Nothing Special   »   [go: up one dir, main page]

JPH0358382B2 - - Google Patents

Info

Publication number
JPH0358382B2
JPH0358382B2 JP57173971A JP17397182A JPH0358382B2 JP H0358382 B2 JPH0358382 B2 JP H0358382B2 JP 57173971 A JP57173971 A JP 57173971A JP 17397182 A JP17397182 A JP 17397182A JP H0358382 B2 JPH0358382 B2 JP H0358382B2
Authority
JP
Japan
Prior art keywords
acid
pps
weight
parts
thermoplastic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57173971A
Other languages
Japanese (ja)
Other versions
JPS5964657A (en
Inventor
Ryoichi Ishikawa
Toshinori Sugie
Fumihiro Furuhata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP57173971A priority Critical patent/JPS5964657A/en
Publication of JPS5964657A publication Critical patent/JPS5964657A/en
Publication of JPH0358382B2 publication Critical patent/JPH0358382B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑性ポリエステル、ポリフエニレ
ンスルフイド(以後、PPSと略す)及びノボラツ
ク型エポキシ樹脂からなる熱可塑性ポリエステル
樹脂組成物に関するものである。 ポリブチレンテレフタレート(以後、PBTと
略す)に代表される成形用熱可塑性ポリエステル
は耐熱性、耐薬品性、電気的性質に優れ、エンジ
ニアリングプラスチツクスとして各種用途に使用
されている。しかしながら、かかるポリエステル
は加水分解し易く熱水や水蒸気に接する部品には
使用出来ない。又、熱可塑性ポリエステルは単独
では熱変形温度が低く、ガラス繊維等の強化剤で
強化してはじめて高い熱変形温度となるが、長期
耐熱性は充分とは云えないし強化剤を用いた場合
でも成形品にソリが発生したり、組成物の成形流
動性が低下して成形品の外観が荒れた状態になる
等の欠点を有している。従つて上記欠点を改良す
る方法の一つのしてPPSをブレンドする方法が知
られている。しかし、これらの組成物のほとんど
が相溶性の不十分なものであり、耐加水分解性が
向上せず機械的強度の大巾な低下、成形品の外観
の劣化等の問題点を有してブレンド本来の目的を
達しているとはいい難いことが判明した。 本発明者らは鋭意検討の結果、熱可塑性ポリエ
ステル、PPS及びノボラツク型エポキシ樹脂から
成る組成物が機械的強度及び相溶性に優れ、かつ
熱可塑性ポリエステルの耐加水分解性や耐熱性を
大巾に改善すると共に高温での溶融流動安定性や
耐ブリード性が優れる等の実用性の高い熱可塑性
ポリエステル樹脂組成物を見出し、本発明に到達
した。 即ち、本発明は、(A)熱可塑性ポリエステル99〜
60重量部、(B)PPS1〜40重量部及び(C)ノボラツク
型エポキシ樹脂0.1〜20重量部((A)及び(B)の合計
100重量部に対して)を含んで成ることを特徴と
する熱可塑性ポリエステル樹脂組成物を提供する
ものである。 ここにおいて熱可塑性ポリエステルとは、テレ
フタル酸、イソフタル酸、オルソフタル酸、ナフ
タレンジカルボン酸、4,4′−ジフエニルジカル
ボン酸、ジフエニルエーテルジカルボン酸、α,
β−ビス(4−カルボキシフエノキシ)エタン、
アジピン酸、セバチン酸、アゼライン酸、デカン
ジカルボン酸、ドデカンジカルボン酸、シクロヘ
キサンジカルボン酸、ダイマー酸等のジカルボン
酸又はそのエステル形成性誘導体とエチレングリ
コール、プロピレングリコール、ブタンジオー
ル、ペンタンジオール、ネオペンチルグリコー
ル、ヘキサンジオール、オクタンジオール、デカ
ンジオール、シクロヘキサンジメタノール、ハイ
ドロキノン、ビスフエノールA、2,2−ビス
(4−ヒドロキシエトキシフエニル)プロパン、
キシリレングリコール、ポリエチレンエーテルグ
リコール、ポリテトラメチレンエーテルグリコー
ル、両末端が水酸基であるような脂肪族ポリエス
テルオリゴマー等のグリコール類とから得られる
ポリエステルのことであり、通常はフエノールと
四塩化エタンとの6対4なる重量比の混合溶媒中
30℃で測定した固有粘度〔η〕が0.3〜1.5dl/g
なる範囲のものが用いられる。 また、コモノマー成分としてグリコール酸、ヒ
ドロキシ酪酸、ヒドロキシ安息香酸、ヒドロキシ
フエニル酢酸、ナフチルグリコール酸のようなヒ
ドロキシカルボン酸、プロピオラクトン、ブチロ
ラクトン、バレロラクトン、カプロラクトンのよ
うなラクトン化合物あるいは熱可塑性を保持しう
る範囲内でトリメチロールプロパン、トリメチロ
ールエタン、グリセリン、ペンタエリスリトー
ル、トリメリツト酸、トリメシン酸、ピロメリツ
ト酸のような多官能性エステル形成性成分を含ん
でいてもよい。 また、ジブロモテレフタル酸、テトラブロモテ
レフタル酸、テトラブロモフタル酸、ジクロロテ
レフタル酸、テトラクロロテレフタル酸、1,4
−ジメチロールテトラブロモベンゼン、テトラブ
ロモビスフエノールA、テトラブロモビスフエノ
ールAのエチレンオキサイド付加物のような芳香
族核に塩素や臭素の如きハロゲン化合物を置換基
として有し、且つエステル形成性基を有するハロ
ゲン化合物を共重合した熱可塑性ポリエステル樹
脂も含まれる。 特に好ましい熱可塑性ポリエステルとしては、
PBT、ポリヘキサメチレンテレフタレート、ポ
リ(エチレンブチレンテレフタレート)、ポリ
(シクロヘキサンジメチレンテレフタレート)、ポ
リ(ブチレン・テトラメチレンエーテル・テレフ
タレート)、2,2−ビス(β−ヒドロキシエト
キシテトラブロモフエニル)プロパン共重合ポリ
ブチレンテレフタレート等が挙げられる。 本発明に使用するPPSは一般式
The present invention relates to a thermoplastic polyester resin composition comprising a thermoplastic polyester, polyphenylene sulfide (hereinafter abbreviated as PPS) and a novolak type epoxy resin. Thermoplastic polyesters for molding, such as polybutylene terephthalate (hereinafter abbreviated as PBT), have excellent heat resistance, chemical resistance, and electrical properties, and are used in various applications as engineering plastics. However, such polyesters are easily hydrolyzed and cannot be used for parts that come into contact with hot water or steam. In addition, thermoplastic polyester has a low heat distortion temperature when used alone, and only reaches a high heat distortion temperature when reinforced with a reinforcing agent such as glass fiber, but its long-term heat resistance is not sufficient and even when a reinforcing agent is used, it cannot be molded. It has disadvantages such as warping of the product and a decrease in the molding fluidity of the composition, resulting in a rough appearance of the molded product. Therefore, a method of blending PPS is known as one of the methods for improving the above-mentioned drawbacks. However, most of these compositions have insufficient compatibility, resulting in problems such as no improvement in hydrolysis resistance, a significant decrease in mechanical strength, and deterioration in the appearance of molded products. It was found that it was difficult to say that the original purpose of the blend was achieved. As a result of extensive studies, the present inventors have found that a composition consisting of thermoplastic polyester, PPS, and novolac type epoxy resin has excellent mechanical strength and compatibility, and has significantly improved hydrolysis resistance and heat resistance of thermoplastic polyester. We have discovered a highly practical thermoplastic polyester resin composition that has improved melt flow stability and bleed resistance at high temperatures, and has arrived at the present invention. That is, the present invention provides (A) thermoplastic polyester 99-
60 parts by weight, (B) 1 to 40 parts by weight of PPS, and (C) 0.1 to 20 parts by weight of novolac type epoxy resin (total of (A) and (B)
100 parts by weight). Here, thermoplastic polyesters include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, 4,4'-diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, α,
β-bis(4-carboxyphenoxy)ethane,
Dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, cyclohexanedicarboxylic acid, and dimer acid, or their ester-forming derivatives, and ethylene glycol, propylene glycol, butanediol, pentanediol, neopentyl glycol, Hexanediol, octanediol, decanediol, cyclohexanedimethanol, hydroquinone, bisphenol A, 2,2-bis(4-hydroxyethoxyphenyl)propane,
It is a polyester obtained from glycols such as xylylene glycol, polyethylene ether glycol, polytetramethylene ether glycol, and aliphatic polyester oligomers with hydroxyl groups at both ends. in a mixed solvent with a weight ratio of
Intrinsic viscosity [η] measured at 30℃ is 0.3 to 1.5 dl/g
A range of materials is used. In addition, comonomer components include hydroxycarboxylic acids such as glycolic acid, hydroxybutyric acid, hydroxybenzoic acid, hydroxyphenylacetic acid, and naphthylglycolic acid, lactone compounds such as propiolactone, butyrolactone, valerolactone, and caprolactone, or thermoplastic properties. It may contain polyfunctional ester-forming components such as trimethylolpropane, trimethylolethane, glycerin, pentaerythritol, trimellitic acid, trimesic acid, and pyromellitic acid to the extent possible. Also, dibromoterephthalic acid, tetrabromoterephthalic acid, tetrabromophthalic acid, dichloroterephthalic acid, tetrachloroterephthalic acid, 1,4
- An aromatic nucleus such as dimethyloltetrabromobenzene, tetrabromobisphenol A, or an ethylene oxide adduct of tetrabromobisphenol A has a halogen compound such as chlorine or bromine as a substituent, and an ester-forming group. Also included is a thermoplastic polyester resin copolymerized with a halogen compound. Particularly preferred thermoplastic polyesters include:
PBT, polyhexamethylene terephthalate, poly(ethylene butylene terephthalate), poly(cyclohexane dimethylene terephthalate), poly(butylene tetramethylene ether terephthalate), 2,2-bis(β-hydroxyethoxytetrabromophenyl)propane Examples include polymerized polybutylene terephthalate. The PPS used in the present invention has the general formula

