Nothing Special   »   [go: up one dir, main page]

JPH0354165A - Ptc ceramic composition and production thereof - Google Patents

Ptc ceramic composition and production thereof

Info

Publication number
JPH0354165A
JPH0354165A JP1188314A JP18831489A JPH0354165A JP H0354165 A JPH0354165 A JP H0354165A JP 1188314 A JP1188314 A JP 1188314A JP 18831489 A JP18831489 A JP 18831489A JP H0354165 A JPH0354165 A JP H0354165A
Authority
JP
Japan
Prior art keywords
mol
main component
proportion
ptc
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1188314A
Other languages
Japanese (ja)
Other versions
JPH075363B2 (en
Inventor
Kazuo Tajima
一夫 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1188314A priority Critical patent/JPH075363B2/en
Publication of JPH0354165A publication Critical patent/JPH0354165A/en
Publication of JPH075363B2 publication Critical patent/JPH075363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To decrease the specific resistance and increase the dielectric strength of the subject composition composed of barium titanate by using a raw material for chemical process in place of a raw material for solid-phase reaction process and utilizing the characteristic feature of the material. CONSTITUTION:BaTiO3, SrTiO3, PbTiO3 and CaTiO3 are separately synthesized by liquid-phase solution reaction process. The synthesized titanates are used as raw materials for the main component expressed by formula (Ba1-x-y-zSrxPbyCaz)TiO3 (0.05<=x<=0.2, 0.03<=y<=0.2, 0.05<=z<=0.15). The main component is compounded with an atomic valence controlling agent composed of 0.2-0.5mol% of one or more elements selected from Sb, Bi, Nb, Ta and rare- earth elements, 0.02-0.08mol% of Mn and <=0.45mol% of Si and the obtained mixture is calcined. The amount of SiO2 to be added as a calcination assistant can be decreased by this process to obtain a PTC ceramics having low specific resistance and high dielectric strength which cannot be attained by conventional process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、定温発熱体、温度センサー、電流制限素子等
に用いられるチタン酸バリウム系PTC(Positi
ve  Temperature  Cocf’l’i
clent)磁器組成物及びその製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is a barium titanate-based PTC (Positi
ve Temperature Cocf'l'i
clent) porcelain composition and its manufacturing method.

[従来の技術コ 一般に、電流制限素子用のチタン酸バリウム系PTCセ
ラミックスの特性としては、室温での比抵抗が小さいこ
と、抵抗変化率が大きいこと、抵抗温度係数が大きいこ
と、耐電圧が高いこと、などがある。このうち、特に、
電流制限素子用のPTCセラミックスに求められる特性
は、比抵抗が可及的に小さく、かつ、耐電圧が高いこと
があげられる。この理由は、同一定格電圧の素子を互い
に比較した場合に、比抵抗が小さいと、更に低抵抗の素
子を得ることができ、耐電圧が高いと、更に薄型で小型
の素子を得ることができると共に、より高電圧の回路に
も使用することが可能となるからである。
[Conventional technology] In general, the characteristics of barium titanate-based PTC ceramics for current limiting elements include a small resistivity at room temperature, a large rate of change in resistance, a large temperature coefficient of resistance, and a high withstand voltage. There are things, etc. Among these, especially
Characteristics required of PTC ceramics for current limiting elements include as low a specific resistance as possible and a high withstand voltage. The reason for this is that when comparing elements with the same rated voltage, if the specific resistance is small, an element with even lower resistance can be obtained, and if the withstand voltage is high, an element with a thinner and smaller size can be obtained. At the same time, it is also possible to use it in higher voltage circuits.

チタン酸バリウム系PTCセラミックスの組成物および
製造方法に関して、従来から多くの提案がなされている
が、いずれの場合も比抵抗を小さくするに従って耐電圧
が低下する。一方、耐電圧を向上させようとすると、比
抵抗が大きくなるという不都合がある。
Many proposals have been made regarding compositions and manufacturing methods for barium titanate-based PTC ceramics, but in all cases, the withstand voltage decreases as the specific resistance decreases. On the other hand, if an attempt is made to improve the withstand voltage, there is a disadvantage that the specific resistance increases.

このため、従来の低抵抗チタン酸バリウム系PTCセラ
ミックスは、比抵抗5Ωcmで耐電圧20〜30v/l
Il1比抵抗10ΩcImで耐電圧40〜60V/II
lii程度であって、これを耐電圧と比抵抗の比(V8
/ρ2,)でみると、いずれも4〜6又はこれ以下にな
り、比抵抗の割りに耐電圧が小さく、実用的ではない。
For this reason, conventional low-resistance barium titanate-based PTC ceramics have a specific resistance of 5 Ωcm and a withstand voltage of 20 to 30 v/l.
Il1 specific resistance 10ΩcIm withstand voltage 40-60V/II
This is the ratio of withstand voltage to specific resistance (V8
/ρ2,), all of them are 4 to 6 or less, and the withstand voltage is small compared to the specific resistance, which is not practical.

従来のチタン酸バリウム系PTCセラミックスは、主成
分であるBaOとT i O2の他に、キュリー点シフ
タとしてSrO,PbQを、原子価制御剤としてS b
20s ,Nb20s並びに稀土類元素などを、抵抗温
度係数の改良剤としてMnOを、更に焼結助剤としてS
 LOz , AR 2 0,などを組成中に含む。こ
のようなPTCセラミックスを製造する場合は、各種の
配合原料を湿式浪合した後に約1000〜1200℃の
温度で仮焼し、いわゆる固相反応法によりBaTiOx
として結晶化させ、再度これを粉砕した後に所望の形状
に成形し、約1300〜1400℃の温度で本焼或する
Conventional barium titanate-based PTC ceramics contain, in addition to the main components BaO and TiO2, SrO and PbQ as Curie point shifters, and Sb as a valence control agent.
20s, Nb20s and rare earth elements, MnO as a resistance temperature coefficient improver, and S as a sintering aid.
The composition contains LOz, AR20, etc. When manufacturing such PTC ceramics, various mixed raw materials are wet-mixed and then calcined at a temperature of about 1000 to 1200°C, and BaTiOx is produced by a so-called solid phase reaction method.
This is crystallized as a powder, and after pulverizing it again, it is molded into a desired shape and fired at a temperature of about 1,300 to 1,400°C.

特に、耐電圧が高く、かつ耐突入電流特性に優れたチタ
ン酸バリウム系半導体磁器組成物として、特公昭63−
28324号公報に記載されたものがある。これに開示
されたPTCセラミックスは、チタン酸バリウムのBa
の一部をキュリー点シフターであるPb,Srで同時に
置換すると共に、更にCaを含有させることにより耐電
圧を向上させたものである。これによれば、出発原料に
BaCO3 ,P b304 ,S r COi ,C
 a COs , T i 02を用い、この他に半導
体化剤、更に焼結剤としてMnCOq,SiO。を所定
の比率で配合添加して湿式混合し、その後、いわゆる固
相反応法によりチタン酸バリウム系磁器として結晶化さ
せる。
In particular, as a barium titanate semiconductor ceramic composition with high withstand voltage and excellent inrush current characteristics,
There is one described in No. 28324. The PTC ceramics disclosed in this publication is made of barium titanate.
The withstand voltage is improved by simultaneously replacing a part of Pb and Sr, which are Curie point shifters, and further containing Ca. According to this, the starting materials include BaCO3, P b304 , S r COi , C
a COs and TiO2, and in addition to these, MnCOq and SiO were used as a semiconductor agent and as a sintering agent. are added in a predetermined ratio and wet-mixed, and then crystallized as barium titanate-based porcelain by a so-called solid phase reaction method.

