Nothing Special   »   [go: up one dir, main page]

JPH0358434A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0358434A
JPH0358434A JP19355989A JP19355989A JPH0358434A JP H0358434 A JPH0358434 A JP H0358434A JP 19355989 A JP19355989 A JP 19355989A JP 19355989 A JP19355989 A JP 19355989A JP H0358434 A JPH0358434 A JP H0358434A
Authority
JP
Japan
Prior art keywords
electrode
source
gate electrode
layer
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19355989A
Other languages
Japanese (ja)
Inventor
Masahiro Shioda
昌弘 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19355989A priority Critical patent/JPH0358434A/en
Publication of JPH0358434A publication Critical patent/JPH0358434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable a high output semiconductor device having excellent low noise characteristics capable of high speed operation to be manufactured by a method wherein a metallic thin film is formed on a semiconductor layer between a source electrode and a gate electrode as well as between a drain electrode and the gate electrode. CONSTITUTION:A very thin metallic film 5 is provided on the surface of a semiconductor layer between a source electrode 7 and a gate electrode 9 as well as between a drain electrode 8 and the gate electrode 9 so as to lower the level of the band bending on the surface. Accordingly, two-dimensional electron gas 11 will not be modulated by the surface depletion layer 12 between the source electrode 7 and the gate electrode 9 as well as between the drain electrode 8 and the gate electrode 9 so that the two-dimensional electron gas concentration almost three times of that of the conventional high electron mobility transistor(HEMT) may be attained so as to lower the source resistance. Through these procedures, the source resistance can be lowered without increasing the capacitance between source and gate thereby enabling a high output semiconductor device having excellent low noise characteristics capable of high-speed operation to be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,低雑音特性に優れた高出力用の半導体装置に
関し,特にGaAsやInGaAsなどの化合物半導体
を用いた低雑音用および高出力用のショットキゲート電
界効果トランジスタ(MESFET)や高電子移動度ト
ランジスタ( Hll!MT )に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a high-power semiconductor device with excellent low-noise characteristics, and particularly to a low-noise and high-power semiconductor device using a compound semiconductor such as GaAs or InGaAs. related to Schottky gate field effect transistors (MESFETs) and high electron mobility transistors (Hll!MT).

(従来の技術) 一般に.シリコン(Si)が間接遷移型の半導体である
のに対し,多くの化合物半導体は直接遷移型半導体であ
り,キャリアの移動度が大きいという特徴を有する.こ
の特徴を生かした高速・高周波半導体素子として,例え
ばGaAsを用いたMESF!ETがすでに実用化され
ている, GaAs Mt!SFt!Tの特徴は,従来
のStバイポーラトランジスタの限界である10GHz
を越える周波数で増幅が可能であること,および低雑音
特性を有することにある。また,多元系の化合物半導体
は,m成比を変化させることにより,種々の半導体混晶
を人為的に作製できるので,異なる半導体混晶との間で
格子整合をとれるヘテロ接合を形成し得る。このような
ヘテロ接合を用いて,変調ドーピングを利用したHE?
ITなどの超高速半導体素子.発光ダイオードや半導体
レーザを中心とする各種光電子素子,さらには超格子構
造を利用した新しい素子などが開発されつつある。
(Prior art) Generally. While silicon (Si) is an indirect transition type semiconductor, many compound semiconductors are direct transition type semiconductors, and are characterized by high carrier mobility. As a high-speed/high-frequency semiconductor device that takes advantage of this feature, for example, MESF using GaAs! GaAs Mt!, for which ET is already in practical use! SFt! The characteristic of T is that it can operate at 10GHz, which is the limit of conventional St bipolar transistors.
It is possible to amplify at frequencies exceeding Furthermore, in multi-component compound semiconductors, various semiconductor mixed crystals can be artificially created by changing the m ratio, so it is possible to form a heterojunction that can achieve lattice matching between different semiconductor mixed crystals. HE? using such a heterojunction and using modulation doping?
Ultra high speed semiconductor devices for IT etc. Various optoelectronic devices, including light emitting diodes and semiconductor lasers, as well as new devices using superlattice structures, are being developed.