【式】で示される構成単位を70モル% 以上含むものが好ましく、その量が70モル%未満
ではすぐれた特性の本組成物は得難い。このポリ
マーの重合方法としては、p−ジクロルベンゼン
を硫黄と炭酸ソーダの存在下で重合させる方法、
極性溶媒中で硫化ナトリウムあるいは水硫化ナト
リウムと水酸化ナトリウム又は硫化水素と水酸化
ナトリウムの存在下で重合させる方法、p−クロ
ルチオフエノールの自己縮合などがあげられる
が、N−メチルピロリドン、ジメチルアセトアミ
ドなどのアミド系溶媒やスルホラン等のスルホン
系溶媒中で硫化ナトリウムとp−ジクロルベンゼ
ンを反応させる方法が適当である。この際に重合
度を調節するためにカルボン酸やスルホン酸のア
ルカリ金属塩を添加したり、水酸化アルカリを添
加することは好ましい方法である。共重合成分と
して30モル%未満であればメタ結合
It is preferable that the composition contains 70 mol% or more of the structural unit represented by the formula; if the amount is less than 70 mol%, it is difficult to obtain the present composition with excellent properties. The polymerization method for this polymer includes a method of polymerizing p-dichlorobenzene in the presence of sulfur and soda carbonate;
Methods include polymerization in the presence of sodium sulfide or sodium bisulfide and sodium hydroxide or hydrogen sulfide and sodium hydroxide in a polar solvent, self-condensation of p-chlorothiophenol, etc. N-methylpyrrolidone, dimethylacetamide, etc. A suitable method is to react sodium sulfide with p-dichlorobenzene in an amide solvent such as sulfolane or a sulfone solvent such as sulfolane. At this time, in order to adjust the degree of polymerization, it is a preferable method to add an alkali metal salt of carboxylic acid or sulfonic acid, or to add alkali hydroxide. If it is less than 30 mol% as a copolymer component, a meta bond (

【式】)、オルソ結合 ([Formula]), ortho bond (

【式】)、エーテル結合 ([Formula]), ether bond (

【式】)、スルホン結合 ([Formula]), sulfone bond (

【式】)、ビフエニル 結合([Formula]), biphenyl Join (

【式】)、置換フエ ニルスルフイド結合([Formula]), substituted Fe Nilsulfide bond (

【式】ここで Rはアルキル基、ニトロ基、フエニル基、アルコ
キシ基、カルボン酸基またはカルボン酸の金属塩
基を示す)、3官能結合(
[Formula] Here, R represents an alkyl group, a nitro group, a phenyl group, an alkoxy group, a carboxylic acid group, or a metal base of a carboxylic acid), a trifunctional bond (