[発明が解決しようとする課8] しかしながら、上記のPTCセラミックスの耐電圧特性
は、比抵抗の小さなものについては200〜250V/
Iam程度の耐電圧を示すものの、比抵抗はせいぜい4
0〜50Ωcmであって、耐電圧と比抵抗の比(Va 
/ρ25)でみると概ね4〜6の範囲にあり、比抵抗に
対する耐電圧は従来の領域を出ているとはいえない。
[Issue 8 to be solved by the invention] However, the withstand voltage characteristics of the above-mentioned PTC ceramics are 200 to 250 V/2 for those with small specific resistance.
Although it shows a withstand voltage of about Iam, the specific resistance is at most 4
0 to 50 Ωcm, and the ratio of withstand voltage to specific resistance (Va
/ρ25) is generally in the range of 4 to 6, and it cannot be said that the withstand voltage with respect to specific resistance is outside the conventional range.

一般に、チタン酸バリウム系PTCセラミックスの耐電
圧を向上させるためには、セラミックスの結晶粒径を可
及的に小さくすることによって達成できることが知られ
ている。これに関して、従来技術では下記(1)〜(3
)に示すように種々改良改善をノ川えている。
Generally, it is known that the withstand voltage of barium titanate-based PTC ceramics can be improved by reducing the crystal grain size of the ceramics as small as possible. Regarding this, in the prior art, the following (1) to (3)
), various improvements have been made.

(1)結晶粒成長抑制効果および均一化効果をもつ成分
を添加する。
(1) Adding a component that has a crystal grain growth suppressing effect and a uniformizing effect.

(2)仮焼成後の粉砕粒度を均一微細化する。(2) The pulverized particle size after pre-calcination is made uniform and fine.

(3)本焼成温度を可及的に低く抑える。(3) Keep the main firing temperature as low as possible.

特に、上記の従来技術の特徴といえるのは、固相反応法
による原料から出発しているところにある。すなわち、
原料として金属炭酸塩、金属酸化物などを供し、これら
を所定の比率に配合し、湿式混合した後に、いわゆる固
相反応法に従って結晶化させ、所望のセラミックスを得
ている。
In particular, the above-mentioned prior art is characterized by the fact that it starts from raw materials produced by a solid phase reaction method. That is,
Metal carbonates, metal oxides, etc. are provided as raw materials, mixed in a predetermined ratio, wet mixed, and then crystallized according to a so-called solid phase reaction method to obtain the desired ceramics.

しかしながら、上記従来法のいずれの方法においても、
結晶粒径は平均10Iim程度まで小さくなって耐電圧
の向上には寄与するが、同特に比抵抗が増大するので、
低比抵抗で高耐電圧のPTCセラミックスを得ることが
できない。
However, in any of the above conventional methods,
Although the crystal grain size is reduced to an average of about 10 Iim, which contributes to improving the withstand voltage, it also increases the specific resistance, so
PTC ceramics with low resistivity and high withstand voltage cannot be obtained.

本発明は上記事情に鑑みてなされたものであって、室温
での比抵抗が小さく、かつ、耐電圧が高いチタン酸バリ
ウム系PTC磁器組成物及びその製造方法を提供するも
のであり、特に電流制限素子用においては、平均結晶粒
径が10μm以下で比抵抗が3〜10Ωcm,かつ、耐
電圧が40〜200V/mmの特性、すなわち耐電圧と
比抵抗の比(Va /ρ2,)が10以上の特性を有す
るチタン酸バリウム系PTC磁器組成物を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and provides a barium titanate-based PTC porcelain composition that has a low specific resistance at room temperature and a high withstand voltage, and a method for manufacturing the same, and in particular, it provides a method for manufacturing the same. For limiting elements, the average crystal grain size is 10 μm or less, the resistivity is 3 to 10 Ωcm, and the withstand voltage is 40 to 200 V/mm, that is, the ratio of withstand voltage to resistivity (Va/ρ2,) is 10. It is an object of the present invention to provide a barium titanate-based PTC ceramic composition having the above characteristics.

[課題を解決するための手段] 本発明に係るPTC磁器組成物は、 (Bal−m− y−    S   rt   P 
 by   Cat   )   T  l  03 
  からなる主成分組成物に対して、原子価制御剤とし
てSb,Bi,Nb,Ta,並びに稀土類元素のうち一
種以上の元素が0.2〜0.5モル%の割合で、かつ、
Mnが0.02〜0.08モル%およびSiが0.45
モル%以下の割合で含まれており、前記主成分組成物が
、液相溶液反応法によりそれぞれ合成されたBaTi0
3SrTiO,,PbTiO3,並びに C a T I O *を用いて、0,05≦x≦0.
2,0.03≦y≦0. 2, 0. 05≦z≦0.
15の比率に成分配合されていることを特徴とする。
[Means for Solving the Problems] The PTC porcelain composition according to the present invention has the following characteristics:
by Cat ) T l 03
0.2 to 0.5 mol% of one or more elements among Sb, Bi, Nb, Ta, and rare earth elements as a valence control agent to the main component composition consisting of, and
Mn is 0.02-0.08 mol% and Si is 0.45
The main component composition contains BaTiO synthesized by a liquid phase solution reaction method.
3SrTiO,, PbTiO3, and C a T I O *, 0,05≦x≦0.
2, 0.03≦y≦0. 2, 0. 05≦z≦0.
It is characterized by the ingredients being blended in a ratio of 15%.

上記PTC磁器組成物の製造方法は、 BaTiO., SrTiO3, PbTiO,,並び
にC a T t 0 3をそれぞれ液相溶液反応法に
より合成し、これら4種のチタン酸塩を用いて主成分の
(Bal−x−ff−  S r,Pb,Cat )T
ie.がO。05≦x≦0. 2, 0. 03≦y≦
0.2,0.05≦z:iko.15の比率になるよう
に、原子価制御剤としてSb,Bi,Nb,Ta,並び
に橘土類元素のうち一種以上の元素を0.2〜0.5モ
ル%の割合で、かつ、Mnを0.02〜0.08モル%
およびSiを0.45モル%以下の割合で成分配合し、
これを成形焼成することを特徴とする。
The method for producing the above PTC porcelain composition includes BaTiO. , SrTiO3, PbTiO, and CaTt03 were synthesized by a liquid phase solution reaction method, and the main components (Bal-x-ff-Sr, Pb, Cat )T
ie. is O. 05≦x≦0. 2, 0. 03≦y≦
0.2, 0.05≦z:iko. 15, one or more elements among Sb, Bi, Nb, Ta, and citrus elements as valence control agents in a proportion of 0.2 to 0.5 mol%, and Mn 0.02-0.08 mol%
and Si in a proportion of 0.45 mol% or less,
This is characterized by being shaped and fired.