なかでも, A IGaAs / GaAs系II E
 M Tは,近年,低雑音用および高出力用の半導体装
置として注目され,その用途が急速に拡大している。こ
のようなAIGaAs/GaAa系1{EMTの最も一
般的な構造を第2図に示す。この図において,半絶縁性
GaAs基板l上には,アンドープGaAs層2,アン
ドーブAIGaAsスペーサ層3,およびn”−AIG
aAs層4が順次積層され.電子供給層であるn”−A
IGaAs層4上には,ソース電極7,ドレイン電極8
,およびゲート電極9が設けられている。アンドーブA
IGaAsスペーサ層3およびn”−AIGaAs層4
には,表面準位によって表面空乏膚l2が形成され.ソ
ース・ゲート間の直列抵抗,すなわちソース抵抗1?.
が増大する原因となる.このようなプレーナ構造のRE
FITに対し,第3図に示すような2,000人程度の
厚いn”−GaAsキャップ層17を設けたリセス構造
のHt!MTが提案されている。
Among them, A IGaAs / GaAs II E
In recent years, MT has attracted attention as a low-noise and high-output semiconductor device, and its applications are rapidly expanding. The most common structure of such AIGaAs/GaAa-based 1{EMT is shown in FIG. In this figure, an undoped GaAs layer 2, an undoped AIGaAs spacer layer 3, and an n''-AIG
The aAs layers 4 are sequentially stacked. n”-A, which is the electron supply layer
On the IGaAs layer 4 are a source electrode 7 and a drain electrode 8.
, and a gate electrode 9 are provided. Undove A
IGaAs spacer layer 3 and n”-AIGaAs layer 4
A surface depletion skin l2 is formed by surface states. Series resistance between source and gate, i.e. source resistance 1? ..
This causes an increase in RE of such a planar structure
In contrast to the FIT, an Ht!MT having a recessed structure in which a thick n''-GaAs cap layer 17 of about 2,000 layers is provided as shown in FIG. 3 has been proposed.

リセス構造は,ゲート電極9直下のチャネル領域のみを
リセスして.チャネル以外の領域を表面空乏層l2の厚
みよりも厚くすることにより,ソース抵抗R.の低減を
図るものである。
The recessed structure is created by recessing only the channel region directly under the gate electrode 9. By making the region other than the channel thicker than the surface depletion layer l2, the source resistance R. The aim is to reduce the

(発明が解決しようとする課題) 一般に2 トランジスタの高速動作の指標となる遮断周
波数ftは次の式(1)で表される。
(Problems to be Solved by the Invention) In general, the cutoff frequency ft, which is an index of high-speed operation of a 2 transistor, is expressed by the following equation (1).

b=c./2πc,.     Q) ここで+Gljはトランジスタの真性相互コンダクタン
ス+C91mはソース・ゲート間容量である。『,を大
きくシ,トランジスタの高速動作を実現するには,G.
を増大させるか,および/またはC,iを低減すること
が必要である。近年, Gaを増大させる方法として.
例えば第2図において,電子供給層であるn・−AIG
aAs層4中の不純物濃度を高くしたり,不純物をプレ
ーナドーピングしたりすることなどが提案されている.
他方,C,1を低減するためには.ゲート長の短縮が行
われている。
b=c. /2πc,. Q) Here, +Glj is the transistor's intrinsic mutual conductance, and +C91m is the source-gate capacitance. ``To achieve high-speed operation of transistors by increasing , G.
It is necessary to increase C,i and/or decrease C,i. In recent years, it has been used as a method to increase Ga.
For example, in Figure 2, the electron supply layer n・-AIG
It has been proposed to increase the impurity concentration in the aAs layer 4 or to planarly dope the impurity.
On the other hand, in order to reduce C,1. The gate length is being shortened.

また,トランジスタの低雑音特性の指標となる最小雑音
指数NF.iは次の式(2)で表される。
In addition, the minimum noise figure NF, which is an index of the low noise characteristics of a transistor, is also used. i is expressed by the following equation (2).

(以下余白) ?こで,κfはフィッティングパラメータ,『は動作周
波数+RIはソース抵抗+ R9はゲート抵抗+GI6
およびCpsは上で定義した通りである, NF■。を
小さ<シ,トランジスタの低雑音特性を向上させるには
,上で述べた遮断周波数fアの場合と同様に,G.の増
大および/またはC。の低減が必要であり,さらに抵抗
或分R3およびR,の低減も有効である。
(Left below) ? Here, κf is the fitting parameter, ``is the operating frequency + RI is the source resistance + R9 is the gate resistance + GI6
and Cps are as defined above, NF■. In order to improve the low noise characteristics of the transistor, G. an increase in and/or C. It is necessary to reduce the resistance R3 and R, and it is also effective to reduce the resistance R3 and R to some extent.

