Nothing Special   »   [go: up one dir, main page]

JPH0361349A - Sintered sliding material - Google Patents

Sintered sliding material

Info

Publication number
JPH0361349A
JPH0361349A JP19527889A JP19527889A JPH0361349A JP H0361349 A JPH0361349 A JP H0361349A JP 19527889 A JP19527889 A JP 19527889A JP 19527889 A JP19527889 A JP 19527889A JP H0361349 A JPH0361349 A JP H0361349A
Authority
JP
Japan
Prior art keywords
carbide
sintered body
sliding material
sliding
cementite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19527889A
Other languages
Japanese (ja)
Inventor
Takemori Takayama
武盛 高山
Kazuhide Inohara
猪原 一英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP19527889A priority Critical patent/JPH0361349A/en
Publication of JPH0361349A publication Critical patent/JPH0361349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To obtain the sintered sliding material having increased wear resistance and seizure resistance required for high speed sliding, etc., in a lubricating environment by subjecting a ferrous sintered body of prescribed relative density ratio contg. each prescribed amt. of one or two kinds of carbide forming elements as well as Si, Mn, Ni and C to carburizing treatment and precipitating carbide. CONSTITUTION:A ferrous sintered body of 0.8 to 1.0 relative density contg., by weight, one or two kinds of carbide forming elements among 0.1 to 0.25% Cr, 0.1 to 5.0% Mo, 0.1 to 5.0% V, etc., and 0.1 to 2.0% Si, 0.1 to 2.0% Nn, <=5.0% Ni and <=1.5% C is treated as follows. Namely, the ferrous sintered body is subjected to carburizing treatment to precipitate the carbide of cementite, M7C3, M2C and MC type. The sintered sliding material obtd. by this method can reduce the cost by the for alternation for a copper series sliding material of hydraulic parts sliding at a high speed, can prevent the generation of abnormality and the damage caused by seizure in bushes used under high face pressure and can improve the durability of machine parts.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は潤滑下で、高速摺動または高負荷摺動に要求さ
れる耐摩耗性と耐焼付性を高めた、焼結摺動材の安価な
製造法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a sintered sliding material with improved wear resistance and seizure resistance required for high-speed sliding or high-load sliding under lubrication. Concerning inexpensive manufacturing methods.

(従来の技術) 従来、油圧部品の高速摺動部にはLBA 、 P31C
など黄銅系もしくは高力黄銅系の鋳造、焼結材料が使用
されている。銅系の摺動材はその摺動特性、特に耐焼付
性に優れているが、材料が高価であること、また油圧部
品などでは部品強度の観点から、鋳込みや接合法などの
高価なプロセスを用いるため、部品が高価である。
(Conventional technology) Conventionally, high-speed sliding parts of hydraulic parts use LBA and P31C.
Brass-based or high-strength brass-based casting and sintering materials are used. Copper-based sliding materials have excellent sliding properties, especially seizure resistance, but they are expensive, and in order to maintain the strength of parts such as hydraulic parts, expensive processes such as casting and bonding are not required. The parts are expensive because of the use of

負荷の小さい部位には、Fe−Cu−3n系の焼結材や
、焼結材にタフトライド、浸硫窒化処理を施して用いる
場合がある。またグリース潤滑で高荷重下で用いられる
ブツシュ類では5UJ2 、 S0M440 ’などの
焼入れ材や、SCM420’などの浸炭品が用いられて
いる。
For areas with a small load, a Fe-Cu-3n-based sintered material or a sintered material subjected to tuftride or sulfur-nitriding treatment may be used. For bushes used under high loads with grease lubrication, hardened materials such as 5UJ2 and S0M440' and carburized products such as SCM420' are used.

〔従来例〕[Conventional example]

第4図(C)、 (d)は純鉄粉(神鋼300H) +
0.6 Cを930″cxi’、真空浸炭し、850°
Cで油焼入れした表面組織であるが、セメンタイトの析
出にむらがみられる。
Figure 4 (C) and (d) are pure iron powder (Shinko 300H) +
0.6 C, 930″cxi’, vacuum carburizing, 850°
Although the surface structure was oil-quenched with C, uneven precipitation of cementite is observed.