【式】)な どを含有していてもポリマーの結晶性に大きく影
響しない範囲でかまわないが、好ましくは共重合
成分は10モル%以下がよい。特に3官能性以上の
フエニル、ビフエニルナフチルスルフイド結合な
どを共重合に選ば場合は3モル%以下、さらに好
ましくは1モル%以下がよい。 かかるPPSは一般的な製造法、例えば(1)ハロゲ
ン置換芳香族化合物と硫化アルカリとの反応(米
国特許第2513188号明細書、特公昭44−27671号お
よび特公昭45−3368号参照)、(2)チオフエノール
類のアルカリ触媒又は銅塩等の共存下における縮
合反応(米国特許第3274165号、英国特許第
1160660号参照)、(3)芳香族化合物を塩化硫黄との
ルイス酸触媒共存下に於ける縮合反応(特公昭46
−27255号、ベルギー特許第29437号参照)等によ
り合成されるものであり、目的に応じ任意に選択
し得る。 本発明の主たる目的である樹脂組成物の相溶性
をより容易にするためには、混合される樹脂が互
いに同程度の粘度でかつ架橋構造の少ない場合が
好ましい。PPSは現在フイリツプスペトロリーム
社からライトン PPSとして市場に供せられてい
る。ライトン PPSにはその架橋密度および粘度
に応じてV−1、P−2、P−3、P−4、R−
6の各グレードがある。従来の技術ではライトン
V−1は架橋度は低いが、低粘度すぎ、又ライト
ン R−6、P−4は粘度は高いが、架橋度も高
すぎて熱可塑性ポリエステルとの良好な相溶性が
得られなかつたのである。 本発明においてはエポキシ樹脂はPPSの高分子
量化に効果があり、かつポリエステルとも反応す
ると考えられ、従来は低粘度のため使用できなか
つた酸化架橋工程を省略した、着色の度合のすく
ないPPSが好適に使用できる。PPSの架橋の程度
はポリマーの溶融粘度と非ニユートニアン係数
(N)との関係により表わすことができ、一般に
Nが大きいほど架橋度が高い。すなわち、本発明
に用いるPPSは粘度測定時に得られるせん断速度
とせん断応力のそれぞれの対数値をプロツトし、
300℃でせん断速度200(1/秒)の点における接
線の傾きを非ニユートニアン係数Nと定義した場
合、Nが0.8と1.33+0.000047×(溶融粘度)の間
にあることが特に好ましい。 更に本発明においては特開昭50−84698、特開
昭51−144495により公知である架橋度の少ない高
分子量PPSも好適に使用できる。 又、PPSと熱可塑性ポリエステルとの相溶性を
改良するための必須成分であるノボラツク型エポ
キシ樹脂は、エポキシ基を2個以上含有するもの
でありノボラツク型フエノール樹脂にエピクロル
ヒドリンを反応させて得られる。ノボラツク型フ
エノール樹脂の原料であるフエノール類としては
特に制限はないが、フエノール、o−クレゾー
ル、m−クレゾール、p−クレゾール、ビスフエ
ノールA、レゾルシノール、p−ターシヤリーブ
チルフエノール、ビスフエノールF、ビスフエノ
ールSおよびこれらの混合物が特に好適に用いら
れる。更にポリ−p−ビニルフエノールのエポキ
シ化物もノボラツク型エポキシ樹脂と同様用いる
ことができる。 本発明においては、ノボラツク型エポキシ樹脂
以外のエポキシ樹脂も本発明の効果を逸脱しない
範囲内で併用可能である。他のエポキシ樹脂の代
表的なものとしてはビスフエノールAのジグリシ
ジルエーテル、ビスフエノールAの代りにハロゲ
ン化ビスフエノールブタンジオールのジグリシジ
ルエーテル等のグリシジルエーテル系、フタル酸
グリシジルエステル等のグリシジルエステル系、
N−シグリシジルアニリン等のグリシジルアミン
系等のグリシジルエポキシ樹脂、エポキシ化ポリ
オレフイン、エポキシ化大豆油等の線状系及びビ
ニルシクロヘキセンジオキサイド、ジシクロペン
タジエン・ジオキサイド等の環状系の非グリシジ
ルエポキシ樹脂が例示される。 上記ノボラツク型エポキシ樹脂の添加は、本発
明の組成物を構成する他の原料(PPSおよび熱可
塑性ポリエステル)と共に同時に混合して使用し
ても良いが、該エポキシ樹脂とPPS又は熱可塑性
ポリエステルを予め混練し、さらに熱可塑性ポリ
エステル又はPPSを混合混練するのがノボラツク
型エポキシ樹脂とPPS及び/又は熱可塑性ポリエ
ステルとの反応の可能性を考慮した場合好まし
い。又、PPSと熱可塑性ポリエステルとを予め混
練した後にノボラツク型エポキシ樹脂を添加して
も良い。 熱可塑性ポリエステルとPPSとの混合割合は熱
可塑性ポリエステル99〜60重量部に対してPPS1
〜40重量部であり、好ましくは熱可塑性ポリエス
テル95〜60重量部に対してPPS5〜40重量部であ
る。又、エポキシ樹脂の添加量はPPS及び熱可塑
性ポリエステルの合計100重量部に対して0.1〜20
重量部、好ましくは1〜10重量部である。かかる
量が0.1重量部未満ではその効果が少なく、又20
重量部を超えると機械的強度及び熱的特性が失わ
れたり、添加するノボラツク型エポキシ樹脂によ
つては成形品表面へのブリードや組成物溶融流動
性を著しく低下させたりするので好ましくない。 本発明の組成物には以上の各成分の他に、さら
に下記の如き強化充填剤を添加することができ
る。かかる強化充填剤としては、ガラス繊維、炭
素繊維、チタン酸カリウム、アスベスト、炭化ケ
イ素、セラミツク繊維、金属繊維、窒化ケイ素な
どの繊維状強化剤;硫酸バリウム、硫酸カルシウ
ム、カオリン、クレー、パイロフイライト、ペン
トナイト、セリサイト、ゼオライト、マイカ、雲
母、ネフエリンシナイト、タルク、アタルパルジ
ヤイト、ウオラストナイト、プロセスドミネラル
フアイバー(PMF)、フエライト、硅酸カルシウ
ム、炭酸カルシウム、炭酸マグネシウム、ドロマ
イト、三酸化アンモン、酸化亜鉛、酸化チタン、
酸化マグネシウム、酸化鉄、二硫化モリブデン、
黒鉛、石コウ、ガラスビーズ、ガラスバルーン、
石英、石英ガラスなどの無機系、アラミド繊維な
どの有機系の強化充填剤を挙げることができる。
それら充填剤の添加量は樹脂成分(PPS、熱可塑
性ポリエステルおよびノボラツク型エポキシ樹脂
の合計)100重量部に対して、通常1〜300重量部
であり、好ましくは5〜200重量部である。かか
る添加量が300重量部を超えると組成物の溶融流
動性が悪くなり成形品の外観が損なわれる等の問
題がある。 本発明組成物には、本発明の目的を逸脱しない
範囲で下記の如き熱可塑性樹脂を混合して使用で
きる。その熱可塑性樹脂としては、エチレン、プ
ロピレン、ブチレン、ペンテン、ブタジエン、イ
ソプレン、クロロプレン、スチレン、α−メチル
スチレン、酢酸ビニル、塩化ビニル、アクリル酸
エステル、メタクリル酸エステル、(メタ)アク
リロニトリルなどのビニル単量体の単独重合体又
は共重合体、ポリウレタン系高分子、ポリアミド
系高分子、ポリエステルエラストマー、ポリカー
ボネート、ポリアセタール、ポリサルホン、ポリ
アリールサルホン、ポリエーエテルサルホン、ポ
リアリレート、ポリフエニレンオキサイド、ポリ
エーテルエーテルケトン、ポリイミド、ポリアミ
ドイミド、シリコーン樹脂、フエノキシ樹脂、フ
ツ素樹脂、ポリアリールエーテル等の単独重合
体、共重合体、又はブロツク及びグラフト重合体
を挙げることができる。他に少量の離型剤、カツ
プリング剤、着色剤、滑剤、耐熱安定剤、耐候性
安定剤、発泡剤、難燃剤、三酸化アンチモン等の
難燃助剤等を添加してもよい。 本発明において前記発明の組成物の調製は種々
の公知の方法で可能である。例えば、原料を予め
タンブラー又はヘンシエルミキサーのような混合
機で均一に混合した後、一軸又は二軸の押出機等
に供給して溶融混練した後、ペレツトとして調製
する方法がある。 以下に、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例のみに限定される
ものではない。 実施例1〜5、比較例1〜4 表−1に示した配合組成に於いて、予めPPSと
エポキシ樹脂を30m/mの2軸押出機を用いて
280℃で混練して各ペレツトを得た。次いでこ
のペレツト、PBT及びガラス繊維を表−1の
配合組成に従つて混合し、40m/m単軸押出機を
用いて280℃で混練して各ペレツトを得た。こ
のペレツトを3オンス射出成形機(シリンダー
温度270°、金型温度80℃)で成形し、テストピー