また、本発明に係るPTC磁器組成物は、’:E3a+
−t−y−I S rt Pb, Cat ) T i
O,からなる主成分組成物に対して、原子価抑制剤とし
てsb,Bi,Nb,Ta,並びに稀土類元素のうち一
種以上の元素が0、2〜0.5モル%の割合で、かつ、
Mnが0.02〜0.08モル%およびS1が0.45
モル%以下の割合で含まれており、前記主成分組成物が
、液相溶液反応法により直接0,05≦x≦0.2,0
.03≦y≦0、2,0.05≦z≦0.15の比率に
成分配合されていることを特徴とする。
Moreover, the PTC porcelain composition according to the present invention is ':E3a+
-t-y-I S rt Pb, Cat ) T i
With respect to the main component composition consisting of ,
Mn is 0.02-0.08 mol% and S1 is 0.45
The main component composition is directly contained in a proportion of 0.05≦x≦0.2,0 by a liquid phase solution reaction method.
.. It is characterized in that the ingredients are blended in a ratio of 03≦y≦0, 2,0.05≦z≦0.15.

上記PTC磁器組成物の製造方法は、Ba含有物,Sr
含有物,Pb含有物,並びにCa含有物を溶液に混合し
、これから液相溶液反応法により主成分の(Ba,−x
−y−  s rx Pb,Cat )Tie,を、0
.05≦x≦0.2,0.03≦y≦0.2,0.05
≦z≦0.15の比率で直接合成し、この主成分組成物
に対して原子価制御剤としてsb,Bi,Nb,Ta,
並びに稀土類元素のうち一種以上の元素を0.2〜0.
5モル%の割合で、かつ、Mnを0.02 〜0.08
モル%およびSiを0.45モル%以下の割合で成分配
合し、これを戒形焼成することを特徴とする。
The method for producing the above PTC porcelain composition includes Ba-containing material, Sr-containing material,
The main component (Ba, -x
-y- s rx Pb, Cat ) Tie, 0
.. 05≦x≦0.2, 0.03≦y≦0.2, 0.05
It is directly synthesized in a ratio of ≦z≦0.15, and sb, Bi, Nb, Ta,
and one or more rare earth elements in an amount of 0.2 to 0.
5 mol% and Mn is 0.02 to 0.08
It is characterized in that the components are blended at a ratio of 0.45 mol% or less and Si is 0.45 mol% or less, and this is subjected to preform firing.

更に、本発明に係るPTC磁器組成物は、(Bat−*
−y−h−m S rx P by Cat Ma)T
ie,または(Ba,−m−,−  S r.Pb,C
 ax )  (T i l−* Ma) 01からな
る主成分組成物に対して、原子価抑制剤MとしてSb,
Bi,Nb,Ta,並びに稀土類元素のうち一種以上の
元素が所定の割合で、かつ、Mnが0.02〜0.08
モル%およびSiが0.45モル%以下の割合で含まれ
ており、前記主成分紹成物が、液相溶液反応法により直
接0.05≦x≦0.2,0.03≦y≦0.2,0.
05≦z≦0.1.5,0.002≦a≦0.005の
比率に成分配合されていることを特徴とする。
Furthermore, the PTC porcelain composition according to the present invention has (Bat-*
-y-hm S rx P by Cat Ma)T
ie, or (Ba, -m-, -S r.Pb,C
ax ) (T i l-* Ma) 01, Sb,
One or more elements among Bi, Nb, Ta, and rare earth elements are present in a predetermined proportion, and Mn is 0.02 to 0.08
mol% and Si are contained in a ratio of 0.45 mol% or less, and the main component introduction product is directly 0.05≦x≦0.2, 0.03≦y≦ by a liquid phase solution reaction method. 0.2,0.
It is characterized in that the ingredients are blended in a ratio of 05≦z≦0.1.5, 0.002≦a≦0.005.

上記PTC磁器組成物の製造方法は、Ba含有物,Sr
含有物,Pb含有物,Ca含有物,並びに原子価制御剤
MとしてSb,Bi,Nb,Ta並びに稀土類元素のう
ち一種以上の元素を溶液に混合し、これから液相溶岐反
応法により主成分の(Ba+−x−y−+−  S r
x  Pb,Can Ma)Tie,または( B a
 l−x−y−+ S r w P b ,C a r
 )  (T t l−m Ma) 0 3を、0.0
5≦x≦0.2,0.03≦y≦0.2,0.05≦z
50.15.0.002≦a≦0.005の比率で直接
合成し、この主成分組成物に対して、Mnを0.02〜
0.08モル%およびSiを0,45モル%以下の割合
で成分配合し、これを成形焼成することを特徴とする。
The method for producing the above PTC porcelain composition includes Ba-containing material, Sr-containing material,
The Pb-containing material, the Ca-containing material, and one or more elements selected from among Sb, Bi, Nb, Ta, and rare earth elements as the valence control agent M are mixed into a solution, and from this the main component is mixed by a liquid-phase branching reaction method. (Ba+−x−y−+− S r
x Pb, Can Ma) Tie, or ( B a
l-x-y-+ S r w P b , C a r
) (T t l-m Ma) 0 3, 0.0
5≦x≦0.2, 0.03≦y≦0.2, 0.05≦z
50.15. Directly synthesized at a ratio of 0.002≦a≦0.005, and with respect to this main component composition, Mn is added from 0.02 to
It is characterized in that 0.08 mol % and Si are blended in a ratio of 0.45 mol % or less, and this is molded and fired.

この場合に、上記の各製造方法における液柑溶液反応法
に、シュウ酸塩法および水熱合戊法のいずれかを用いる
ことが好ましい。
In this case, it is preferable to use either the oxalate method or the hydrothermal synthesis method as the liquid-citrus solution reaction method in each of the above-mentioned production methods.

なお、原子価制御剤として用いる稀土類元素には、La
,Y等がある。
Note that rare earth elements used as valence control agents include La
, Y, etc.

[作用] 本発明のPTC磁器組成物は、出発原料としていわゆる
化学法原料を使用するところに特徴がある。化学法原料
とは、シュウ酸塩法、水酸化物法、水熱合戒法、アルコ
キシド法等の液相溶液反応法によって得られたBaTi
Oy,sr”rio3,PbTiO,,CaTiO.等
の結晶又はそれらの固溶体又は混晶体であって、従来の
固相反応法によって得られる原料(結晶粉末)に比べて
、下記(4)〜(6)の特徴を有する。
[Function] The PTC porcelain composition of the present invention is characterized in that a so-called chemical method raw material is used as a starting material. Chemical method raw materials are BaTi obtained by liquid phase solution reaction methods such as oxalate method, hydroxide method, hydrothermal method, alkoxide method, etc.
Crystals such as Oy, sr"rio3, PbTiO, CaTiO, etc., or solid solutions or mixed crystals thereof, which have the following properties (4) to (6) compared to raw materials (crystalline powder) obtained by conventional solid phase reaction methods. ).

(4)粒度が均一微細であって、粉体活性が高い。(4) Particle size is uniform and fine, and powder activity is high.

(5)高純度である。(5) High purity.

(6)分子レベルでの組成の均一性が高い。(6) High compositional uniformity at the molecular level.

発明者等は、このような化学法原料の諸特性に着目し、
チタン酸バリウム系PTCセラミックスの主成分組成物
の出発原料に供することを種々検討した。その結果、チ
タン酸バリウム系PTCセラミックスの焼結助剤として
添加していたSin2の添加量を、従来の固相反応法に
より得られた原料を使用する場合よりも低減できるとい
う知見を得た。
The inventors focused on the various characteristics of such chemical raw materials,
Various studies have been conducted on using this material as a starting material for the main component composition of barium titanate-based PTC ceramics. As a result, it was found that the amount of Sin2 added as a sintering aid for barium titanate-based PTC ceramics can be reduced compared to when raw materials obtained by conventional solid phase reaction methods are used.