(発明が解決しようとする課題) しかし、焼結材を使用する場合、Fe−Cu−5u系で
は多くの場合、強度の観点から十分でなく、耐焼付性も
あまり期待できない。また焼結材への軟窒化、浸硫窒化
などは生成硬質厚さが3〜15μm程度と薄く、摩耗寿
命が短い。厚膜処理を施すには、前処理としてスチーム
処理などによって多孔部に酸化鉄を析出する封孔処理を
しないと著しい強度低下をきたす。また、処理温度は5
00〜600°Cの高温で長時間保持するため、高強度
化が期待できないし、全体として著しいコスト高になる
。また、グリース潤滑で高荷重に用いるブツシュなどで
は、潤滑切れによるブツシュ部からの異音の発生及び焼
付に起因する破損が頻発している、などの欠点がある。
(Problems to be Solved by the Invention) However, when using a sintered material, the Fe-Cu-5u system is often insufficient from the viewpoint of strength and cannot be expected to have much seizure resistance. In addition, when sintered materials are subjected to soft nitriding, sulphonitriding, etc., the resulting hard material has a thin thickness of about 3 to 15 μm, and its wear life is short. In order to perform thick film treatment, a significant decrease in strength will occur unless a pretreatment such as steam treatment is performed to precipitate iron oxide in the porous areas. In addition, the processing temperature is 5
Since it is held at a high temperature of 00 to 600°C for a long time, high strength cannot be expected, and the overall cost increases significantly. In addition, bushings used for high loads with grease lubrication have drawbacks such as abnormal noises from the bushing due to lack of lubrication and frequent breakage due to seizure.

本発明はかかる問題点を解消することを目的としている
The present invention aims to solve such problems.

(課題を解決するための手段) 上記目的を達成するため、本発明はFeを主体としてC
r、0.1〜0.25 vt%、 Mo 0.1〜5.
0ht%、V0.1〜5.0wt%などの炭化物形成元
素を1元素又は2元素と、Si + Mnを0.1〜2
.0wt%含み、Ni 5.0wt%以下、C0.5w
t%以下を含む相対密度比で0.8〜1.0からなる鉄
系焼結体に、浸炭処理を施し、セメンタイト、M7C:
l + MzCI Mc型の炭化物を析出したことを特
徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a C
r, 0.1-0.25 vt%, Mo 0.1-5.
One or two carbide-forming elements such as 0ht%, V0.1 to 5.0wt%, and 0.1 to 2 of Si + Mn.
.. Contains 0wt%, Ni 5.0wt% or less, C0.5w
An iron-based sintered body having a relative density ratio of 0.8 to 1.0 including t% or less is carburized to produce cementite, M7C:
l + MzCI Mc type carbide is precipitated.

また、上記材料にP、B、Cuを〜5.0wt%の範囲
で任意に添加可能としたことを特徴とするものである。
Furthermore, the present invention is characterized in that P, B, and Cu can be optionally added to the above material in a range of 5.0 wt%.

(作用) 上記構成により、炭化物形成元素のほか、普通元素を含
み、ミクロ的な焼入性を保証するNi 。
(Function) With the above configuration, Ni contains ordinary elements in addition to carbide-forming elements and guarantees microscopic hardenability.

C2を含むFeを主成分とした焼結体に、セメンタイト
などの炭化物硬質相を析出させたものであるから、耐焼
付性と耐摩耗性が向上する。またP。
Since it is a sintered body whose main component is Fe containing C2 and a carbide hard phase such as cementite is precipitated therein, the seizure resistance and wear resistance are improved. Also P.

B、Cuを添加できるから、焼結体の密度9寸法の制御
が可能である。
Since B and Cu can be added, it is possible to control the density of the sintered body.

(実施例) 本発明の実施例を図面に基づいて詳述する。(Example) Embodiments of the present invention will be described in detail based on the drawings.