スを作成して曲げ強度及び熱変形温度を測定し
た。更に下記試験方法に基づき耐加水分解性、成
形品外観状態、溶融流動安定性の評価を行なつ
た。それら結果を表−1にまとめて示す。 (成形品外観状態) Γ相溶性評価;目視判定 ○……相溶性に優れ、外観良好 ×……相溶性悪くパール状光沢を呈し、外観不
良 Γ平滑性評価;目視判定 ○……光沢に優れ、外観良好 ×……ガラス繊維の浮きが激しく、表面状態不
良 Γブリード性評価;成形品を乾燥機中に150℃/
2時間放置後の成形品の外観を目視判定する。 ○……ブリードによる外観変化なし ×……ブリードにより成形品表面に曇りが発生
し、外観を著しく損なう (耐加水分解性:加圧水蒸気(PCT)試験) 曲げ強度測定用のテストピースを123℃の加圧
水蒸気中に30時間放置した後、曲げ強度の保持率
を測定する。 (溶融流動安定性) ペレツトの溶融流動安定性を評価するために
メルトインデクサーを用いて265℃/6分及び265
℃/15分保持した後のMI値(g/10分)を測定
した。
[Formula]) may be contained as long as it does not significantly affect the crystallinity of the polymer, but preferably the copolymerization component is 10 mol% or less. In particular, when trifunctional or more functional phenyl, biphenyl naphthyl sulfide bonds, etc. are selected for copolymerization, the amount is preferably 3 mol % or less, more preferably 1 mol % or less. Such PPS can be produced by common manufacturing methods, such as (1) reaction of a halogen-substituted aromatic compound with an alkali sulfide (see U.S. Pat. No. 2,513,188, Japanese Patent Publication No. 44-27671 and Japanese Patent Publication No. 45-3368); 2) Condensation reaction of thiophenols in the coexistence of an alkali catalyst or copper salt (US Patent No. 3274165, British Patent No.
1160660), (3) Condensation reaction of aromatic compounds with sulfur chloride in the presence of a Lewis acid catalyst (Special Publication No. 1160660)
-27255, Belgian Patent No. 29437), etc., and can be arbitrarily selected depending on the purpose. In order to make the compatibility of the resin compositions easier, which is the main objective of the present invention, it is preferable that the resins to be mixed have similar viscosities and have a small amount of crosslinked structure. PPS is currently available on the market as Ryton PPS from Phillips Petroleum. Ryton PPS has V-1, P-2, P-3, P-4, R- depending on its crosslinking density and viscosity.
There are 6 grades. With conventional technology, Ryton V-1 has a low degree of crosslinking, but its viscosity is too low, and Ryton R-6 and P-4 have a high viscosity, but their degree of crosslinking is too high, and they do not have good compatibility with thermoplastic polyester. I couldn't get it. In the present invention, the epoxy resin is effective in increasing the molecular weight of PPS and is thought to react with polyester, so PPS with a low degree of coloring is preferable because it omits the oxidative crosslinking process, which could not be used conventionally due to its low viscosity. Can be used for The degree of crosslinking of PPS can be expressed by the relationship between the melt viscosity of the polymer and the non-Newtonian coefficient (N), and generally the larger N is, the higher the degree of crosslinking is. In other words, the PPS used in the present invention plots the respective logarithms of the shear rate and shear stress obtained during viscosity measurement, and
When the slope of the tangent at a point of 300° C. and a shear rate of 200 (1/sec) is defined as a non-Newtonian coefficient N, it is particularly preferable that N is between 0.8 and 1.33+0.000047×(melt viscosity). Furthermore, in the present invention, high molecular weight PPS with a low degree of crosslinking, which is known from JP-A-50-84698 and JP-A-51-144495, can also be suitably used. Novolac type epoxy resin, which is an essential component for improving the compatibility between PPS and thermoplastic polyester, contains two or more epoxy groups and is obtained by reacting novolak type phenolic resin with epichlorohydrin. There are no particular restrictions on the phenols that are the raw