JPH0364850B2 - - Google Patents
Info
- Publication number
- JPH0364850B2 JPH0364850B2 JP56016987A JP1698781A JPH0364850B2 JP H0364850 B2 JPH0364850 B2 JP H0364850B2 JP 56016987 A JP56016987 A JP 56016987A JP 1698781 A JP1698781 A JP 1698781A JP H0364850 B2 JPH0364850 B2 JP H0364850B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- lower substrate
- substrate
- refractive index
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 42
- 239000004973 liquid crystal related substance Substances 0.000 claims description 28
- 239000011521 glass Substances 0.000 claims description 15
- 239000002985 plastic film Substances 0.000 claims description 2
- 229920006255 plastic film Polymers 0.000 claims description 2
- 239000000463 material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 3
- -1 Polyethylene terephthalate Polymers 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000003098 cholesteric effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 229940114081 cinnamate Drugs 0.000 description 1
- 239000005383 fluoride glass Substances 0.000 description 1
- GGJOARIBACGTDV-UHFFFAOYSA-N germanium difluoride Chemical compound F[Ge]F GGJOARIBACGTDV-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M trans-cinnamate Chemical compound [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133553—Reflecting elements
Landscapes
- Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Description
【発明の詳細な説明】
本発明は液晶表示素子に係り、特に、コントラ
ストの高い反射型の液晶表示素子に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid crystal display element, and particularly to a reflective liquid crystal display element with high contrast.
従来、液晶素子を電卓、時計の表示板として用
いる場合、主に第1図に示すように素子1の裏に
反射板2を設け、素子の前面から入射する光3を
利用して表示を行つている。 Conventionally, when a liquid crystal element is used as a display board for a calculator or a watch, a reflective plate 2 is provided on the back of the element 1 as shown in Figure 1, and a display is performed using light 3 that enters from the front of the element. It's on.
一般に反射型表示素子は透過型表示素子に比べ
てコントラストが劣る。 In general, reflective display elements have inferior contrast compared to transmissive display elements.
この原因を第1図を用いて説明する。 The cause of this will be explained using FIG.
上基板4aを通つて点灯領域(電圧が印加され
た領域)a−b−c−dに斜め方向から入射した
光3が点aを通り液晶層5を通つて下基板4bに
入る場合を考える。点aを通つた光は反射板2で
反射され、eに至る。従つて観察者側からみる
と、あたかも点aが点eにあるかのようにみえ
る。全体として同様に点bは点fに点dは点h
へ、点cは点gにあるかのようにみえるため点灯
領域a−b−c−dはe−f−g−hの領域に移
動してみえる。今、このe−f−g−hの領域を
虚像と名付ける。ネガ表示素子の場合、領域e−
f−c−dでは、正常なコントラストを示すが、
領域a−b−f−eでは未点灯部(暗)が重なる
ため暗くなり、全体としてコントラストが低下す
る。 Consider the case where light 3 that has obliquely entered the lighting area (area to which voltage is applied) abcd through the upper substrate 4a passes through point a, passes through the liquid crystal layer 5, and enters the lower substrate 4b. . The light passing through point a is reflected by the reflecting plate 2 and reaches point e. Therefore, from the observer's perspective, it appears as if point a were at point e. Similarly, point b is point f and point d is point h.
Since point c appears to be at point g, the lighting area abcd appears to move to the area efgh. Now, this region of e-f-gh is called a virtual image. In the case of a negative display element, the area e-
f-c-d shows normal contrast, but
In the area a-b-fe, the unlit portions (dark) overlap, so the area becomes dark, and the contrast as a whole decreases.
本発明の目的は、上記問題点を改良することに
よりコントラストの高い素子を提供するにある。 An object of the present invention is to provide an element with high contrast by improving the above-mentioned problems.
第2図は液晶素子内部の光を伝搬状態を示す図
である。点灯部の移動(例えば点aが点eに移
動)の距離lは液晶層5の屈折率をni、下基板4
bの屈折率をnr、下基板の厚みをtとし、液晶層
から下基板への入射角をθi反射板2の反射角をθr
とすると、次式で与えられる。 FIG. 2 is a diagram showing the propagation state of light inside the liquid crystal element. The distance l of movement of the lighting section (for example, moving from point a to point e) is n i the refractive index of the liquid crystal layer 5, and the lower substrate 4
The refractive index of b is n r , the thickness of the lower substrate is t, the angle of incidence from the liquid crystal layer to the lower substrate is θ i The reflection angle of reflector 2 is θ r
Then, it is given by the following formula.