本発明に係るPTC磁器組成物及びその製造方法におい
ては、従来の固相反応法に代わりに、出発原料としてい
わゆる化学法原料を用い、かつ、その化学法原料の特徴
を生かす組或を見出だしたことにより、従来のチタン酸
バリウム系PTCセラミックスに比べ、特に室温での比
抵抗が低く、かつ耐電圧が高いものとなる。
In the PTC porcelain composition and the manufacturing method thereof according to the present invention, a so-called chemical method raw material is used as a starting material instead of the conventional solid phase reaction method, and a composition has been found that takes advantage of the characteristics of the chemical method raw material. As a result, compared to conventional barium titanate-based PTC ceramics, the specific resistance at room temperature is particularly low and the withstand voltage is high.

化学法原料は、前述のように一般に高純度で粒度が均一
微細であって、特に粉体活性が高いなどの特性を有する
ため、従来の固相反応法による原料を出発原料にした場
合には、液相焼結助剤としてSin2を通営0.5〜2
モル%程度添加する。
As mentioned above, chemical raw materials generally have high purity, uniform particle size, and high powder activity, so if raw materials produced by conventional solid phase reaction methods are used as starting materials , using Sin2 as a liquid phase sintering aid 0.5~2
Add about mol%.

これに対して、本発明の磁器組成物においては、Sin
2をまったく含まないか又はその含有量を0.45モル
%以下に低く抑えることができ、かつ、焼結温度も約5
0℃低くすることができることを見いだした。とりわけ
、化学法原料を出発原料として供することにより、液相
焼結助剤としてのSi02が無添加の場合であっても焼
結することは、ti!i1相反応法による原料を出発原
料とする従来の技術ではまったく予想できないことであ
り、これにも増して結晶粒径が10μm以下で低抵抗比
化することなどは思いもよらないことである。
On the other hand, in the porcelain composition of the present invention, Sin
It does not contain 2 at all or its content can be kept low to 0.45 mol% or less, and the sintering temperature is also about 5 mol%.
It has been found that the temperature can be lowered by 0°C. In particular, by providing a chemical method raw material as a starting material, sintering can be performed even when Si02 as a liquid phase sintering aid is not added. This is completely unexpected using conventional techniques that use raw materials produced by the i1 phase reaction method as starting materials, and even more unexpected is that the resistance ratio can be lowered when the crystal grain size is 10 μm or less.

このため、セラミックスの結晶粒径は10μm以下と微
細になり、耐電圧が高くなる。また、Si02は、通常
セラミックスにおいてはガラス相として粒界析出相を形
或するものであり、この相は電気伝導度が小さく、結局
S102の添加量が増大するに従ってセラミックス素子
としての営温比抵抗が大きくなる傾向にある。
Therefore, the crystal grain size of the ceramic becomes fine, 10 μm or less, and the withstand voltage becomes high. In addition, Si02 usually forms a grain boundary precipitated phase as a glass phase in ceramics, and this phase has low electrical conductivity, and as the amount of S102 added increases, the thermal specific resistance as a ceramic element decreases. tends to become larger.

次に、上記PTC磁器組成物の各添加元素の限定理由に
ついて説明する。
Next, the reasons for limiting each additive element in the above PTC porcelain composition will be explained.

Srは、Xが0,05未満では電気的特性が不十分であ
り、また機械的・熱的強度が低下する傾向にあり、一方
、Xが0.2を超えるとキュリー点が80℃以下となっ
て電流制限素子として実用的でない。
When X is less than 0.05, Sr has insufficient electrical properties and its mechanical and thermal strength tends to decrease.On the other hand, when X exceeds 0.2, the Curie point is 80°C or lower. Therefore, it is not practical as a current limiting element.

Pbは、yか0.03以下であると高耐電圧比に関して
特性改善の効果が小さくなり、一方、yが0.2を超え
るとキュリ一点が150℃を超えるようになり電流制限
素子として実用的でなくなると共に、常温での比抵抗が
逆に高くなる傾向がある。
For Pb, if y is less than 0.03, the effect of improving characteristics regarding high withstand voltage ratio will be small, while if y exceeds 0.2, the Curie point will exceed 150°C, making it difficult to use as a current limiting element. At the same time, the specific resistance at room temperature tends to increase.

Caは、2が0.05以下であると均一微細化、すなわ
ち高耐電圧化に関する効果がなくなり、一方、2が0.
15を超えると比抵抗が大きくなる。
When 2 is 0.05 or less, Ca has no effect on uniform miniaturization, that is, high withstand voltage; on the other hand, when 2 is 0.05 or less,
When it exceeds 15, the specific resistance becomes large.

原子価制御剤は、その添加量が0,2モル%未満であっ
ても0.5モル%を超えても、すなわち0.2〜0.5
モル%の範囲を外れると、高抵抗化する傾向にある。
The valence control agent may be added in an amount less than 0.2 mol% or more than 0.5 mol%, i.e. from 0.2 to 0.5 mol%.
When the mol% is out of the range, the resistance tends to increase.

Mnは、その添加量がO、02モル%未満ではPTC領
域における抵抗温度係数が8%/℃以下となって丈用的
でなく、一方、0.08モル%を超えると常温比抵抗が
急激に高まる。
If the amount of Mn added is less than 0.02 mol%, the temperature coefficient of resistance in the PTC region will be 8%/℃ or less, making it unusable. On the other hand, if it exceeds 0.08 mol%, the specific resistance at room temperature will sharply decrease. increases.

5i02は、その添加量が0,45モル%を超えると、
常温比抵抗が大きくなり、本発明の目的に合致せず、実
用的でない。
When the amount of 5i02 added exceeds 0.45 mol%,
The room temperature specific resistance becomes large, which does not meet the purpose of the present invention and is not practical.

[実施例] 以下、添附の図面を参照しながら本発明の種々の実施例
について説明する。
[Embodiments] Various embodiments of the present invention will be described below with reference to the accompanying drawings.

実施例1 第1図は、本発明の第1実施例に係るPTC磁器組成物
の製造方法を示す工程図である。第1表は、本発明の実
施例および比較例のセラミックス組成をそれぞれ示す表
である。
Example 1 FIG. 1 is a process diagram showing a method for manufacturing a PTC ceramic composition according to a first example of the present invention. Table 1 is a table showing ceramic compositions of Examples of the present invention and Comparative Examples.

BaTiO,,SrTiO,,PbTiO,CaTiO
,をそれぞれ液相溶液反応法により合成するために、各
原料粉を調整する(工程10)。
BaTiO, , SrTiO, , PbTiO, CaTiO
, respectively, by a liquid phase solution reaction method, each raw material powder is prepared (Step 10).

このうち、BaTiO,,SrTiO3,C a T 
i O JについてはBaCO3,S rco3CaC
O3,Ti02を原料にシュウ酸塩法により合成し、P
 b T i O 3についてはPboTie2を原料
に水熱合戊法により合成する。以下、説明を簡略化する
ため、BaTi03の合成についてのみ説明する。
Among these, BaTiO,, SrTiO3, C a T
BaCO3, S rco3CaC for i O J
Synthesized by oxalate method using O3, Ti02 as raw materials, P
b T i O 3 is synthesized by a hydrothermal synthesis method using PboTie2 as a raw material. Hereinafter, in order to simplify the explanation, only the synthesis of BaTi03 will be explained.

