JPH0355930Y2 - - Google Patents
Info
- Publication number
- JPH0355930Y2 JPH0355930Y2 JP1982086875U JP8687582U JPH0355930Y2 JP H0355930 Y2 JPH0355930 Y2 JP H0355930Y2 JP 1982086875 U JP1982086875 U JP 1982086875U JP 8687582 U JP8687582 U JP 8687582U JP H0355930 Y2 JPH0355930 Y2 JP H0355930Y2
- Authority
- JP
- Japan
- Prior art keywords
- tape
- optical fiber
- optical
- fiber cable
- helical groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013307 optical fiber Substances 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 10
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 238000009434 installation Methods 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Landscapes
- Light Guides In General And Applications Therefor (AREA)
- Insulated Conductors (AREA)
Description
本考案は機械強度が大でかつ多心化をはかつた
光フアイバケーブルの改良に関し、特に架空の配
線系などの領域への適用に好適である。
この種のケーブルとしては第1図、第2図に示
した構造、つまり第3図に示すように外径が0.3
mm程度の光フアイバ(シリコーンなどの被覆を有
する)1を多数本、例えば5本を一列に並べて一
括してナイロンなどの被覆2を施したいわゆるテ
ープ型光ユニツト3を3枚積層し、、その外周に
アルミラミネートシース4を施した構造のユニツ
トを形成しさらにこのユニツトを多数条、中心の
抗張力体5のまわりに撚合せて外被6を被覆した
構造が提案されている。
本考案は上述の従来構造に比べてさらに細径
化、低コスト化、高強度化を実現するために提案
されたものである。第4図、第5図に本考案の実
施例を示した。第4図は中心のFRPからなる抗
張力体5のまわりにポリエチレンを押出成形して
外周の長さ方向に連続してらせん溝7をもうけた
スペーサ8の溝7内に前記のテープ型光ユニツト
3を半径方向に3層重ねて収納した構造であり溝
の数を4条とした場合である。第5図は溝の数を
6条とした場合である。
本考案と従来構造とで光フアイバ収容心数を同
一にした場合のケーブル外径を比較すると第1表
のとおりである。すなわち、本考案の具体例にお
いては、第1表に示す通り、溝の寸法が2×2mm
となつており、ここに寸法が0.5×1.5mmのテープ
状光ユニツトが3枚(3サブユニツト)積層され
ている。従つて、3枚積層された合計の寸法は
1.5×1.5mmとなり、その対角線寸法は2mm以上
(約2.1mm)となつている。本考案の構造ではケー
ブル外径が従来構造に比べて80%弱となり、細径
化されること、逆に言えばケーブル外径を同一と
した場合には多心化できることになり、従つて低
コスト化にもつながるという特長を有する。
The present invention relates to the improvement of optical fiber cables with high mechanical strength and multi-core fibers, and is particularly suitable for application to areas such as aerial wiring systems. This type of cable has the structure shown in Figures 1 and 2, that is, the outer diameter is 0.3 as shown in Figure 3.
Three so-called tape-type optical units 3 are laminated with a large number of optical fibers (coated with silicone, etc.) 1 of about mm size, for example, five fibers arranged in a row and coated with a coating 2 of nylon or the like. A structure has been proposed in which a unit is formed with an aluminum laminate sheath 4 on the outer periphery, and a large number of these units are twisted around a central tensile strength member 5 and covered with an outer sheath 6. The present invention was proposed in order to realize smaller diameter, lower cost, and higher strength than the conventional structure described above. An embodiment of the present invention is shown in FIGS. 4 and 5. FIG. 4 shows the above-mentioned tape-type optical unit 3 in the groove 7 of a spacer 8, which is formed by extruding polyethylene around the central tensile strength member 5 made of FRP and has a spiral groove 7 continuous in the length direction of the outer periphery. This is a structure in which three layers are stacked in the radial direction and the number of grooves is four. Figure 5 shows a case where the number of grooves is six. Table 1 shows a comparison of the cable outer diameters between the present invention and the conventional structure when the number of optical fibers accommodated is the same. That is, in the specific example of the present invention, as shown in Table 1, the groove dimensions are 2 x 2 mm.
Three tape-shaped optical units (3 subunits) with dimensions of 0.5 x 1.5 mm are stacked here. Therefore, the total dimensions of the three laminated sheets are
The size is 1.5 x 1.5 mm, and the diagonal dimension is 2 mm or more (approximately 2.1 mm). With the structure of the present invention, the outer diameter of the cable is less than 80% compared to the conventional structure, which means that the cable diameter is smaller.Conversely, if the outer diameter of the cable is the same, it is possible to increase the number of cores, thus reducing the cable diameter. It also has the advantage of being cost effective.