第2図に示すような構造のlit!MTでは,電子供給
層である1”−AIGaAs層4が通常400λ程度と
非常に薄いため,ソース電極7とゲート電極9との間お
よびドレイン電極8とゲート電極9との間において,2
次元電子ガスl1は表面空乏層l2による変調を受け,
  n”−AIGaAs層4が充分厚い場合の1/3程
度である3〜5X10”cm−”の2次元電子ガス濃度
となる。しかも,ソース・ゲート間の電気伝導を,濃度
が低下した2次元電子ガス11だけに頼っているため,
ソース抵抗R1が増大する.他方,第3図に示すような
深いリセス構造のHEMTでは,ソース抵抗R.の低減
が可能である。しかし,第4図に示すように, n ”
−GaAsキャップ層17には表面準位による表面空乏
層12が形成され.n゛−AIGaAs層4にはショッ
トキ障壁によるゲート直下空乏層18が形成されるので
,ゲート電極9と.ゲート電極近傍のn”−GaAsキ
ャップ層17およびn″−AIGaAs層4との間の容
量(ゲートフリンジ容量Ct)が増大する。第5図は.
ゲート幅一,を200μ鵬とした場合の,ゲート長Lg
とソース・ゲート間容量Cwtとの関係を示す。この図
から明らかなように.大きなゲートフリンジ容量Ctが
存在すると,Lgをサブミクロンレベルに短縮した場合
でも,C,.が効果的に低減されない. 本発明は上記従来の問題点を解決するものであり,その
目的とするところは,ソース・ゲート間容量C,3を増
加させることなく5 ソース抵抗れを低減することがで
きるため,低雑音特性に優れ,かつ高速動作が可能な高
出力用の半導体装置を提供することにある。
The lit! structure as shown in Figure 2! In MT, since the 1''-AIGaAs layer 4, which is the electron supply layer, is very thin, usually about 400λ, there is a
The dimensional electron gas l1 is modulated by the surface depletion layer l2,
The two-dimensional electron gas concentration is 3 to 5 x 10 cm-, which is about 1/3 of that when the n''-AIGaAs layer 4 is sufficiently thick. Because it relies only on electronic gas 11,
Source resistance R1 increases. On the other hand, in a HEMT with a deep recess structure as shown in FIG. 3, the source resistance R. It is possible to reduce However, as shown in Figure 4, n ”
- A surface depletion layer 12 is formed in the GaAs cap layer 17 due to surface states. A depletion layer 18 directly under the gate due to a Schottky barrier is formed in the n-AIGaAs layer 4, so that the gate electrode 9 and . The capacitance (gate fringe capacitance Ct) between the n''-GaAs cap layer 17 and the n''-AIGaAs layer 4 near the gate electrode increases. Figure 5 is.
Gate length Lg when gate width is 200μ
The relationship between Cwt and the source-gate capacitance Cwt is shown. As is clear from this figure. If a large gate fringe capacitance Ct exists, even if Lg is shortened to the submicron level, C, . is not effectively reduced. The present invention solves the above-mentioned conventional problems, and its purpose is to reduce the source resistance deviation without increasing the source-gate capacitance C,3, thereby achieving low noise characteristics. The object of the present invention is to provide a high-output semiconductor device that is excellent in performance and capable of high-speed operation.

(課題を解決するための手段) 本発明の半導体装置は,半導体基板の上方に形成された
半導体層と,該半導体層上にオー稟ツク接合を形成する
よう設けられたソース電極およびトレイン電極と,該半
導体層上にショットキ接合を形戒するように設けられた
ゲート電極とを備えた半導体装置であって.該ソース電
極と該ゲート電極との間および該ドレイン電極と該ゲー
ト電極との間における該半導体層上の少なくとも一部に
形成された金属薄膜を有し,そのことにより上記目的が
達成される。
(Means for Solving the Problems) A semiconductor device of the present invention includes a semiconductor layer formed above a semiconductor substrate, and a source electrode and a train electrode provided on the semiconductor layer to form an orthogonal junction. , and a gate electrode provided on the semiconductor layer to form a Schottky junction. The above object is achieved by including a metal thin film formed on at least a portion of the semiconductor layer between the source electrode and the gate electrode and between the drain electrode and the gate electrode.

