアモルフアス金
属製カツトコアの製造法を第2図〜第5図を用い
て説明する。
(Example) Next, a method for manufacturing a cut core made of amorphous metal according to an example of the present invention will be described with reference to FIGS. 2 to 5.

先ず、磁性体用アモルフアス金属薄帯からなる
第2図の積層屈曲体1の内側に、第3図に示すよ
うに、その内壁面に接しない大きさおよび形状の
切削性物体2を間装する。次に、第4図に示すよ
うに、積層体1と切削性物体2との間隙に固化可
能な形状固定材料3を充填し、該材料3を固化す
ることによつて積層体1の形状を固定した後、第
5図に示すように積層体1を間装体2,3と共に
切断する。
First, as shown in FIG. 3, a cuttable object 2 of a size and shape that does not touch the inner wall surface is inserted inside the laminated bent body 1 of FIG. 2 made of an amorphous metal ribbon for magnetic material. . Next, as shown in FIG. 4, a shape fixing material 3 that can be solidified is filled into the gap between the laminate 1 and the cuttable object 2, and the shape of the laminate 1 is fixed by solidifying the material 3. After fixing, the laminate 1 is cut together with the interlayers 2 and 3 as shown in FIG.

(実施例) アモルフアス磁性体薄帯[商品名;Metglas
2605SC(アメリカ国、アライド社製)、幅12.5mm、
厚さ0.02〜0.025mm)]を巻き重ねてなる環状積層
体(長内径40mm、短内径19mm、積層厚12.5mm)を
略水平に置き、その内側に縦25mm、横11mm、厚さ
12.6mmの略直方体状の鋼板(材質SC)を間装体
として設置した。両者の間隔は最短部で4mm、最
長部で7.5mmであり、この間隙にエポキシ樹脂
[商品名:R−140(三井石油化学エポキシ(株)製)]
100gとアミン系硬化剤[商品名:Q−691(三井
石油化学エポキシ(株)製)]30gとを常温で十分に
混合してなる液状物を注入し、室温で24時間にわ
たり硬化を行なつた。なお、このエポキシ樹脂R
−140の硬化後の曲げ強度は340Kg/cm2(ASTM
D 790による)、圧縮強度は480Kg/cm2(ASTM
D 695により、10%歪点で測定)であつた。
(Example) Amorphous magnetic ribbon [Product name: Metglas
2605SC (manufactured by Allied, USA), width 12.5mm,
An annular laminate (long inner diameter 40 mm, short inner diameter 19 mm, lamination thickness 12.5 mm) made by winding 25 mm long, 11 mm wide, and 12.5 mm thick inside is placed approximately horizontally.
A 12.6 mm approximately rectangular steel plate (material: SC) was installed as an interlayer. The distance between the two is 4 mm at the shortest part and 7.5 mm at the longest part, and epoxy resin [trade name: R-140 (manufactured by Mitsui Petrochemical Epoxy Co., Ltd.)] is applied to this gap.
Inject a liquid product made by thoroughly mixing 100 g of amine-based curing agent [trade name: Q-691 (Mitsui Petrochemical Epoxy Co., Ltd.)] with 30 g at room temperature, and harden at room temperature for 24 hours. Ta. In addition, this epoxy resin R
The bending strength of −140 after curing is 340Kg/cm 2 (ASTM
D 790), compressive strength is 480Kg/cm 2 (ASTM
D 695 at the 10% strain point).

得られた素材コアをその軸を含む平面内におい
て、レジノイドブレードを装置した回転刃により
間装体諸共切断して、カツトコア(半月径のコア
対)を得た。コアの内側に残るエポキシ樹脂をコ
アに歪が生じないように注意しながら除去するこ
とにより、148.4gのコア(一対で)が得られた。
The resulting raw material core was cut along with the interlayer body by a rotary blade equipped with a resinoid blade in a plane including its axis to obtain cut cores (a pair of semicircular cores). By carefully removing the epoxy resin remaining inside the core so as not to distort the core, 148.4 g of cores (in a pair) were obtained.

得られたコアの直流磁気特性を測定したとこ
ろ、第1図に示すように、飽和磁束密度はB10
1.53テスラ(T)、抗磁力はHc=0.06エルステツ
ド(Oe)であり、切断前の値に比してほとんど
低下していなかつた。
When we measured the DC magnetic properties of the obtained core, we found that the saturation magnetic flux density was B 10 =
The coercive force was 1.53 tesla (T), and the coercive force was Hc = 0.06 oersted (Oe), which was hardly lower than the value before cutting.

次に交流特性として鉄損の測定を行なつた。 Next, we measured iron loss as an AC characteristic.

測定条件は周波数25KHz、磁束密度1000G、巻
数n20、電圧28.3Vで屈曲体に巻いたコイルに通
電を始めたところ、電圧に変化は見られなかつた
が、電流は通電直後に147.5mAに達し、その際
の鉄損19.5W/Kgのものが通電15分後には、電流
が149.4mAに増加するとともに、鉄損は
18.8W/Kgに減少した。
The measurement conditions were a frequency of 25 KHz, a magnetic flux density of 1000 G, a number of turns of n20, and a voltage of 28.3 V. When we started energizing the coil wound around the bent body, no change was observed in the voltage, but the current reached 147.5 mA immediately after energizing. At that time, the iron loss was 19.5W/Kg, but after 15 minutes of energization, the current increased to 149.4mA, and the iron loss decreased.
It decreased to 18.8W/Kg.