下基板への入射角θiが一定の時、tが小さい程
また、ni/nrも小さい程、lの値は小さくなる。
従つて、
下基板の厚みtが薄い
下基板の屈折率nr>液晶層の屈折率niの条件
を少くとも1つ満足すればコントラストがより
向上することになる。 When the incident angle θ i on the lower substrate is constant, the smaller t is, and the smaller n i /n r is, the smaller the value of l becomes.
Therefore, if at least one of the following conditions is satisfied: Thickness t of the lower substrate is small, Refractive index of the lower substrate n r >Refractive index n i of the liquid crystal layer, the contrast will be further improved.
一般に液晶材料の屈折率niは1.5〜1.63の範囲の
値にある。 Generally, the refractive index n i of liquid crystal materials is in the range of 1.5 to 1.63.
現在、液晶素子の基板に用いているガラスはソ
ーダ・ガラスであり、その屈折率は1.5であり、
(2)の条件を満足できない。屈折率が1.63よりも大
きいガラスとしては希元素硼酸塩ガラス、弗化ゲ
ルマニウムガラス、弗硼酸塩ガラスなどがある。
また、透明性の良いプラスチツクで屈折率の大き
な材料としてはポリエチレンテレフタレート(屈
折率1.65)、ポリ鉛ジメタクリレート(屈折率
1.645)、桂皮酸鉛を含むポリマー物質(屈折率
1.72)ベンゾフエノン誘導体のポリエステルポリ
アミド(屈折率1.70)などがあり、これらの材料
は(2)の条件を満足する。次に条件(1)について考え
る。 Currently, the glass used for the substrate of liquid crystal elements is soda glass, whose refractive index is 1.5.
Condition (2) cannot be satisfied. Examples of glasses with a refractive index greater than 1.63 include rare element borate glasses, germanium fluoride glasses, and fluoroborate glasses.
Polyethylene terephthalate (refractive index 1.65), polylead dimethacrylate (refractive index
1.645), polymeric materials containing lead cinnamate (refractive index
1.72) There are benzophenone derivative polyester polyamides (refractive index 1.70), and these materials satisfy condition (2). Next, consider condition (1).
現在、ガラス板で厚みの最も薄いものはマイク
ロシートと呼ばれるもので300μmである。 Currently, the thinnest glass plate is called a microsheet and is 300 μm thick.
一方、プラスチツクはキヤステイングや延伸な
どによつて容易にフイルム化できる。特に、延伸
法を用いてつくられるフイルムは表面平滑性に優
れ、厚みも数μm程度のものが得られる。厚みの
薄いものはガラスよりもプラスチツクの方が得ら
れやすい。 On the other hand, plastics can be easily made into films by casting, stretching, etc. In particular, films produced using the stretching method have excellent surface smoothness and a thickness of approximately several μm. Thinner materials are easier to obtain from plastic than from glass.
以上より、コントラスト向上のための条件(1)(2)
を満足するためには、下基板として屈折率が大き
い上記ガラスおよびプラスチツク材料を用い、か
つ、ガラスではマイクロシート、プラスチツクで
はフイルムを用いることが必要である。 From the above, conditions (1)(2) for improving contrast
In order to satisfy the above requirements, it is necessary to use the above-mentioned glass and plastic materials with a high refractive index as the lower substrate, and to use a microsheet for glass and a film for plastic.
今、下基板として屈折率の大きいポリエチレン
テレフタレート・フイルムを用いる場合を考え
る。このポリエチレンテレフタレート(以下
PETと称す)フイルムは延伸法によつてつくら
れるため、表面平滑性は優れており(±2μmの
凹凸)かつ、数μm厚のものもあるが複屈折性を
有する。 Now, let us consider the case where a polyethylene terephthalate film with a high refractive index is used as the lower substrate. This polyethylene terephthalate (hereinafter
Since the film (referred to as PET) is made by a stretching method, it has excellent surface smoothness (with unevenness of ±2 μm) and has birefringence, although some films are several μm thick.