本発明の半導体装置は,ソース・ゲート間に印加する電
圧により,ソース・ドレイン電流を制御することを動作
原理とする半導体装置である。ソース電極とゲート電極
との間およびドレイン電極とゲート電極との間に設けら
れた金属薄膜は.上記の半導体層上の一部または全部に
形成されており,例えばアルミニウム(AI) ,チ)
) 7 (Ti) ,クロム(Cr) ,ニッケル(N
i )などの金属からな?。その厚みは,以下に説明す
るように,約3原子層またはそれ以下であることが好ま
しい。
The semiconductor device of the present invention is a semiconductor device whose operating principle is to control source-drain current by applying a voltage between the source and gate. The metal thin film provided between the source electrode and the gate electrode and between the drain electrode and the gate electrode. It is formed on a part or all of the above semiconductor layer, such as aluminum (AI),
) 7 (Ti), chromium (Cr), nickel (N
Is it from metals such as i)? . The thickness is preferably about 3 atomic layers or less, as explained below.

(作用) 通常,ウェットエッチングなどの化学的処理を施したG
aAs層の表面には,厚みが10入程度の酸化膜が形成
されている(S.P. Kowalczyk, et 
al.+Appl. Phys. Lett, 38,
 167  (1981) ) − この表面酸化膜は
, Asz03およびGalO.,の両方を含んでいる
。このように, GaAsMの表面が, As.03お
よびGa202の両方を含んだ酸化膜で覆われている場
合,その界面におけるバンドペンディングの高さは約0
.7 eVである。これに対し, Ga.Osだけから
なる薄膜で覆われたGaAs層の表面におけるバンドペ
ンディングの高さは約0.3 eVとなっている。
(Effect) Usually, G is treated with chemical treatments such as wet etching.
An oxide film with a thickness of about 10 mm is formed on the surface of the aAs layer (S.P. Kowalczyk, et al.
al. +Appl. Phys. Lett, 38,
167 (1981)) - This surface oxide film is composed of Asz03 and GalO. , including both. In this way, the surface of GaAsM is As. When covered with an oxide film containing both 03 and Ga202, the height of the band pending at the interface is approximately 0.
.. 7 eV. On the other hand, Ga. The band-pending height at the surface of the GaAs layer covered with a thin film made only of Os is about 0.3 eV.

また+ GaAsの表面に40人以上の厚みのAI薄膜
を被着させた場合,その界面に形戊されるショットキ接
合の障壁高さは0.7 eVであり, As■03およ
びGa.0.の両方を含んだ酸化膜で覆われたGaAs
層の表面におけるバンドペンディングの高さとほぼ同じ
である。他方, AI薄膜の厚みが例えば3原子層以下
である場合,ショットキ接合の障壁高さは0.3eVで
あり,40人以上の厚みのAI薄膜を被着させた場合の
シ1冫トキ接合の障壁高さや, Asz03およびGa
Jsの両方を含んだ酸化膜で覆われたGaAs層の表面
におけるバンドペンディングの高さに比べて低い値にな
っている。
Furthermore, when an AI thin film with a thickness of 40 or more is deposited on the surface of +GaAs, the barrier height of the Schottky junction formed at the interface is 0.7 eV, which is the same as that of As■03 and GaAs. 0. GaAs covered with an oxide film containing both
It is approximately the same as the height of the band pending at the surface of the layer. On the other hand, when the thickness of the AI thin film is, for example, 3 atomic layers or less, the barrier height of the Schottky junction is 0.3 eV, and the barrier height of the Schottky junction is 0.3 eV when the thickness of the AI thin film is 40 or more. Barrier height, Asz03 and Ga
This value is lower than the height of the band pending on the surface of the GaAs layer covered with the oxide film containing both Js and Js.

この現象は次のように説明することができる。This phenomenon can be explained as follows.

At薄膜が非常に薄い(例えば,約3原子層またはそれ
以下)の場合には, GaAs層の表面では次のような
反応が起こっている。
When the At thin film is very thin (for example, about 3 atomic layers or less), the following reaction occurs on the surface of the GaAs layer.