Baco,およびTie2の粉末をそれぞれ所定の溶液
に加え、十分に攪拌混合する(工程11)。
Baco and Tie2 powders are added to the respective predetermined solutions and thoroughly stirred and mixed (Step 11).

混合溶液に所定のアルカリ溶演を添加する(王程12)
Adding the specified alkaline solution to the mixed solution (Wang Cheng 12)
.

BaCO3 ,T i02 ,並びに各溶液間の反応に
よりBaTiOsが沈殿する(工程13)。
BaTiOs is precipitated by the reaction between BaCO3, T i02 and each solution (step 13).

沈殿物を所定温度に加熱し、乾燥する(工程14)。The precipitate is heated to a predetermined temperature and dried (step 14).

乾燥物を粉砕し、秤量する。このとき、戊分配合が第1
表中のNO.5〜33となるように、BaTiO.,S
rTiO3,PbTt03,CaTiO,をそれぞれ秤
量する(工程15)。
Grind and weigh the dry material. At this time, the first proportion is
No. in the table. 5 to 33, BaTiO. ,S
rTiO3, PbTt03, and CaTiO are each weighed (step 15).

48のチタン酸塩を固相状態で混合し、更に、La,Y
などの稀土類元素あるいはSb,Bi,Nb,Taを原
子価制御剤として、M n C O 3を抵抗d度係数
の改良剤として、Si02を焼結助剤として、それぞれ
適量を添加する(工程16)。
48 titanates were mixed in a solid state, and further La, Y
Appropriate amounts of rare earth elements such as Sb, Bi, Nb, and Ta are added as valence control agents, MnCO3 as a resistance d coefficient improver, and Si02 as a sintering aid. 16).

脱会物をボールミルにより約10時間かけて粉砕混合し
た後に、脱水乾燥する。6%PVAを試料100グラム
に対して約3cc加え、これを成形圧力1000kg/
 cn+3で或形し、直径15■で厚さ1.5問のペレ
ットとする(工程17)。
The removed product is pulverized and mixed in a ball mill for about 10 hours, and then dehydrated and dried. Approximately 3 cc of 6% PVA was added to 100 grams of sample, and the molding pressure was 1000 kg/
It is shaped into a pellet with a diameter of 15 square meters and a thickness of 1.5 square meters (step 17).

ベレットを所定温度で仮焼する(工程18)。The pellet is calcined at a predetermined temperature (step 18).

仮焼後、ペレットを粉砕する(工程1つ)。After calcining, the pellets are crushed (one step).

粉砕物にバインダを添加し、所望の形状に或形する(工
程20)。
A binder is added to the pulverized material and shaped into a desired shape (step 20).

成形物を本焼成する。本焼成の条件は、昇温速度が毎時
200℃で、焼成温度が1280〜1340℃であり、
約1時間焼威した後に炉内にて自然放冷した(工程21
)。このようにして得られたPTCセラミックスにオー
ミックコンタクト良好なAg電極を焼付けて素子を作成
し、このキュリー点、常温比抵抗、並びに耐電圧をそれ
ぞれ測定した。
The molded product is fired. The conditions for the main firing are a temperature increase rate of 200°C per hour, a firing temperature of 1280 to 1340°C,
After being incinerated for about 1 hour, it was allowed to cool naturally in the furnace (Step 21
). A device was prepared by baking an Ag electrode with good ohmic contact onto the PTC ceramic thus obtained, and its Curie point, specific resistance at room temperature, and withstand voltage were measured.

実施例2 第2図は、本発明の第2実施例に係るPTC磁器組成物
の製造方法を示す工程図である。
Example 2 FIG. 2 is a process diagram showing a method for manufacturing a PTC ceramic composition according to a second example of the present invention.

BaCO3,SrC03,PbO,CaCO3並びにT
ie2をそれぞれ調整する(工程30)。
BaCO3, SrC03, PbO, CaCO3 and T
ie2 is adjusted respectively (step 30).

すなわち、成分配合が第1表中のNO.5〜33となる
ように、各原料粉をそれぞれ秤量する。
That is, the component composition is No. 1 in Table 1. Each raw material powder is weighed so as to have a weight of 5 to 33.

秤量した各原料粉を所定の溶液に加え、十分に攪拌混合
する(王程31)。
Each weighed raw material powder is added to a predetermined solution and thoroughly stirred and mixed (Wang Cheng 31).

混合溶液に所定のアルカリ溶液を添加する(工程32)
Adding a predetermined alkaline solution to the mixed solution (Step 32)
.

各原料粉および各溶液間の反応により ( B a 1−*−y−、Srt Pb, Cal 
) Tie3が共沈する(王程33)。
Due to the reaction between each raw material powder and each solution (B a 1-*-y-, Srt Pb, Cal
) Tie3 coprecipitates (Wang Cheng 33).

沈殿物を所定温度に加熱し、乾燥する(工程34)。The precipitate is heated to a predetermined temperature and dried (step 34).

乾燥物を粉砕し、秤量する。(工程35)。Grind and weigh the dry material. (Step 35).

(Bat−m−y−g S rt P by Cat 
) Tt o,の粉に、更に、La,Yなどの稀土類元
素あるいはSb,Bi,Nb,Taを原子価制御剤とし
て、Mn CO3を抵抗温度係数の改良剤として、Si
n2を焼結助剤として、それぞれ適量を添加する(工程
36)。
(Bat-m-y-g S rt P by Cat
) In addition, rare earth elements such as La and Y or Sb, Bi, Nb, and Ta are used as valence control agents, Mn CO3 is used as a resistance temperature coefficient improver, and Si is added to the powder of TtO.
Appropriate amounts of n2 are added as sintering aids (step 36).

混合物をボールミルにより約10時間かけて粉砕混合し
た後に、脱水乾燥する。6%PVAを試料100グラム
に対して約3cc加え、これを成形圧力1000kg/
 aII13で成形し、直径15Iで厚さ1.5mII
のベレットとする(工程37)。
The mixture is pulverized and mixed in a ball mill for about 10 hours, and then dehydrated and dried. Approximately 3 cc of 6% PVA was added to 100 grams of sample, and the molding pressure was 1000 kg/
Molded with aII13, diameter 15I and thickness 1.5mII
(Step 37).

ベレットを所定温度で仮焼する(工程38)。The pellet is calcined at a predetermined temperature (step 38).

仮焼後、ペレットを粉砕する(工程39)。After calcining, the pellets are crushed (step 39).

粉砕物にバインダを添加し、所望の形状に成形する(工
程40)。
A binder is added to the pulverized material and molded into a desired shape (step 40).

成形物を本焼成する。本焼成の条件は、昇温速度が毎時
200’Cで、焼成温度が1280〜1340℃であり
、約1時間焼成した後に炉内にて自然放冷した(工程4
1)。このようにして得られたPTCセラミックスにオ
ーミックコンタクト良好なAg電極を焼付けて素子を作
成し、このキュリー点、常温比抵抗、並びに耐電圧をそ
れぞれ4Pj定した。
The molded product is fired. The conditions for the main firing were a heating rate of 200'C/hour, a firing temperature of 1280-1340°C, and after firing for about 1 hour, it was allowed to cool naturally in the furnace (Step 4).
1). A device was prepared by baking an Ag electrode with good ohmic contact onto the PTC ceramic thus obtained, and its Curie point, specific resistance at room temperature, and withstand voltage were each determined to be 4Pj.