第3図は2軸延伸フイルムの状態を示したもの
である。ポリエステル樹脂のシートを縦方向(A
−A′)および、それに直角な横方向(B−B′)
に80〜90℃の温度で延伸する。この時、ポリエス
テルの分子は、この延伸方向に配向する。その結
果、両延伸方向に光学的主軸a−a′,b−b′が生
ずる。このように2つ(以上)の主軸を有する材
料を複屈折物質と言う。このような複屈折フイル
ムを第4図に示すような偏光板6a,6bを用い
るようなTN液晶素子の基板4aあるいは4bと
して使用すると、複屈折現象が現われる。従つ
て、偏光板を用いない方式、例えばコレステリツ
ク相からネマチツク相への相転移を利用した相転
移ゲスト・ホスト型カラー表示などへの適用がよ
り実用的である。 FIG. 3 shows the state of the biaxially stretched film. A sheet of polyester resin is rolled in the vertical direction (A
-A') and the transverse direction perpendicular to it (B-B')
Stretch at a temperature of 80-90℃. At this time, the polyester molecules are oriented in this stretching direction. As a result, principal optical axes a-a' and b-b' are produced in both stretching directions. A material having two (or more) principal axes in this way is called a birefringent substance. When such a birefringent film is used as a substrate 4a or 4b of a TN liquid crystal device using polarizing plates 6a and 6b as shown in FIG. 4, a birefringence phenomenon appears. Therefore, it is more practical to apply the present invention to a system that does not use a polarizing plate, such as a phase change guest-host type color display that utilizes the phase transition from a cholesteric phase to a nematic phase.
第5図は本発明の実施例である。下基板4bと
して200μm厚および100μm厚のPETフイルムを
用い、上基板4aとして0.5mm厚のガラス板を用
いた。両基板上に透明電極7を形成し、その上に
ポリイミド系の膜8(厚み800Å)を設けた後、
ラビング処理を行つたものを組立て、PCH系液
晶にCB−15を添加したカイラルネマチツク液晶
に青色の2色性色素9を3wt%混合したものを封
入した。初期配向はグランジヤン構造であり、青
色にみえる。第5図bに示すように上・下電極間
に電圧が印加(点灯)されるとコレステリツク相
からネマチツク相への相転移が起こり、点灯部は
透明になる。 FIG. 5 shows an embodiment of the present invention. PET films with a thickness of 200 μm and 100 μm were used as the lower substrate 4b, and a glass plate with a thickness of 0.5 mm was used as the upper substrate 4a. After forming transparent electrodes 7 on both substrates and providing a polyimide film 8 (thickness 800 Å) thereon,
The rubbed product was assembled, and a mixture of 3 wt % of blue dichroic dye 9 in chiral nematic liquid crystal obtained by adding CB-15 to PCH liquid crystal was sealed. The initial orientation is a Grange Yang structure and appears blue. As shown in FIG. 5b, when a voltage is applied between the upper and lower electrodes (lit), a phase transition occurs from the cholesteric phase to the nematic phase, and the lit portion becomes transparent.
下基板4bの下に反射板2を設けた反射型素子
とし、1KHz、6Vの駆形波交流を印加して点灯部
のコントラスト比Rを検出器10により測定し
た。R=BS/BOと定義した。ここでBOは電圧を
印加しない状態での光量、BSは電圧を印加した
ときの光量である。第6図は、第5図bに示すよ
うに素子の正面から観測した時のコントラスト比
Rを光の入射角θを変化させて測定したものであ
る。下基板として0.5mm厚のガラス板を用いた従
来の素子の場合、θが40度になると、コントラス
ト比はθが0度の時の約半分に低下する。これに
対し、下基板として100μm厚フイルム(実施例
1)および200μm厚フイルム(実施例2)を用
いた場合にはコントラスト比はほとんど低下しな
い。200μm厚フイルムを用いた方が少し特性が
劣るのはフイルムが厚いからである。 A reflective element was used in which a reflector plate 2 was provided under the lower substrate 4b, and a 1 KHz, 6 V driving wave alternating current was applied to measure the contrast ratio R of the lighting section using the detector 10. It was defined as R=B S / BO . Here, B O is the amount of light when no voltage is applied, and B S is the amount of light when voltage is applied. FIG. 6 shows the contrast ratio R when observed from the front of the element as shown in FIG. 5b, measured by varying the incident angle θ of light. In the case of a conventional element using a 0.5 mm thick glass plate as the lower substrate, when θ becomes 40 degrees, the contrast ratio drops to about half of that when θ is 0 degrees. On the other hand, when a 100 μm thick film (Example 1) and a 200 μm thick film (Example 2) are used as the lower substrate, the contrast ratio hardly decreases. The reason why the characteristics are slightly inferior when using a 200 μm thick film is that the film is thicker.