2AI  +^S20,→As203 +Asz  ↑
つまり, AI薄膜をtl威するAIは, GaAs層
の表面に形成された酸化膜に含まれるAssesを還元
してAssを形戒する。Assは蒸気圧が高く,容易に
雰囲気中へ拡散する。これに対し.非常に厚みの薄いA
I薄膜では,酸化膜中のGaze3は,上記の反応に関
与せず変化しない。従って.この場合, GaAs層の
表面は見かけ上Ga203だけからなる薄膜で覆われた
状態となり,その表面におけるバンドペンディングの高
さが0.3 eVと低くなる。
2AI +^S20,→As203 +Asz ↑
In other words, AI that attacks the AI thin film reduces Ass contained in the oxide film formed on the surface of the GaAs layer, thereby converting Ass. Ass has a high vapor pressure and easily diffuses into the atmosphere. In contrast to this. Very thin A
In the I thin film, Gaze3 in the oxide film does not participate in the above reaction and does not change. Therefore. In this case, the surface of the GaAs layer is apparently covered with a thin film consisting only of Ga203, and the band pending height on the surface is as low as 0.3 eV.

他方,All膜が充分厚い(40入以上)場合には,酸
化膜に含まれるGaz01がさらに次のような反応を起
こす. 2AI  +Ga=O= →A3z03  +2Gaつ
まり, AI薄膜を構或するAIが, GaAs層表面
の酸化膜中に残存するGa.O.を還元してGaを形成
する.Gaは金属元素であり, GaAs層表面に残存
する。従って.この場合, GaAs層の表面は見かけ
上All膜で覆われた状態となり,通常のショットキ接
合が形成される。
On the other hand, if the All film is sufficiently thick (40 or more), the Gaz01 contained in the oxide film further causes the following reaction. 2AI +Ga=O= →A3z03 +2Ga In other words, the AI that makes up the AI thin film is the Ga. O. is reduced to form Ga. Ga is a metal element and remains on the surface of the GaAs layer. Therefore. In this case, the surface of the GaAs layer is apparently covered with an Al film, and a normal Schottky junction is formed.

本発明の半導体装置では,ソース電極とゲート電極との
間およびドレイン電極とゲート電極との間における半導
体層表面に非常に薄い金属薄膜が設けられているため.
該半導体層表面のバンドペンディングの高さが,このよ
うな金属薄膜を有さない.例えば第2図に示すような従
来のHEH↑に比ベて低くなる。従って,ソース電極と
ゲート電極との間およびドレイン電極とゲート電極との
間において,2次元電子ガスが表面空乏層による変調を
受けることがなく.従来のHEMTの3倍に近い1〜1
.5 XIO”cm−”の2次元電子ガス濃度を得るこ
とができ,ソース抵抗R.の低減が可能となる。また,
本発明の半導体装置はプレーナ構造であるため,深いリ
セス構造を有する,例えば第3図に示す従来のHEMT
のような大きいゲートフリンジ容量Cfが存在しない。
In the semiconductor device of the present invention, a very thin metal thin film is provided on the surface of the semiconductor layer between the source electrode and the gate electrode and between the drain electrode and the gate electrode.
The height of the band pending on the surface of the semiconductor layer does not have such a metal thin film. For example, it is lower than the conventional HEH↑ as shown in FIG. Therefore, the two-dimensional electron gas is not modulated by the surface depletion layer between the source electrode and the gate electrode and between the drain electrode and the gate electrode. 1 to 1, nearly three times that of conventional HEMT
.. A two-dimensional electron gas concentration of 5XIO"cm-" can be obtained, and the source resistance R. It is possible to reduce the Also,
Since the semiconductor device of the present invention has a planar structure, it has a deep recess structure, for example, compared to the conventional HEMT shown in FIG.
There is no such large gate fringe capacitance Cf.

従って,ソース・ゲート間容量C,.を増加させること
な<,R.の低凍が可能となる.なお,ここではAI薄
膜を設けた場合について説明したが,上記のTi, C
r, Niなとの金属についても, AIと同様の効果
があることが見い出された。
Therefore, the source-gate capacitance C, . without increasing <, R. This makes it possible to freeze at a low temperature. Although the case where an AI thin film is provided has been explained here, the above Ti, C
It was also found that metals such as r and Ni have the same effect as AI.

(実施例) 以下に本発明の実施例について述べる。(Example) Examples of the present invention will be described below.