この鉄損は、切断前の実験(電圧28.2V、電流
112.0mA)における鉄損16.2W/Kgとほとんど
等しいから、切断による磁気特性の低下及び切断
端面形状は実用上問題にはならなかつたことにな
る。
This iron loss was determined by experiment before cutting (voltage 28.2V, current
Since the iron loss is almost equal to 16.2 W/Kg at 112.0 mA), the deterioration of magnetic properties due to cutting and the shape of the cut end face did not pose any practical problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により製作されたカツト
コアの直流磁気特性曲線を示す。第2図〜第5図
は、本発明の一実施例に係るアモルフアス金属製
カツトコアの製造法を説明するための各工程にお
けるカツトコアの斜視図である。
FIG. 1 shows a DC magnetic characteristic curve of a cut core manufactured by the method of the present invention. FIGS. 2 to 5 are perspective views of a cut core at each step for explaining a method for manufacturing a cut core made of amorphous metal according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 磁性体用アモルフアス金属薄帯からなる積層
屈曲体の内側に、その内壁面に接しない大きさ及
び形状の切削性物体を間接し、両者の間隙に固化
可能な形状固定材料を充填し、次に該材料を固化
することによつて積層体の形状を固定した後、積
層体を間装体と共に切断することを特徴とするカ
ツトコアの製造法。 2 形状固定用材料が切断時に、曲げ強度
(ASTM D 790による)250Kg/cm2以上で、し
かも圧縮強度(ASTM D 695により、10%歪
点で測定)300Kg/cm2以上の強度を示すものであ
ることを特徴とする特許請求の範囲第1項に記載
のカツトコアの製造法。 3 切削性の間装体が金属製であることを特徴と
する特許請求の範囲第1項または第2項に記載の
製造法。 4 切削性の間装体が炭素鋼、軟鋼、ケイ素鋼、
パーライト又はフエライトから選ばれることを特
徴とする特許請求の範囲第1〜3項のいずれかに
記載の製造法。
[Scope of Claims] 1. A cuttable object of a size and shape that does not touch the inner wall surface is interposed on the inside of a laminated bent body made of amorphous metal ribbon for magnetic material, and a solidified shape is fixed in the gap between the two. 1. A method for manufacturing a cut core, which comprises filling the laminate with a material, solidifying the material to fix the shape of the laminate, and then cutting the laminate together with the interlayer. 2 The shape fixing material exhibits a bending strength (according to ASTM D 790) of 250 kg/cm 2 or more and a compressive strength (according to ASTM D 695, measured at 10% strain point) of 300 kg/cm 2 or more when cut. A method for producing a cut core according to claim 1, characterized in that: 3. The manufacturing method according to claim 1 or 2, wherein the machinable interlayer body is made of metal. 4 The machinable interlayer body is carbon steel, mild steel, silicon steel,
The manufacturing method according to any one of claims 1 to 3, characterized in that the material is selected from pearlite or ferrite.
JP58148778A 1983-08-16 1983-08-16 Manufacture of cut core made of amorphous metal Granted JPS6040250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58148778A JPS6040250A (en) 1983-08-16 1983-08-16 Manufacture of cut core made of amorphous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58148778A JPS6040250A (en) 1983-08-16 1983-08-16 Manufacture of cut core made of amorphous metal

Publications (2)

Publication Number Publication Date
JPS6040250A JPS6040250A (en) 1985-03-02
JPH036907B2 true JPH036907B2 (en) 1991-01-31

Family

ID=15460453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58148778A Granted JPS6040250A (en) 1983-08-16 1983-08-16 Manufacture of cut core made of amorphous metal

Country Status (1)

Country Link
JP (1) JPS6040250A (en)

Also Published As

Publication number Publication date
JPS6040250A (en) 1985-03-02

Similar Documents

Publication Publication Date Title
US4608297A (en) Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
US6737951B1 (en) Bulk amorphous metal inductive device
US4217135A (en) Iron-boron-silicon ternary amorphous alloys
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JPH0226768B2 (en)
US2408211A (en) Electrical induction apparatus
GB2138215A (en) Amorphous wound coil
US7077919B2 (en) Magnetic core insulation
US5639566A (en) Magnetic core
JPH036907B2 (en)
US4420348A (en) Amorphous alloy for magnetic head core
CA1145162A (en) Iron-boron silicon ternary amorphous alloys
JPH0532887B2 (en)
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JP2662561B2 (en) Rapid magnetic annealing of amorphous metal using molten tin
JP4582864B2 (en) Magnetic core and magnetic component using the same
JPH0927412A (en) Cut core and manufacture thereof
US4476753A (en) Cut core apparatus
JPS6142114A (en) Method of fixing end portion of laminated amorphous magnetic alloy thin belt
WO2018155514A1 (en) Magnetic core unit, current transformer, and method for manufacturing same
JPH0366801B2 (en)
JPS6211483B2 (en)
JPS594109A (en) Amorphous core
JPS6165418A (en) Manufacture of magnetic core