いずれにしても、従来の0.5mm厚のガラスを下
基板として用いた素子よりも、下基板の厚みを大
幅に薄く(1/5〜1/10)し、屈折率を1.5から1.65
に大きくしたことによりコントラスト比を大幅に
向上できた。本実施例は上基板としてガラス板を
用いたが、上基板も、薄いPETフイルムとする
ことは可能で、透明性が向上し、いつそうの特性
向上がはかれることは言うまでもない。 In any case, the thickness of the lower substrate is significantly thinner (1/5 to 1/10) than the conventional device using 0.5 mm thick glass as the lower substrate, and the refractive index is increased from 1.5 to 1.65.
By increasing the contrast ratio, we were able to significantly improve the contrast ratio. Although a glass plate was used as the upper substrate in this example, it goes without saying that the upper substrate could also be made of a thin PET film, which would improve transparency and improve characteristics over time.
第6図ではPETフイルムを基板とする実施例
を示したが、キヤステイングなどの延伸によらな
い方法で作られるプラスチツク・フイルムや、ガ
ラスなどのような複屈折性のない材料を用いれば
第4図に示すようなTN液晶素子にも本発明は適
用できる。 Although Fig. 6 shows an example in which a PET film is used as the substrate, it is possible to use a plastic film made by a method that does not involve stretching such as casting, or a material without birefringence such as glass. The present invention can also be applied to a TN liquid crystal element as shown in the figure.
尚、屈折率の小さい例えばソーダ・ガラスでな
る下基板の液晶側表面に、屈折率の大きい物質例
えばTiO2(屈折率2.5〜3.0)の膜を形成すること
で、下基板の実効的な屈折率を液晶の屈折率より
大きくすることができる。 By forming a film of a material with a high refractive index, such as TiO 2 (refractive index 2.5 to 3.0), on the liquid crystal side surface of the lower substrate, which has a low refractive index, such as soda glass, the effective refraction of the lower substrate can be improved. The refractive index can be greater than the refractive index of the liquid crystal.
本発明によれば、反射型表示素子において、斜
めから素子に入射する光が液晶層を通過する時、
液晶層から下基板に入る位置と反射板で反射され
て再び下基板から液晶層に入る位置のずれを小さ
くすることが出来るので反射型表示素子特有の虚
像の発生を著るしく低減でき、きわめてコントラ
ストの高い反射型素子を得ることが出来る効果が
ある。 According to the present invention, in a reflective display element, when light incident on the element obliquely passes through the liquid crystal layer,
Since it is possible to reduce the deviation between the position where the liquid crystal layer enters the lower substrate and the position where it is reflected by the reflector and enters the liquid crystal layer again from the lower substrate, it is possible to significantly reduce the generation of virtual images peculiar to reflective display elements. This has the effect of making it possible to obtain a reflective element with high contrast.
第1図は従来素子の問題点を示す図、第2図は
本発明の要点を説明する図、第3図は延伸フイル
ムを説明する図、第4図はTN素子を示す図、第
5図は本発明の実施例を示す図、第6図は本発明
の効果を示す図。
2……反射板、4a,4b……基板、5……液
晶層、7……透明電極、9……2色性色素。
Fig. 1 is a diagram showing the problems of the conventional element, Fig. 2 is a diagram explaining the main points of the present invention, Fig. 3 is a diagram explaining the stretched film, Fig. 4 is a diagram showing the TN element, Fig. 5 FIG. 6 is a diagram showing an embodiment of the present invention, and FIG. 6 is a diagram showing the effects of the present invention. 2...Reflection plate, 4a, 4b...Substrate, 5...Liquid crystal layer, 7...Transparent electrode, 9...Dichroic dye.