第1図(a)は本発明の一実施例であるAIGaAs/
GaAs系}IEMTの断面図である.このHEM’r
は次のようにして作製された. まず.半絶縁性GaAs基板lの表面を,硫酸・過酸化
水素・水の混合溶液でエッチング処理した後,第1図(
b)に示すように,この半絶縁性GaAs基板1上に,
アンドープGaAs層2(厚さs, ooo人),アン
ドーブAIGaAsスベーサ層3 (AI組或比0.2
6,厚さ20λ) +  2 XIO”cm−’Stド
ーブn”−AIGaAs層4(AI組成比0.26,厚
さ200人) ,  2 XIO”cm−’Siドーブ
n”−AI.Gal−,AsグレーデッドJi5(Al
組J戊比x=0.26→O ,厚さ100大),および
I XIO”c+++−’Siドーブn′″−GaAs
層6(厚さ150人)を,分子線エビタキシャル成長法
(MBE )により連続的に或長させた。なお5成長温
度は600 ’Cであり,V/■フランクス比は6であ
った。
FIG. 1(a) shows an AIGaAs/
1 is a cross-sectional view of a GaAs-based IEMT. This HEM'r
was created as follows. first. After etching the surface of the semi-insulating GaAs substrate l with a mixed solution of sulfuric acid, hydrogen peroxide, and water,
As shown in b), on this semi-insulating GaAs substrate 1,
Undoped GaAs layer 2 (thickness s, ooo), undoped AIGaAs base layer 3 (AI group ratio 0.2
6, thickness 20λ) + 2 XIO"cm-'St-doped n"-AIGaAs layer 4 (AI composition ratio 0.26, thickness 200), 2 XIO"cm-'Si-doped n"-AI. Gal-, As graded Ji5 (Al
Group J ratio x = 0.26 → O, thickness 100), and I
Layer 6 (150 layers thick) was continuously elongated by molecular beam epitaxy (MBE). Note that the growth temperature was 600'C, and the V/■Franks ratio was 6.

次いで,ホトレジストをエッチングマスクとして,メサ
状にエッチングすることにょり1第1図(C)に示すよ
うに,活性領域を電気的に分離した後,エッチングマス
クに使用したホトレジストを除去した.なお, GaA
sJIおよびAIGaAs層をエッチングするためのエ
ッチャントには,リン酸・過酸化水素・水の混合溶液を
用いた。
Next, using the photoresist as an etching mask, etching was performed in a mesa shape to electrically isolate the active region as shown in Figure 1(C), and then the photoresist used as an etching mask was removed. In addition, GaA
A mixed solution of phosphoric acid, hydrogen peroxide, and water was used as an etchant for etching the sJI and AIGaAs layers.

続いて,ホトエッチング工程やアロイ工程などの通常の
プロセス技術により,第1図(d)に示すようなソース
電極7およびドレイン電極8を形成した。そして,ゲー
ト形成用ホトレジストパターンl3を設けた後,このホ
トレジストパターン13をマスクとしてアルミニウム(
AI)を2000人の厚さに蒸着することにより,第1
図(e)に示すようなゲート電極9を形成した, A1
1114が蒸着したホトレジストパターン13は,アセ
トンなどの有機溶剤で除去した(第1図(f))。次い
で,第1図(樽に示すようなホトレジストパターンl5
を形成した後.このホトレジストパターンl5をマスク
として,分子線エビタキシャル成長装置を用いてAlフ
ラ・冫クスを照射することにより, AI薄膜lOを形
成した.なお,基板の回転速度は毎秒3回転であり,基
板温度は室温であった.フラックスの照射時間はフラッ
クス強度に依存するが.例えばAlフラックス強度が6
 XIO−”Torrの場合には, 16秒間であった
Subsequently, a source electrode 7 and a drain electrode 8 as shown in FIG. 1(d) were formed by a normal process technique such as a photoetching process or an alloying process. Then, after providing a photoresist pattern 13 for forming a gate, using this photoresist pattern 13 as a mask, aluminum (
By depositing AI) to a thickness of 2000,
A1 with gate electrode 9 formed as shown in Figure (e)
The photoresist pattern 13 on which 1114 was deposited was removed using an organic solvent such as acetone (FIG. 1(f)). Next, a photoresist pattern l5 as shown in FIG.
After forming . Using this photoresist pattern 15 as a mask, an AI thin film 10 was formed by irradiating Al flux using a molecular beam epitaxy apparatus. The rotation speed of the substrate was 3 revolutions per second, and the substrate temperature was room temperature. The flux irradiation time depends on the flux intensity. For example, the Al flux strength is 6
In the case of XIO-''Torr, it was 16 seconds.