〔実施例1〕 第1図(a)(b)は1%のCrを含む一般冶金鋼粉(
神鋼アトメル4100) +0.3 Cを従来例同様9
30°C×lH真空浸炭し850“CでOQした浸炭表
面組織である。セメンタイトが均一に分散しており通常
の溶製材(SCM 430 ’相当)にくらべても短時
間で均等にセメンタイトが析出している。これは焼結体
の多孔質性に起因するものである。セメンタイトの析出
が焼結体の表面から深いところまで起こると強度劣化を
きたしやすいので、この場合、真空浸炭の真空度を20
〜200 torr程度まで上げて浸炭すると、短時間
に表面層の近傍へ0.3mmの範囲でセメンタイトの析
出をコントロールできるが、通常RXガス浸炭法ではこ
の操作ができないので、浸炭は真空浸炭法が推奨される
。相対密度比0,8以上でCr + Mo + Vなど
の炭化物形成元素の一つもしくは二つ以上が含まれる鉄
系焼結体を、焼結反応後750℃以上1100’C以下
の温度で、炭化物が析出しうる炭素ポテンシャル雰囲気
中で浸炭させ、焼結体表面層にセメンタイト、 M4C
3。
[Example 1] Figures 1 (a) and (b) show general metallurgical steel powder containing 1% Cr (
Shinko Atmel 4100) +0.3 C as usual 9
This is a carburized surface structure that was vacuum carburized at 30°C x 1H and OQed at 850"C. Cementite is evenly dispersed, and cementite precipitates evenly in a shorter time than normal melted material (equivalent to SCM 430'). This is due to the porous nature of the sintered body.If cementite precipitation occurs deep from the surface of the sintered body, it tends to cause strength deterioration, so in this case, the degree of vacuum during vacuum carburizing 20
Carburizing at a temperature of ~200 torr makes it possible to control the precipitation of cementite within a range of 0.3 mm near the surface layer in a short period of time, but since this is not possible with the normal RX gas carburizing method, vacuum carburizing is recommended for carburizing. Recommended. An iron-based sintered body containing one or more carbide-forming elements such as Cr + Mo + V with a relative density ratio of 0.8 or more is heated at a temperature of 750°C or more and 1100'C or less after a sintering reaction, Carburizing is performed in a carbon potential atmosphere where carbides can precipitate, and cementite and M4C are added to the surface layer of the sintered body.
3.

M、C、Mc型炭化物硬質相を析出させることによって
耐焼付性と耐摩耗性を付与させる浸炭処理は、焼結後、
−旦冷却させ別処理として施してもよいが、コスト面か
らは焼結完了後引続き浸炭処理温度に変更し、同じ炉内
に浸炭ガスを導入して処理を施す方がよい。
After sintering, carburizing treatment imparts seizure resistance and wear resistance by precipitating M, C, and Mc type carbide hard phases.
- Although it is possible to perform the treatment as a separate treatment after cooling, from the viewpoint of cost, it is better to change the temperature to the carburizing treatment after the completion of sintering, and to perform the treatment by introducing carburizing gas into the same furnace.

前記処理温度750〜1100°Cは軟窒化、浸硫窒化
処理温度にくらべて高温処理であるため、短時間に深い
炭化物分散層が得られること、アンモニヤや硫化水素ガ
スを使わないため、焼結炉と同じ炉内で処理できること
から低コストになる。
The treatment temperature of 750 to 1100°C is a higher temperature treatment than the soft nitriding and sulfonitriding treatment temperatures, so a deep carbide dispersed layer can be obtained in a short time, and since ammonia and hydrogen sulfide gas are not used, sintering Processing can be done in the same furnace, resulting in lower costs.

また、前記浸炭処理後の焼入処理(強制ガス冷却又は油
冷却による)後の焼戻し処理を施すことによって、焼結
体の強度向上を容易に図ることができる。
Further, by performing a tempering treatment after the quenching treatment (by forced gas cooling or oil cooling) after the carburizing treatment, the strength of the sintered body can be easily improved.