【表】
また、ケーブルの耐側圧特性についても本考案
では光フアイバがスペーサの溝内に収納されてい
るために従来構造の2倍以上の荷重に対しても光
フアイバの伝送特性を安定に保持できる。経済性
の比較においても従来構造に比べて工数を減らせ
るという特長を活かせる。
さらに本考案のケーブル構造においては光フア
イバの配列をケーブル中心軸に対して規則正しく
保持できる。すなわち、テープ状光ユニツトは第
4図のように、上記らせん溝7内で互いに直接に
接しうる状態で半径方向に複数積層され、かつ上
記らせん溝7の幅および深さは、第1表に具体例
が示されるように光フアイバケーブルがその布設
時に曲げられたときに、積層して収容された複数
のテープ状光ユニツトが、上記のらせん溝7の底
面、側壁および上面の外被6に当接し、これによ
り互いに入れ代つて配列の乱れが生じることがな
い大きさになつている。つまり、第1表の例では
3枚積層されるユニツト(1.5×1.5mm寸法の対角
線寸法が2mm以上(約2.1mm)となり、従つてら
せん溝7の幅および深さ寸法がそれぞれ2mmであ
るので、ユニツトがひつくり返つたりすることが
ない。このため、ケーブル布設時の曲げなどの履
歴および布設後の過酷な環境変化に対しても光フ
アイバの伝送特性を安定に保ち、かつ無歪の状態
に保つことができるという特長を有する。温度変
化に対しても熱膨張率の小さな中心の抗張力体と
一体化されたプラスチツクスペーサの溝内に光フ
アイバが収納されているので、光フアイバのマイ
クロベンデイングを軽減でき伝送特性を安定化で
きることになる。スペーサの溝内に防水混和物、
例えば石油系ジエリーなどを充填することにより
非金属水密光ケーブルを実現することもできる。[Table] Regarding the lateral pressure resistance of the cable, in this invention the optical fiber is housed in the groove of the spacer, so the transmission characteristics of the optical fiber are stably maintained even under a load more than twice that of the conventional structure. can. When comparing economical efficiency, it can take advantage of the advantage of reducing man-hours compared to conventional structures. Furthermore, in the cable structure of the present invention, the arrangement of optical fibers can be maintained regularly with respect to the central axis of the cable. That is, as shown in FIG. 4, a plurality of tape-shaped optical units are stacked in the radial direction in such a manner that they can directly contact each other within the spiral groove 7, and the width and depth of the spiral groove 7 are as shown in Table 1. As shown in the specific example, when the optical fiber cable is bent during its installation, a plurality of tape-shaped optical units housed in a stack are attached to the outer sheath 6 on the bottom, side wall, and top surface of the spiral groove 7. The size is such that they do not come into contact with each other, thereby preventing them from being replaced with each other and disrupting the arrangement. In other words, in the example in Table 1, the diagonal dimension of the three stacked units (1.5 x 1.5 mm dimensions is 2 mm or more (approximately 2.1 mm)), and therefore the width and depth dimensions of the spiral groove 7 are each 2 mm. , the unit will not twitch back and forth.As a result, the transmission characteristics of the optical fiber will remain stable even under the history of bending during cable installation and harsh environmental changes after installation, and will remain distortion-free. The optical fiber is housed in the groove of the plastic spacer that is integrated with the central tensile strength member, which has a small coefficient of thermal expansion even when the temperature changes. This reduces bending and stabilizes the transmission characteristics.A waterproofing compound is added to the groove of the spacer.
For example, a non-metallic watertight optical cable can be realized by filling it with petroleum-based jewelry or the like.
第1図〜第3図は従来の光フアイバケーブルの
断面図、第4図、第5図は本考案の光フアイバケ
ーブルの断面図であり
1……光フアイバ、3……テープ型光ユニツ
ト、5……抗張力体、7……らせん溝、8……ス
ペーサ、を示す。
1 to 3 are cross-sectional views of conventional optical fiber cables, and FIGS. 4 and 5 are cross-sectional views of optical fiber cables of the present invention. 1... optical fiber, 3... tape type optical unit, 5... Tensile strength body, 7... Spiral groove, 8... Spacer.