最後に, At薄膜16が蒸着したホトレジストパター
ンl5を,アセトンなどの有機溶剤を用いて除去し2第
1図(a)に示すようなAIGaAs/GaAs系HE
MTを得た. このようにして得られたHEMTは,第2図に示すよう
な従来のHEMTに比較して,ソース・ゲート間容量C
91を増加させることなく,ゲート幅が200 u m
の場合に,ソース抵抗R,が2Ω低減された。
Finally, the photoresist pattern l5 on which the At thin film 16 has been deposited is removed using an organic solvent such as acetone to form an AIGaAs/GaAs HE as shown in Figure 1(a).
I got MT. The HEMT obtained in this way has a higher source-gate capacitance than the conventional HEMT shown in Figure 2.
Gate width is 200 μm without increasing 91
In this case, the source resistance R, was reduced by 2Ω.

(発明の効果) 本発明によれば,ソース・ゲート間容量c1を増加させ
ることなく,ソース抵抗R8が低減されたMESPET
やHl!MTなどの半導体装置が得られる。このような
半導体装置は,低雑音特性に優れ,かつ高速動作が可能
な高出力用の半導体装置として有用である。
(Effects of the Invention) According to the present invention, the MESPET has a reduced source resistance R8 without increasing the source-gate capacitance c1.
YaHl! A semiconductor device such as an MT can be obtained. Such a semiconductor device is useful as a high-power semiconductor device that has excellent low noise characteristics and is capable of high-speed operation.

4  ′゛  の   な量′I 第1図(a)〜(のは本発明の一実施例であるAIGa
As/GaAs系HEMTの製造工程を示す断面図,第
2図はプレーナ構造を有する従来例のAIGaAs/G
aAs系HEMTの断面図.第3図はリセス構造を有す
る従来例のAIGaAs/ GaAs系HEMTの断面
図,第4図は第3図のAIGaAs/GaAs系HEM
Tにおけるゲートフリンジ容量Cfの分布モデルを示す
断面図,第5図は,第3?のA IGaAs / Ga
As系II E M Tにおいて.ゲート幅W,一20
0μmの場合の,ゲート長L,とソース・ゲート間容量
C■との関係を示すグラフである。
Figure 1 (a) to (A
A cross-sectional view showing the manufacturing process of an As/GaAs HEMT, Figure 2 is a conventional AIGaAs/G with a planar structure.
Cross-sectional view of aAs-based HEMT. Figure 3 is a cross-sectional view of a conventional AIGaAs/GaAs HEMT with a recessed structure, and Figure 4 is a cross-sectional view of the AIGaAs/GaAs HEMT shown in Figure 3.
A cross-sectional view showing a distribution model of the gate fringe capacitance Cf at T, FIG. A IGaAs/Ga
In As-based II E MT. Gate width W, -20
3 is a graph showing the relationship between gate length L and source-gate capacitance C■ in the case of 0 μm.

1・・・半絶縁性GaAs基仮,2・・・アンドーブG
aAs層3・・・アンドーフ゜AIGaAsスペーサ層
,  4・=n”−AIGaAs層,  5・・・n”
−AIXGa,−. Asグレーデッド層(AI組成比
x=0.26→0 ) ,  6 ・”n”″−GaA
s N,  7−ソース電極,8・・・ドレイン電極,
9・・・ゲート電極, 10・・・A1薄膜, 11・
・・2次元電子ガス,12・・・表面空乏層,l7・・
・r1”−GaAsキャップ層,18・・・ゲート直下
空乏層。
1... Semi-insulating GaAs group temporary, 2... Andobe G
aAs layer 3... undoped AIGaAs spacer layer, 4.=n"-AIGaAs layer, 5...n"
-AIXGa,-. As graded layer (AI composition ratio x=0.26→0), 6・”n””-GaA
s N, 7-source electrode, 8... drain electrode,
9... Gate electrode, 10... A1 thin film, 11.
...Two-dimensional electron gas, 12...Surface depletion layer, l7...
・r1''-GaAs cap layer, 18... Depletion layer directly under the gate.