実施例3 第3図は、本発明の第3実施例に係るPTC磁器組成物
の製造方法を示す工程図である。
Example 3 FIG. 3 is a process diagram showing a method for manufacturing a PTC ceramic composition according to a third example of the present invention.

BaCO3,SrCO,,PbO,CaCO3?びにT
ie2をそれぞれ調整する(工程50)。
BaCO3, SrCO,, PbO, CaCO3? and T
ie2 is adjusted respectively (step 50).

すなわち、或分配合が第1表中のNo.5〜33となる
ように、各原料粉をそれぞれ秤ユする。
That is, a certain proportion is No. 1 in Table 1. Weigh each raw material powder so that the weight is 5 to 33.

秤量した各原料粉に適量の原子価制御剤Mを添加し、こ
れを所定の溶液に溶かし、十分に攪拌混合する(工程5
1)。
Add an appropriate amount of valence control agent M to each weighed raw material powder, dissolve it in a predetermined solution, and stir and mix thoroughly (Step 5)
1).

混合溶液に所定のアルカリ溶液を添加する(工程52)
Adding a predetermined alkaline solution to the mixed solution (step 52)
.

各原料粉および各溶液間の反応により (B a l−−−y−+ −  S r− P by
 C a t Ma)Tie,または( B a l−
x−y−r S r x P b yCa+ )(Ti
,−  Ma)O.が共沈する(工程53)。
Due to the reaction between each raw material powder and each solution (B a l--y-+ - S r- P by
Cat Ma) Tie, or (B a l-
x-y-rSrxPbyCa+)(Ti
, - Ma) O. is coprecipitated (step 53).

沈殿物を所定温度に加熱し、乾燥する(工程54)。The precipitate is heated to a predetermined temperature and dried (step 54).

乾燥物を粉砕し、秤量する。(工程55)。Grind and weigh the dry material. (Step 55).

(Bit−m−,−+■  S r* Pb,Cat 
Ma)Tie,または( B a r−x−1−+ S
 r t P b yCa,)(Ti1−  Ma)0
3の粉に、更に、M n C O ,を抵抗温度係数の
改良剤として、SiO2を焼結助剤として、それぞれ適
量を添加し、これを混合する(工程56)。
(Bit-m-,-+■ S r* Pb, Cat
Ma) Tie, or (B a r-x-1-+ S
rtPbyCa,)(Ti1-Ma)0
Further, appropriate amounts of M n CO 2 as a resistance temperature coefficient improver and SiO 2 as a sintering aid are added to the powder of No. 3 and mixed (step 56).

混合物をボールミルにより約10時間かけて粉砕混合し
た後に、脱水乾燥する。6%PVAを試料100グラム
に対して約3cc加え、これを或形圧力1000kg/
 cta”で成形し、直径15nvで厚さ1.5■のペ
レットとする(工程57)。
The mixture is pulverized and mixed in a ball mill for about 10 hours, and then dehydrated and dried. Approximately 3 cc of 6% PVA was added to 100 grams of sample, and this was heated at a pressure of 1000 kg/
cta" to form pellets with a diameter of 15 nv and a thickness of 1.5 cm (step 57).

ペレットを所定温度で仮焼する(工程58)。The pellets are calcined at a predetermined temperature (step 58).

仮焼後、ペレットを粉砕する(工程59)。After calcining, the pellets are crushed (step 59).

粉砕物にバインダを添加し、所望の形状に戊形する(工
程60)。
A binder is added to the pulverized material and it is shaped into a desired shape (step 60).

戊形物を本焼成する。本焼或の条件は、昇温速度が毎時
200℃で、焼或温度が1280〜1340℃であり、
約1時間焼或した後に炉内にて自然放冷した(工程61
)。このようにして得られたPTCセラミックスにオー
ミックコンタクト良好なAg電極を焼付けて素子を作成
し、このキュリー点、常温比抵抗、並びに耐電圧をそれ
ぞれ測定した。
The final firing of the cylindrical object is carried out. The conditions for the main firing are a heating rate of 200°C per hour, a firing temperature of 1280 to 1340°C,
After baking for about 1 hour, it was allowed to cool naturally in the furnace (Step 61).
). A device was prepared by baking an Ag electrode with good ohmic contact onto the PTC ceramic thus obtained, and its Curie point, specific resistance at room temperature, and withstand voltage were measured.

比較例(固相反応法原料による調整) 成分配合が第1表No,1〜4となるように、BaCO
3,SrCO3,PbO,CaCO3,T i02 ,
Sb2 03 ,MnCO3 ,MnCOi ,並びに
Sin2の粉をそれぞれ秤量し、ボールミルにて10時
間粉砕泥合した後に脱水乾燥する。
Comparative example (adjustment using solid phase reaction raw materials) BaCO
3, SrCO3, PbO, CaCO3, Ti02,
Powders of Sb2 03 , MnCO3 , MnCOi , and Sin2 were each weighed, ground and mixed in a ball mill for 10 hours, and then dehydrated and dried.

これに6%PVAを加えて一次成形した後、1050℃
の温度で2時間仮焼する。仮焼後、ボールミルにより1
0時間粉砕し、脱水乾燥した後に、6%PVAを試料1
00グラムに対して約3cc加え、これを成形圧力10
00kg/ cm2で成形し、直径15}で厚さ1.5
mmのベレットとする。
After adding 6% PVA to this and performing primary molding, it was heated to 1050°C.
Calcinate at a temperature of 2 hours. After calcination, 1
After pulverizing for 0 hours and dehydrating and drying, 6% PVA was added to sample 1.
Approximately 3cc is added to 00 grams, and the molding pressure is 10
Molded at 00kg/cm2, diameter 15} and thickness 1.5
It is assumed to be a mm beret.

本焼成の条件は、昇温速度が毎時200”Cで、焼成温
度が1300℃であり、約1時間焼成した後に炉内にて
自然放冷した。このようにして得られたPTCセラミッ
クスにオーミックコンタクト良好なAg電極を焼付けて
素子を作成し、このキュリー点、常温比抵抗、並びに耐
電圧をそれぞれ測定した。
The conditions for the main firing were a heating rate of 200"C per hour and a firing temperature of 1300°C. After firing for about 1 hour, it was allowed to cool naturally in the furnace.The PTC ceramics thus obtained were Elements were prepared by baking Ag electrodes with good contact, and their Curie point, specific resistance at room temperature, and withstand voltage were measured.

第1表から明らかなように、各実施例のPTCセラミッ
クスは比較例のものに比べて、i1電圧と常温比抵抗の
比(V8/ρ2,)が大幅に増大し、大部分のものが1
0以上のVB/ρ2,値を示すようになる。これに対し
て、比較例では、NO、1のように組或を本発明の戊分
組成の範囲内としても、常温比抵抗p2,は約100Q
cmと大きい。また、比較例のNO,2〜4のように、
SiO2を更に加えていくと、常温比抵抗ρ2−iは添
加量1モル%において40Ωcmに低下するものの、添
加量2モル%では80Ωcmに増加する。つまり、従来
法により製迅されたPTCセラミックスは、いずれも本
発明方法により製遺されたPTCセラミックスにおける
常温比抵抗ρ2,3〜10Ωco,耐電圧40〜200
V/mmをクリアしないことがわかった。
As is clear from Table 1, the ratio of i1 voltage to room temperature resistivity (V8/ρ2,) of the PTC ceramics of each example is significantly increased compared to that of the comparative example, and most of the PTC ceramics are 1
It comes to show a VB/ρ2 value of 0 or more. On the other hand, in the comparative example, even if the composition is within the range of the fractional composition of the present invention, such as NO, 1, the room temperature specific resistance p2 is about 100Q.
It is as large as cm. Also, like Comparative Examples No. 2 to 4,
As SiO2 is further added, the room temperature specific resistance ρ2-i decreases to 40 Ωcm at an addition amount of 1 mol%, but increases to 80 Ωcm at an addition amount of 2 mol%. In other words, the PTC ceramics produced by the conventional method have a specific resistance at room temperature of ρ2, 3 to 10Ωco, and a withstand voltage of 40 to 200Ω.
It was found that it did not clear V/mm.