Claims (1)
して前記光フアイバを被覆材中に一体的に埋設し
た略同一サイズのテープ状光ユニツトを複数撚合
せてなる光フアイバケーブルにおいて、 中心の抗張力体に固定され、外周の長さ方向に
所定の幅および深さのらせん溝を有するスペーサ
と、 この外周に設けられた外被とを備え、 前記テープ状光ユニツトは前記らせん溝内で互
いに接着されることなく直接に接しうる状態で半
径方向に複数積層され、 前記らせん溝の幅および深さは、光フアイバケ
ーブルがその布設時に曲げられたときに、積層し
て収容された前記複数のテープ状光ユニツトが、
前記らせん溝の底面、側壁および当該らせん溝上
面の前記外被に当接し、これにより互いに入れ代
つて配列の乱れが生じることがない大きさである
ことを特徴とする光フアイバケーブル。[Claims for Utility Model Registration] Consisting of a plurality of tape-shaped optical units of approximately the same size, which are made by arranging a plurality of optical fibers in a row and covering them all at once, and then embedding the optical fibers integrally in the covering material. The optical fiber cable includes a spacer fixed to a central tensile strength member and having a spiral groove of a predetermined width and depth in the length direction of the outer periphery, and a jacket provided on the outer periphery, and the tape-shaped optical unit are laminated in the radial direction in a state in which they can be in direct contact with each other without being glued together in the helical groove, and the width and depth of the helical groove are such that the laminated fibers are formed when the optical fiber cable is bent during installation. The plurality of tape-shaped optical units housed in
An optical fiber cable having a size that abuts against the bottom surface, side wall, and outer sheath on the top surface of the helical groove, thereby preventing them from being replaced with each other and causing disorder in the arrangement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8687582U JPS58188613U (en) | 1982-06-10 | 1982-06-10 | fiber optic cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8687582U JPS58188613U (en) | 1982-06-10 | 1982-06-10 | fiber optic cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58188613U JPS58188613U (en) | 1983-12-15 |
JPH0355930Y2 true JPH0355930Y2 (en) | 1991-12-13 |
Family
ID=30095639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8687582U Granted JPS58188613U (en) | 1982-06-10 | 1982-06-10 | fiber optic cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58188613U (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085444Y2 (en) * | 1985-09-19 | 1996-02-14 | 住友電気工業株式会社 | Spacer type optical fiber cable |
JPS6289915A (en) * | 1985-10-11 | 1987-04-24 | Sumitomo Electric Ind Ltd | Optical fiber unit |
JP2553901B2 (en) * | 1988-02-05 | 1996-11-13 | 日本電信電話株式会社 | Optical fiber tape assembly type optical fiber cable |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4110001A (en) * | 1977-01-05 | 1978-08-29 | General Cable Corporation | Optical fiber cable construction |
-
1982
- 1982-06-10 JP JP8687582U patent/JPS58188613U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4110001A (en) * | 1977-01-05 | 1978-08-29 | General Cable Corporation | Optical fiber cable construction |
Also Published As
Publication number | Publication date |
---|---|
JPS58188613U (en) | 1983-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4715677A (en) | Ruggedized optical fiber cable | |
US6229944B1 (en) | Optical fiber cable | |
US5878180A (en) | Optical fiber cable with stacks of optical fiber ribbons | |
KR960014130B1 (en) | Optical cable | |
CN1012221B (en) | Optical fiber cable having non-metallic sheath system | |
US5999676A (en) | Aerial optical fiber cable | |
JPH0355930Y2 (en) | ||
JPS58150907A (en) | Optical fiber cable having built-in core tape | |
JPH02137810A (en) | Tape type optical fiber cord | |
JPH08334662A (en) | Optical fiber cable | |
JP3523996B2 (en) | Fiber optic cable | |
JP2000193856A (en) | Cable covering and optical fiber cable using it | |
JPS58150906A (en) | Tapelike optical fiber core unit | |
JPS5886501A (en) | Optical cable | |
JP3010064B2 (en) | Optical cable | |
JP2000241685A (en) | Optical cable | |
JPH0750725Y2 (en) | Optical communication cable | |
JP3354325B2 (en) | Multi-core optical fiber cable | |
JPH0486712A (en) | Coated tape optical fiber type optical fiber cable | |
JPS6336321Y2 (en) | ||
JPH10206708A (en) | Integrated multifiber tape laminated optical fiber | |
JPH11305086A (en) | Optical fiber unit and optical fiber cable using the same | |
JP2628102B2 (en) | Optical cable | |
JPS6037565B2 (en) | Optical fiber composite overhead ground wire | |
JPH08220392A (en) | Optical fiber cable |