以上that's all

Claims (1)

【特許請求の範囲】 1、半導体基板の上方に形成された半導体層と、該半導
体層上にオーミック接合を形成するように設けられたソ
ース電極およびドレイン電極と、該半導体層上にショッ
トキ接合を形成するように設けられたゲート電極とを備
えた半導体装置であって、 該ソース電極と該ゲート電極との間および該ドレイン電
極と該ゲート電極との間における該半導体層上の少なく
とも一部に形成された金属薄膜を、有する、半導体装置
[Claims] 1. A semiconductor layer formed above a semiconductor substrate, a source electrode and a drain electrode provided to form an ohmic contact on the semiconductor layer, and a Schottky junction on the semiconductor layer. A semiconductor device comprising: a gate electrode provided to form a semiconductor layer on at least a portion of the semiconductor layer between the source electrode and the gate electrode and between the drain electrode and the gate electrode; A semiconductor device having a formed metal thin film.
JP19355989A 1989-07-26 1989-07-26 Semiconductor device Pending JPH0358434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19355989A JPH0358434A (en) 1989-07-26 1989-07-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19355989A JPH0358434A (en) 1989-07-26 1989-07-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0358434A true JPH0358434A (en) 1991-03-13

Family

ID=16310051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19355989A Pending JPH0358434A (en) 1989-07-26 1989-07-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0358434A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830193A (en) * 1993-12-28 1998-11-03 Higashikawa; Tetsuro Syringe
JP2007082634A (en) * 2005-09-20 2007-04-05 En Otsuka Pharmaceutical Co Ltd Nutritive composition dosing device
JP2007117272A (en) * 2005-10-26 2007-05-17 Vekuson:Kk Syringe for kit pharmaceutical preparation, intermediate slide valve for syringe type kit pharmaceutical preparation, syringe type kit pharmaceutical preparation, and manufacturing method for syringe barrel for kit pharmaceutical preparation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830193A (en) * 1993-12-28 1998-11-03 Higashikawa; Tetsuro Syringe
JP2007082634A (en) * 2005-09-20 2007-04-05 En Otsuka Pharmaceutical Co Ltd Nutritive composition dosing device
JP2007117272A (en) * 2005-10-26 2007-05-17 Vekuson:Kk Syringe for kit pharmaceutical preparation, intermediate slide valve for syringe type kit pharmaceutical preparation, syringe type kit pharmaceutical preparation, and manufacturing method for syringe barrel for kit pharmaceutical preparation

Similar Documents

Publication Publication Date Title
US9343563B2 (en) Selectively area regrown III-nitride high electron mobility transistor
JPH0794758A (en) Manufacture of delta-doped quantum well type field-effect transistor
JPH11204778A (en) Nitride-based iii-v compd. semiconductor device
US6391696B1 (en) Field effect transistor and method of manufacturing thereof
JP2003209124A (en) Method of manufacturing field-effect semiconductor device, and field-effect semiconductor device
JPH07130990A (en) Compound semiconductor device and its manufacture
JP2019062115A (en) Method for manufacturing field-effect transistor and field-effect transistor
KR100329251B1 (en) Semiconductor device and manufacturing method thereof
CN113937155B (en) Component gradient composite barrier layer HEMT device and preparation method thereof
JP2006511095A (en) Sulfide sealing passivation technique
JP4330851B2 (en) Manufacturing method of semiconductor device
US6953955B2 (en) InGaAs/GaAs high electron mobility transistor
CN112201689B (en) Field effect transistor based on III-nitride heterojunction and preparation method thereof
JPH0358434A (en) Semiconductor device
JP2005005646A (en) Semiconductor device
KR100238533B1 (en) Semiconductor device having a plasma processed layer and method of manufacturing the same
JP2003273130A (en) Semiconductor device and manufacturing method thereof
US20150129890A1 (en) Transistor
KR102535264B1 (en) Method for manufacturing of high electron mobility transistors
JPS6273675A (en) Semiconductor device
JP3520625B2 (en) Method for manufacturing semiconductor device
JPH0982727A (en) Semiconductor device and its manufacture
JP3083683B2 (en) Semiconductor device
JP3077653B2 (en) Field effect transistor and method of manufacturing the same
JPH02288343A (en) Semiconductor device