Claims (1)
を挟持し上基板側から入射し液晶層を通り下基板
に入射した光を該下基板の裏面で反射する反射型
液晶表示素子において、少なくとも下基板の厚み
が0.3mm以下で且つ該下基板の屈折率が液晶層の
屈折率よりも大きいことを特徴とする反射型液晶
表示素子。 2 下基板の厚みを上基板の厚みの1/5〜1/10と
したことを特徴とする特許請求の範囲第1項記載
の反射型液晶表示素子。 3 上基板をガラス基板、下基板をプラスチツク
フイルムとしたことを特徴とする特許請求の範囲
第1項または第2項記載の反射型液晶表示素子。 4 上基板及び下基板として複屈折性を有する基
板を用い液晶として相転移ゲスト・ホスト型液晶
を用いることを特徴とする特許請求の範囲第1項
または第2項記載の反射型液晶表示素子。[Scope of Claims] 1. A liquid crystal layer is sandwiched between an upper substrate and a lower substrate on which display electrodes are provided, and light that enters from the upper substrate side, passes through the liquid crystal layer, and enters the lower substrate is reflected on the back surface of the lower substrate. What is claimed is: 1. A reflective liquid crystal display element, characterized in that the thickness of at least the lower substrate is 0.3 mm or less, and the refractive index of the lower substrate is greater than the refractive index of the liquid crystal layer. 2. The reflective liquid crystal display element according to claim 1, wherein the thickness of the lower substrate is 1/5 to 1/10 of the thickness of the upper substrate. 3. A reflective liquid crystal display element according to claim 1 or 2, characterized in that the upper substrate is a glass substrate and the lower substrate is a plastic film. 4. A reflective liquid crystal display element according to claim 1 or 2, characterized in that birefringent substrates are used as the upper and lower substrates, and a phase change guest-host liquid crystal is used as the liquid crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56016987A JPS57132116A (en) | 1981-02-09 | 1981-02-09 | Liquid crystal display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56016987A JPS57132116A (en) | 1981-02-09 | 1981-02-09 | Liquid crystal display element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57132116A JPS57132116A (en) | 1982-08-16 |
JPH0364850B2 true JPH0364850B2 (en) | 1991-10-08 |
Family
ID=11931380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56016987A Granted JPS57132116A (en) | 1981-02-09 | 1981-02-09 | Liquid crystal display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57132116A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2574307B2 (en) * | 1987-07-08 | 1997-01-22 | 株式会社リコー | LCD display projector |
JPH0517625U (en) * | 1991-08-20 | 1993-03-05 | カシオ計算機株式会社 | Liquid crystal display |
US7999889B2 (en) | 2006-03-29 | 2011-08-16 | Sharp Kabushiki Kaisha | Scattering-type display including diffraction reducing layer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5535325A (en) * | 1978-09-04 | 1980-03-12 | Teijin Ltd | Liquid crystal display body |
-
1981
- 1981-02-09 JP JP56016987A patent/JPS57132116A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5535325A (en) * | 1978-09-04 | 1980-03-12 | Teijin Ltd | Liquid crystal display body |
Also Published As
Publication number | Publication date |
---|---|
JPS57132116A (en) | 1982-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3071204B2 (en) | Liquid crystal display device | |
US5124824A (en) | Liquid crystal display device comprising a retardation compensation layer having a maximum principal refractive index in the thickness direction | |
TW448335B (en) | Reflection type color polarization filter and reflection type color liquid crystal display device using the same | |
JPS60107020A (en) | lcd display | |
KR940000905A (en) | Phase difference plate and liquid crystal display device | |
JPH10161110A (en) | Reflection type liquid crystal display element | |
JP2933261B2 (en) | Liquid crystal display | |
JPH08201802A (en) | Liquid crystal display element of wide visibility angle reflection type using mirror finished surface reflecting board and forward scattering board | |
US4737018A (en) | Display device having anti-reflective electrodes and/or insulating film | |
JP2940031B2 (en) | Liquid crystal display device | |
JP2000066195A (en) | Reflection type liquid crystal display device | |
JP3289386B2 (en) | Color liquid crystal display | |
JP3999867B2 (en) | Liquid crystal display | |
JPH0364850B2 (en) | ||
JP2881214B2 (en) | Liquid crystal display device | |
JPH05289052A (en) | Liquid crystal display device | |
JPH06281927A (en) | Liquid crystal display device | |
JP2002131749A (en) | Reflection type liquid crystal display device | |
KR100446375B1 (en) | Semi-transmission type liquid crystal display using fringe filed switching mode | |
JP3289392B2 (en) | Color liquid crystal display | |
JPH03276122A (en) | Projection type liquid crystal display device | |
JPH07287223A (en) | Reflection type liquid crystal display element | |
JP2815508B2 (en) | Liquid crystal display | |
JP3843192B2 (en) | Reflective liquid crystal display | |
JPH02108019A (en) | Electro-optical device using ferroelectric liquid crystal |