[発明の効果] 本発明によれば、従来の組成物および製造方法では達成
が困難であった、低比抵抗で、かつ、高耐電圧のPTC
セラミソクスを得ることができる。
[Effects of the Invention] According to the present invention, a PTC with low resistivity and high withstand voltage, which has been difficult to achieve with conventional compositions and manufacturing methods, can be produced.
You can get Cerami Sox.

この結果、同一定格電圧に対して、より低抵抗な素子を
製造することができるため、更に大きな負荷に対する電
流制限素子を実用化できるほか、同一抵抗素子としては
従来より薄型で小型のものを実用化できる。
As a result, it is possible to manufacture elements with lower resistance for the same rated voltage, making it possible to put into practical use current limiting elements for even larger loads, as well as to put into practical use thinner and smaller resistive elements than before. can be converted into

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は、それぞれ本発明の実施例に係るP
TC磁器組成物の製造方法を示す工程図である。
FIG. 1 to FIG. 3 each show P according to an embodiment of the present invention.
FIG. 2 is a process diagram showing a method for producing a TC ceramic composition.

Claims (1)

【特許請求の範囲】 (1)(Ba_1_−_x_−_y_−_zSr_xP
b_yCa_z)TiO_3からなる主成分組成物に対
して、原子価制御剤としてSb,Bi,Nb,Ta,並
びに稀土類元素のうち一種以上の元素が0.2〜0.5
モル%の割合で、かつ、Mnが0.02〜0.08モル
%およびSiが0.45モル%以下の割合で含まれてお
り、 前記主成分組成物が、液相溶液反応法によりそれぞれ合
成されたBaTiO_3,SrTiO_3,PbTiO
_3,並びにCaTiO_3を用いて、0.05≦x≦
0.2,0.03≦y≦0.2,0.05≦z≦0.1
5の比率に成分配合されていることを特徴とするPTC
磁器組成物。 (2)BaTiO_3,SrTiO_3,PbTiO_
3,並びにCaTiO_3をそれぞれ液相溶液反応法に
より合成し、これら4種のチタン酸塩を用いて主成分の
(Ba_1_−_x_−_y_−_zSr_xPb_y
Ca_z)TiO_3が0.05≦x≦0.2,0.0
3≦y≦0.2,0.05≦z≦0.15の比率になる
ように、原子価制御剤としてSb,Bi,Nb,Ta,
並びに稀土類元素のうち一種以上の元素を0.2〜0.
5モル%の割合で、かつ、Mnを0.02〜0.08モ
ル%およびSiを0.45モル%以下の割合で成分配合
し、これを焼成することを特徴とするPTC磁器組成物
の製造方法。 (3)(Ba_1_−_x_−_y_−_zSr_xP
b_yCa_z)TiO_3からなる主成分組成物に対
して、原子価抑制剤としてSb,Bi,Nb,Ta,並
びに稀土類元素のうち一種以上の元素が0.2〜0.5
モル%の割合で、かつ、Mnが0.02〜0.08モル
%およびSiが0.45モル%以下の割合で含まれてお
り、 前記主成分組成物が、液相溶液反応法により直接0.0
5≦x≦0.2,0.03≦y≦0.2,0.05≦z
≦0.15の比率に成分配合されていることを特徴とす
るPTC磁器組成物。 (4)Ba含有物,Sr含有物,Pb含有物,並びにC
a含有物を溶液に混合し、これから液相溶液反応法によ
り主成分の(Ba_1_−_x_−_y_−_zSr_
xPb_yCa_z)TiO_3を、0.05≦x≦0
.2,0.03≦y≦0.2,0.05≦z≦0.15
の比率で直接合成し、この主成分組成物に対して原子価
制御剤としてSb,Bi,Nb,Ta,並びに稀土類元
素のうち一種以上の元素を0.2〜0.5モル%の割合
で、かつ、Mnを0.02〜0.08モル%およびSi
を0.45モル%以下の割合で成分配合し、これを焼成
することを特徴とするPTC磁器組成物の製造方法。 (5)(Ba_1_−_x_−_y_−_z_−_nS
r_xPb_yCa_zMa)TiO_3または(Ba
_1_−_x_−_y_−_zSr_xPb_yCa_
z)(Ti_1_−_aMa)O_3からなる主成分組
成物に対して、原子価抑制剤MとしてSb,Bi,Nb
,Ta,並びに稀土類元素のうち一種以上の元素が所定
の割合で、かつ、Mnが0.02〜0.08モル%およ
びSiが0.45モル%以下の割合で含まれており、 前記主成分組成物が、液相溶液反応法により直接0.0
5≦x≦0.2,0.03≦y≦0.2,0.05≦z
≦0.15,0.002≦a≦0.005の比率に成分
配合されていることを特徴とするPTC磁器組成物。 (6)Ba含有物,Sr含有物,Pb含有物,Ca含有
物,並びに原子価制御剤MとしてSb,Bi,Nb,T
a,並びに稀土類元素のうち一種以上の元素を溶液に混
合し、これから液相溶液反応法により主成分の(Ba_
1_−x_−y_−z_−_nSr_xPb_yCa_
zMa)TiO_3または(Ba_1_−_x_−_y
_−_zSr_xPb_yCa_z)(Ti_1_−_
aMa)O_3を、0.05≦x≦0.2,0.03≦
y≦0.2,0.05≦z≦0.15, 0.002≦a≦0.005の比率で直接合成し、この
主成分組成物に対して、Mnを0.02〜0.08モル
%およびSiを0.45モル%以下の割合で成分配合し
、これを焼成することを特徴とするPTC磁器組成物の
製造方法。 (7)液相溶液反応法に、シュウ酸塩法および水熱合成
法のいずれかを用いることを特徴とする請求項2,4,
6にそれぞれ記載のPTC磁器組成物の製造方法。
[Claims] (1) (Ba_1_-_x_-_y_-_zSr_xP
b_yCa_z) For the main component composition consisting of TiO_3, 0.2 to 0.5 of one or more elements among Sb, Bi, Nb, Ta, and rare earth elements are added as a valence control agent.
Mn is contained in a proportion of 0.02 to 0.08 mol% and Si is contained in a proportion of 0.45 mol% or less, and each of the main component compositions is prepared by a liquid phase solution reaction method. Synthesized BaTiO_3, SrTiO_3, PbTiO
_3, and CaTiO_3, 0.05≦x≦
0.2, 0.03≦y≦0.2, 0.05≦z≦0.1
PTC characterized by having ingredients blended in a ratio of 5.
Porcelain composition. (2) BaTiO_3, SrTiO_3, PbTiO_
3, and CaTiO_3 were each synthesized by a liquid phase solution reaction method, and using these four types of titanates, the main component (Ba_1_-_x_-_y_-_zSr_xPb_y
Ca_z) TiO_3 is 0.05≦x≦0.2, 0.0
Sb, Bi, Nb, Ta,
and one or more rare earth elements in an amount of 0.2 to 0.
A PTC porcelain composition characterized in that the components are blended in a proportion of 5 mol%, Mn in a proportion of 0.02 to 0.08 mol%, and Si in a proportion of 0.45 mol% or less, and then fired. Production method. (3) (Ba_1_-_x_-_y_-_zSr_xP
b_yCa_z) For the main component composition consisting of TiO_3, 0.2 to 0.5 of one or more elements among Sb, Bi, Nb, Ta, and rare earth elements are added as valence suppressants.
Mn is contained in a proportion of 0.02 to 0.08 mol% and Si is contained in a proportion of 0.45 mol% or less, and the main component composition is directly reacted by a liquid phase solution reaction method. 0.0
5≦x≦0.2, 0.03≦y≦0.2, 0.05≦z
A PTC porcelain composition characterized in that components are blended in a ratio of ≦0.15. (4) Ba-containing materials, Sr-containing materials, Pb-containing materials, and C
The a-containing material is mixed into a solution, and the main component (Ba_1_-_x_-_y_-_zSr_
xPb_yCa_z)TiO_3, 0.05≦x≦0
.. 2, 0.03≦y≦0.2, 0.05≦z≦0.15
directly synthesized at a ratio of 0.2 to 0.5 mol% of one or more elements among Sb, Bi, Nb, Ta, and rare earth elements as a valence control agent to this main component composition. and 0.02 to 0.08 mol% of Mn and Si
A method for producing a PTC porcelain composition, which comprises blending the ingredients in a proportion of 0.45 mol% or less and firing the mixture. (5) (Ba_1_-_x_-_y_-_z_-_nS
r_xPb_yCa_zMa)TiO_3 or (Ba
_1_-_x_-_y_-_zSr_xPb_yCa_
z) Sb, Bi, Nb as the valence suppressant M for the main component composition consisting of (Ti_1_-_aMa)O_3
, Ta, and one or more elements among rare earth elements in a predetermined proportion, and Mn in a proportion of 0.02 to 0.08 mol% and Si in a proportion of 0.45 mol% or less, The main component composition is directly 0.0% by liquid phase solution reaction method.
5≦x≦0.2, 0.03≦y≦0.2, 0.05≦z
A PTC porcelain composition characterized in that the components are blended in a ratio of ≦0.15, 0.002≦a≦0.005. (6) Ba-containing materials, Sr-containing materials, Pb-containing materials, Ca-containing materials, and Sb, Bi, Nb, and T as valence control agents M.
a, and one or more rare earth elements are mixed into a solution, and then the main component (Ba_
1_-x_-y_-z_-_nSr_xPb_yCa_
zMa) TiO_3 or (Ba_1_-_x_-_y
____zSr_xPb_yCa_z)(Ti_1_-_
aMa) O_3, 0.05≦x≦0.2, 0.03≦
It is directly synthesized in the ratio of y≦0.2, 0.05≦z≦0.15, 0.002≦a≦0.005, and Mn is 0.02 to 0.08 to this main component composition. 1. A method for producing a PTC porcelain composition, which comprises blending components in a proportion of 0.45 mol% or less and Si at a ratio of 0.45 mol% or less, and firing the composition. (7) Claims 2 and 4, characterized in that the liquid phase solution reaction method uses either an oxalate method or a hydrothermal synthesis method.
6. A method for producing a PTC porcelain composition as described in 6.
JP1188314A 1989-07-20 1989-07-20 PTC porcelain composition and method for producing the same Expired - Lifetime JPH075363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188314A JPH075363B2 (en) 1989-07-20 1989-07-20 PTC porcelain composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188314A JPH075363B2 (en) 1989-07-20 1989-07-20 PTC porcelain composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0354165A true JPH0354165A (en) 1991-03-08
JPH075363B2 JPH075363B2 (en) 1995-01-25