高荷重グリース潤滑で用いるブツシュ類では、潤滑切れ
を防ぐため、摺動部に溝加工を施しているが、焼結体で
は多孔質度を調整して空孔部にグリース又は潤滑油が溜
りやすいようにして潤滑油切れを防止して、異音の発生
及び焼付に起因する破損を防ぐ、また耐摩耗性と耐食性
が特に重要となる部位に用いる場合には、焼結体のCr
 、 Mo 。
Bushes used for high-load grease lubrication have grooves on their sliding parts to prevent lubrication from running out, but in sintered bodies, the degree of porosity is adjusted so that grease or lubricating oil tends to accumulate in the holes. This prevents the lubricating oil from running out and prevents abnormal noise and damage caused by seizure. Also, when used in areas where wear resistance and corrosion resistance are particularly important, Cr of the sintered body
, Mo.

■の元素添加量を増してM、C,、M2C、Mc型の硬
質炭化物を多量に析出させて用いる。
By increasing the amount of element (2) added, a large amount of M, C, M2C, and Mc type hard carbides are precipitated and used.

焼結体への浸炭による析出は溶製材にくらべて多孔質で
あるから、非常に均一にかつ短時間で、また低合金量で
も容易に起こりやすい特徴があることを見出したのでこ
の原理を利用した。
We discovered that the precipitation caused by carburizing a sintered body is more porous than that of molten material, so it occurs very uniformly, in a short time, and easily even with a low alloy content, so we utilized this principle. did.

成分設定の理由 Cr;  真空浸炭法を用いると、セメントタイトの析
出には0.1 wt%の添加で充分で、最大25wt%
は作業機ブツシュなど耐食性が重要な部品に対して規定
した。これ以上ではあまり大きな効果は期待できずコス
ト高になる。
Reason for component setting Cr: When using the vacuum carburizing method, addition of 0.1 wt% is sufficient for precipitation of cementite, maximum of 25 wt%
This is specified for parts where corrosion resistance is important, such as work equipment bushings. If it exceeds this, no great effect can be expected and the cost will increase.

Mo、V;下限0.1 wt%は真空浸炭法でセメンタ
イトが安定な析出下限量として、上限5.0 wt%は
コスト高になるため規定した。
Mo, V: The lower limit of 0.1 wt% was specified as the lower limit amount of precipitation for stable cementite in the vacuum carburizing method, and the upper limit of 5.0 wt% was specified because it would increase the cost.

Si:  上限は焼戻し軟抵抗性をあげるものであるが
、2.0 wt%を越えるとセメンタイト析出が不安定
になりやすいため規定した。
Si: The upper limit is intended to improve soft tempering resistance, but it was specified because if it exceeds 2.0 wt%, cementite precipitation tends to become unstable.

Ni 、 Cr 、 Mn 、 Mo 、 V、などの
添加元素は析出セメンタイトに濃縮しやすく、金属マト
リックスの焼入性が悪くなりやすいので、セメンタイト
から、排出されるNiを添加することによってマトリッ
クスの焼入性を改善した。上限は残留オーステナイトに
よる軟化から規定した。
Additive elements such as Ni, Cr, Mn, Mo, V, etc. tend to concentrate in precipitated cementite and tend to deteriorate the hardenability of the metal matrix. Therefore, by adding Ni discharged from cementite, hardening of the matrix is Improved sex. The upper limit was determined based on the softening caused by retained austenite.