materials for the novolac type phenolic resin, but examples include phenol, o-cresol, m-cresol, p-cresol, bisphenol A, resorcinol, p-tert-butylphenol, bisphenol F, and bisphenol. Phenol S and mixtures thereof are particularly preferably used. Furthermore, an epoxidized product of poly-p-vinylphenol can also be used in the same manner as the novolak type epoxy resin. In the present invention, epoxy resins other than novolak type epoxy resins can also be used in combination within the range that does not deviate from the effects of the present invention. Typical other epoxy resins include glycidyl ethers such as diglycidyl ether of bisphenol A, diglycidyl ether of halogenated bisphenol butanediol instead of bisphenol A, and glycidyl esters such as phthalate glycidyl ester. ,
Non-glycidyl epoxy resins such as glycidylamine-based glycidyl epoxy resins such as N-siglycidylaniline, linear-based glycidyl epoxy resins such as epoxidized polyolefins, and epoxidized soybean oil, and cyclic-based non-glycidyl epoxy resins such as vinyl cyclohexene dioxide and dicyclopentadiene dioxide. is exemplified. The novolak type epoxy resin may be added at the same time as the other raw materials (PPS and thermoplastic polyester) constituting the composition of the present invention, but the epoxy resin and PPS or thermoplastic polyester may be added in advance. Considering the possibility of reaction between the novolak type epoxy resin and PPS and/or thermoplastic polyester, it is preferable to knead and then further mix and knead thermoplastic polyester or PPS. Alternatively, the novolac type epoxy resin may be added after previously kneading PPS and thermoplastic polyester. The mixing ratio of thermoplastic polyester and PPS is 99 to 60 parts by weight of thermoplastic polyester to 1 part by weight of PPS.
~40 parts by weight, preferably 5 to 40 parts by weight of PPS to 95 to 60 parts by weight of thermoplastic polyester. In addition, the amount of epoxy resin added is 0.1 to 20 parts by weight per 100 parts by weight of PPS and thermoplastic polyester.
parts by weight, preferably 1 to 10 parts by weight. If the amount is less than 0.1 part by weight, the effect will be small;
If the amount exceeds 1 part by weight, mechanical strength and thermal properties may be lost, and depending on the novolak type epoxy resin added, bleeding may occur on the surface of the molded product or the melt flowability of the composition may be significantly reduced, which is not preferable. In addition to the above-mentioned components, the following reinforcing fillers can be added to the composition of the present invention. Such reinforcing fillers include fibrous reinforcing agents such as glass fiber, carbon fiber, potassium titanate, asbestos, silicon carbide, ceramic fiber, metal fiber, and silicon nitride; barium sulfate, calcium sulfate, kaolin, clay, and pyrofluorite. , pentonite, sericite, zeolite, mica, mica, nephelinsinite, talc, attalpargite, wollastonite, processed mineral fiber (PMF), ferrite, calcium silicate, calcium carbonate, magnesium carbonate, dolomite , ammonium trioxide, zinc oxide, titanium oxide,
Magnesium oxide, iron oxide, molybdenum disulfide,
graphite, gypsum, glass beads, glass balloons,
Examples include inorganic reinforcing fillers such as quartz and quartz glass, and organic reinforcing fillers such as aramid fibers.
The amount of these fillers added is usually 1 to 300 parts by weight, preferably 5 to 200 parts by weight, per 100 parts by weight of the resin component (the total of PPS, thermoplastic polyester, and novolak type epoxy resin). If the amount added exceeds 300 parts by weight, there are problems such as poor melt flowability of the composition and impaired appearance of the molded product. The composition of the present invention may be mixed with the following thermoplastic resins without departing from the purpose of the present invention. The thermoplastic resins include vinyl monomers such as ethylene, propylene, butylene, pentene, butadiene, isoprene, chloroprene, styrene, α-methylstyrene, vinyl acetate, vinyl chloride, acrylic esters, methacrylic esters, and (meth)acrylonitrile. homopolymers or copolymers of polymers, polyurethane polymers, polyamide polymers, polyester elastomers, polycarbonates, polyacetals, polysulfones, polyarylsulfones, polyethersulfones, polyarylates, polyphenylene oxides, polyesters, Examples include homopolymers, copolymers, block and graft polymers of ether ether ketone, polyimide, polyamideimide, silicone resin, phenoxy resin, fluororesin, polyaryl ether and the like. In addition, a small amount of a mold release agent, a coupling agent, a coloring agent, a lubricant, a heat-resistant stabilizer, a weather-resistant stabilizer, a foaming agent, a flame retardant, a flame retardant aid such as antimony trioxide, etc. may be added. In the present invention, the composition of the invention can be prepared by various known methods. For example, there is a method in which the raw materials are uniformly mixed in advance in a mixer such as a tumbler or a Henschel mixer, and then fed into a single-screw or twin-screw extruder for melt-kneading and then prepared as pellets. EXAMPLES The present invention will be specifically explained below using Examples, but the present invention is not limited to these Examples. Examples 1 to 5, Comparative Examples 1 to 4 With the formulation shown in Table 1, PPS and epoxy resin were mixed in advance using a 30 m/m twin screw extruder.
Each pellet was obtained by kneading at 280°C. Next, the pellets, PBT, and glass fibers were mixed according to the composition shown in Table 1, and kneaded at 280 DEG C. using a 40 m/m single screw extruder to obtain each pellet. The pellets were molded using a 3-ounce injection molding machine (cylinder temperature: 270°C, mold temperature: 80°C), test pieces were prepared, and the bending strength and heat distortion temperature were measured. Furthermore, hydrolysis resistance, molded product appearance, and melt flow stability were evaluated based on the following test methods. The results are summarized in Table-1. (Appearance condition of molded product) Γ Compatibility evaluation; Visual judgment ○...Excellent compatibility, good appearance ×...Poor compatibility, pearly luster, poor appearance Γ Smoothness evaluation; Visual judgment ○...Excellent gloss , Good appearance ×...Glass fibers are heavily lifted, surface condition is poor Γ Bleedability evaluation: The molded product was placed in the dryer at 150℃/
Visually judge the appearance of the molded product after leaving it for 2 hours. ○... No change in appearance due to bleed ×... Bleeding causes clouding on the surface of the molded product, significantly impairing its appearance (hydrolysis resistance: pressurized steam (PCT) test) Test piece for measuring bending strength was heated to 123°C. After being left in pressurized steam for 30 hours, the retention of bending strength is measured. (Melt flow stability) In order to evaluate the melt flow stability of pellets, a melt indexer was used to evaluate the melt flow stability of pellets at 265°C/6 minutes and 265 °C
The MI value (g/10 minutes) after holding at ℃/15 minutes was measured.