〔実施例2〕 一般冶金銅粉(神鋼アトメル4100)、黒鉛(ロンザ
社KS6)、Fe・1合金(福田金属″250)を用い
Fe−lCr−0,2Mo−0,6C−0,8Pになる
ように配合し、更に0.5wt%のアクラワックスを添
加してV型混粉機で30分混合した後、第3図および第
4図に示すような油圧ポンプシリンダブロックと、作業
機ブツシュを底形し、1200°CXIH真空中で焼結
した。その後機械加工で実機テスト用の寸法に加工し、
93 o’cxt ’ 、  100torrの条件で
真空浸炭した後、仕上げ加工した。この部品を油圧ポン
プ、作業機に装着し500Hの稼動テストを行った。ピ
ストンボア一部の最大摩耗量を第1表に示す。
[Example 2] Using general metallurgical copper powder (Shinko Atmel 4100), graphite (Lonza KS6), and Fe-1 alloy (Fukuda Kinzoku 250), Fe-1Cr-0,2Mo-0,6C-0,8P was prepared. After adding 0.5 wt% of Acrawax and mixing for 30 minutes in a V-type mixer, a hydraulic pump cylinder block and a work machine bushing as shown in Figs. 3 and 4 were prepared. The base was shaped and sintered in a 1200°CXIH vacuum.Then it was machined to the dimensions for actual machine testing.
After vacuum carburizing under the conditions of 93 o'cxt' and 100 torr, finishing processing was performed. This part was attached to a hydraulic pump and work equipment and a 500H operation test was conducted. Table 1 shows the maximum wear amount of a part of the piston bore.

第 表 これにより、本発明は従来の銅系の摺動材料(P31C
、LBA)にくらべ、耐焼付性、耐摩耗性ともほぼ同等
の性能を有することがわかった。また作業機ブツシュで
は異常の発生がなくなり、摩耗量もほとんど問題ないこ
とがわかった。
Table As a result, the present invention can be applied to the conventional copper-based sliding material (P31C).
, LBA), it was found to have almost the same performance in terms of seizure resistance and wear resistance. It was also found that no abnormalities occurred in the bushings of the work equipment, and there was almost no problem with the amount of wear.

(発明の効果) 本発明は、以上説明したように構成されているので、高
速で摺動する油圧部品の銅系摺動材の代替によるコスト
削減と、高面圧下で使用するブツシュ類の異常発生や、
焼付に起因する破損防止ができて機械部品の耐久性が向
」ニする。
(Effects of the Invention) Since the present invention is configured as described above, it is possible to reduce costs by replacing copper-based sliding materials in hydraulic parts that slide at high speed, and to prevent abnormalities in bushes used under high surface pressure. Occurrence or
It prevents damage caused by seizure and improves the durability of mechanical parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b)は本発明実施例の金属Ni織を示
す図面に代わる写真、第2図は第1図の表面組織をもつ
油圧ポンプシリンダブロソクの縦断側面図、第3図は第
1図の表面組織をもつ作業機ブツシュの縦断側面図、第
4図は従来の真空浸炭した金属組織を示す図面に代わる
写真である。 ■・・・油圧ポンプシリンダブロソク、2・・・作業機
ブツシュ。
Figures 1 (a) and (b) are photographs in place of drawings showing the metal Ni weave of the embodiment of the present invention, Figure 2 is a longitudinal cross-sectional side view of a hydraulic pump cylinder block having the surface structure shown in Figure 1, and Figure 3. 1 is a longitudinal sectional side view of a working machine bushing having the surface structure shown in FIG. 1, and FIG. 4 is a photograph in place of a drawing showing the conventional vacuum carburized metal structure. ■...Hydraulic pump cylinder block, 2...Work machine bush.

Claims (2)

【特許請求の範囲】[Claims] (1)Feを主体としてCr.0.1〜0.25wt%
、Mo.0.1〜5.0wt%、V.0.1〜5.0w
t%などの炭化物形成元素を1元素又は2元素と、Si
,Mnを0.1〜2.0wt%含み、Ni.5.0wt
%以下、C.1.5wt%以下を含む相対密度比で0.
8〜1.0からなる鉄系焼結体に、浸炭処理を施し、セ
メンタイト,M_7C_3,M_2C,MC型の炭化物
を析出したことを特徴とする焼結摺動材。
(1) Mainly Fe and Cr. 0.1-0.25wt%
, Mo. 0.1-5.0wt%, V. 0.1~5.0w
One or two carbide-forming elements such as t% and Si
, Mn in an amount of 0.1 to 2.0 wt%, Ni. 5.0wt
% or less, C. Relative density ratio containing 1.5 wt% or less is 0.
A sintered sliding material characterized in that an iron-based sintered body consisting of 8 to 1.0 is carburized to precipitate cementite, M_7C_3, M_2C, and MC type carbides.
(2)請求項(1)においてP,B,Cuを〜5.0w
t%の範囲で任意に添加可能としたことを特徴とする焼
結摺動材。
(2) In claim (1), P, B, Cu is ~5.0w
A sintered sliding material characterized in that it can be added arbitrarily within a range of t%.
JP19527889A 1989-07-27 1989-07-27 Sintered sliding material Pending JPH0361349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19527889A JPH0361349A (en) 1989-07-27 1989-07-27 Sintered sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19527889A JPH0361349A (en) 1989-07-27 1989-07-27 Sintered sliding material