【表】 表−1に示された結果から明らかなように、本
発明によつて得られた組成物は機械的強度が高
く、相溶性に優れ、かつPBTの耐加水分解性や
耐熱性が改善されると共に高温での溶融流動安定
性、耐ブリード性に優れ、通常の成形条件でも平
滑な成形品外観を与える等成形材料として一段と
実用性の高い組成物であることが確認された。
[Table] As is clear from the results shown in Table 1, the composition obtained by the present invention has high mechanical strength, excellent compatibility, and excellent PBT hydrolysis resistance and heat resistance. It was confirmed that the composition has improved melt flow stability and bleed resistance at high temperatures, and provides a smooth molded product appearance even under normal molding conditions, making it even more practical as a molding material.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)熱可塑性ポリエステル99〜60重量部、(B)ポ
リフエニレンスルフイド1〜40重量部、及び(C)ノ
ボラツク型エポキシ樹脂0.1〜20重量部((A)及び
(B)の合計100重量部に対して)を含んで成ること
を特徴とする熱可塑性ポリエステル樹脂組成物。
1 (A) 99 to 60 parts by weight of thermoplastic polyester, (B) 1 to 40 parts by weight of polyphenylene sulfide, and (C) 0.1 to 20 parts by weight of novolac type epoxy resin ((A) and
(B) based on a total of 100 parts by weight).
JP57173971A 1982-10-05 1982-10-05 Thermoplastic polyester resin composition Granted JPS5964657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173971A JPS5964657A (en) 1982-10-05 1982-10-05 Thermoplastic polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173971A JPS5964657A (en) 1982-10-05 1982-10-05 Thermoplastic polyester resin composition