Publications (1)

Publication Number Publication Date
JPH0361349A true JPH0361349A (en) 1991-03-18

Family

ID=16338502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19527889A Pending JPH0361349A (en) 1989-07-27 1989-07-27 Sintered sliding material

Country Status (1)

Country Link
JP (1) JPH0361349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021190A1 (en) * 2003-08-28 2005-03-10 Toyota Jidosha Kabushiki Kaisha Iron-based sintered alloy and manufacturing method thereof
US7094473B2 (en) 2002-12-27 2006-08-22 Komatsu Ltd. Wear-resistant sintered contact material, wear-resistant sintered composite contact component and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094473B2 (en) 2002-12-27 2006-08-22 Komatsu Ltd. Wear-resistant sintered contact material, wear-resistant sintered composite contact component and method of producing the same
US7279228B2 (en) 2002-12-27 2007-10-09 Komatsu Ltd. Wear-resistant sintered contact material, wear-resistant sintered composite contact component and method of producing the same
US7282078B2 (en) 2002-12-27 2007-10-16 Komatsu Ltd. Wear-resistant sintered contact material, wear-resistant sintered composite contact component and method of producing the same
US7473296B2 (en) 2002-12-27 2009-01-06 Komatsu, Ltd. Wear-resistant sintered contact material, wear-resistant sintered composite contact component and method of producing the same
WO2005021190A1 (en) * 2003-08-28 2005-03-10 Toyota Jidosha Kabushiki Kaisha Iron-based sintered alloy and manufacturing method thereof
US7749298B2 (en) 2003-08-28 2010-07-06 Toyota Jidosha Kabushiki Kaisha Iron-based sintered alloy and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4970049A (en) Sintered materials
US7604304B2 (en) Crawler, crawler pin, crawler bush, and crawler manufacturing method
KR101245069B1 (en) A powder metal engine composition
US7967922B2 (en) Ferrous abrasion resistant sliding material
JP3075331B2 (en) Wear-resistant, corrosion-resistant, heat-resistant mechanical seal
JPH0210222B2 (en)
GB2292389A (en) Rolling bearing
CN1103830C (en) Solid self-lubricating wear-resisting alloy cast material
DE3048035A1 (en) WEAR-RESISTANT SINTER ALLOY AND METHOD FOR THE PRODUCTION THEREOF
CN1818117A (en) Self-lubricating heat-resistnat and wear-resistant materials
US20200071803A1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
CN111041338A (en) Self-lubricating-self-hardening iron-based bearing material and preparation method thereof
JPH0361349A (en) Sintered sliding material
JP3218625B2 (en) Scuff and wear-resistant sliding parts
JPH03219050A (en) Wear-resistant sliding material and its manufacture
JPH05230596A (en) Piston ring material
CN101068641B (en) Sintered alloys for cam lobes and other high wear articles
JP2970387B2 (en) Wear-resistant steel and piston ring or liner materials for internal combustion engines
Engstrom et al. Efficient Low-Alloy Steels for High-Performance Structural Applications
US20240131581A1 (en) Sintered Engine Part and Method of Manufacture Thereof
JP2952006B2 (en) Piston ring material
JPH09310142A (en) High strength and wear resistant sintered mechanism element
JPH03219057A (en) Self-lubricating sintered sliding material and its production
Itoh et al. Improvement of the rolling contact fatigue strength of sintered steel for transmission component
JPH0431019B2 (en)