Publications (2)

Publication Number Publication Date
JPS5964657A JPS5964657A (en) 1984-04-12
JPH0358382B2 true JPH0358382B2 (en) 1991-09-05

Family

ID=15970418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173971A Granted JPS5964657A (en) 1982-10-05 1982-10-05 Thermoplastic polyester resin composition

Country Status (1)

Country Link
JP (1) JPS5964657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047962A1 (en) * 1997-04-21 1998-10-29 Teijin Limited Resin composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0384191A3 (en) * 1989-02-07 1991-09-18 Mitsubishi Rayon Company, Ltd. Polyarylene sulfide resin composition
JPH02215855A (en) * 1989-02-17 1990-08-28 Mitsubishi Rayon Co Ltd Polyarylene sulfide resin composition
JP5277513B2 (en) * 2004-07-29 2013-08-28 東レ株式会社 Thermoplastic resin composition and method for producing the same
JP2015131458A (en) * 2014-01-15 2015-07-23 株式会社オートネットワーク技術研究所 Method of producing insulated wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047962A1 (en) * 1997-04-21 1998-10-29 Teijin Limited Resin composition

Also Published As

Publication number Publication date
JPS5964657A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
US4929665A (en) Thermoplastic resin composition
US4528346A (en) Resin composition
JPH0579701B2 (en)
AU600350B2 (en) Polyarylene thioether composition for molding
JPH0379389B2 (en)
JPH0358382B2 (en)
DE60317221T2 (en) AROMATIC POLYCONDENSATE COMPOSITIONS WITH IMPROVED STRENGTH PROPERTIES
JPS6011063B2 (en) resin composition
JPH0524177B2 (en)
JPH0372669B2 (en)
JPH0611863B2 (en) Polyphenylene sulfide resin composition
JP4198782B2 (en) High impact strength polysulfones
JPH0730248B2 (en) Polyphenylene sulfide resin composition
JPH0316386B2 (en)
JPH021759A (en) Resin composition
JPH0361702B2 (en)
JPH0358383B2 (en)
JPH02252761A (en) Thermoplastic resin composition
JPH0579702B2 (en)
JP2001172500A (en) Polyarylene sulfide resin composition
JPH05202245A (en) Polyarylene sulfide resin composition
JP2012096360A (en) Reflecting plate with metal film formed
JPH0395265A (en) Resin composition
JPS62151461A (en) Polyphenylele sulfide resin composition
JPH03281661A (en) Polyarylene sulfide resin composition