Family

ID=16221435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188314A Expired - Lifetime JPH075363B2 (en) 1989-07-20 1989-07-20 PTC porcelain composition and method for producing the same

Country Status (1)

Country Link
JP (1) JPH075363B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215354A (en) * 1990-01-16 1991-09-20 Murata Mfg Co Ltd Barium titanate-based semiconductor ceramic composition
KR100310328B1 (en) * 1998-05-28 2001-10-29 마찌다 가쯔히꼬 Dynamic random access memories with dielectric compositions stable to reduction
US6455454B1 (en) * 1999-04-28 2002-09-24 Murata Manufacturing Co. Ltd. Semiconductor ceramic, semiconductor ceramic element and circuit protection element
CN1093102C (en) * 1998-07-24 2002-10-23 株式会社村田制作所 Composite material and ceramic for PTC thermistor and manufacture thereof
CN1093847C (en) * 1998-11-11 2002-11-06 株式会社村田制作所 Semiconductor ceramic and device using one
WO2004110952A1 (en) * 2003-06-16 2004-12-23 Toho Titanium Co., Ltd. Barium titanate based semiconductor porcelain composition
JP2014205585A (en) * 2013-04-11 2014-10-30 ニチコン株式会社 Semiconductor ceramic composition and method of producing the same
JPWO2013065441A1 (en) * 2011-11-01 2015-04-02 株式会社村田製作所 PTC thermistor and method for manufacturing PTC thermistor
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157502A (en) * 1981-03-24 1982-09-29 Murata Manufacturing Co Barium titanate series porcelain composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157502A (en) * 1981-03-24 1982-09-29 Murata Manufacturing Co Barium titanate series porcelain composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215354A (en) * 1990-01-16 1991-09-20 Murata Mfg Co Ltd Barium titanate-based semiconductor ceramic composition
KR100310328B1 (en) * 1998-05-28 2001-10-29 마찌다 가쯔히꼬 Dynamic random access memories with dielectric compositions stable to reduction
CN1093102C (en) * 1998-07-24 2002-10-23 株式会社村田制作所 Composite material and ceramic for PTC thermistor and manufacture thereof
CN1093847C (en) * 1998-11-11 2002-11-06 株式会社村田制作所 Semiconductor ceramic and device using one
US6455454B1 (en) * 1999-04-28 2002-09-24 Murata Manufacturing Co. Ltd. Semiconductor ceramic, semiconductor ceramic element and circuit protection element
DE10021051B4 (en) * 1999-04-28 2011-01-27 Murata Mfg. Co., Ltd., Nagaokakyo-shi Semiconductor ceramic, use of a semiconductor ceramic for a ceramic semiconductor element and a circuit protection element
WO2004110952A1 (en) * 2003-06-16 2004-12-23 Toho Titanium Co., Ltd. Barium titanate based semiconductor porcelain composition
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device
JPWO2013065441A1 (en) * 2011-11-01 2015-04-02 株式会社村田製作所 PTC thermistor and method for manufacturing PTC thermistor
JP2014205585A (en) * 2013-04-11 2014-10-30 ニチコン株式会社 Semiconductor ceramic composition and method of producing the same

Also Published As

Publication number Publication date
JPH075363B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
JP4080576B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPH0354165A (en) Ptc ceramic composition and production thereof
JPS597665B2 (en) High dielectric constant porcelain composition
JP3254316B2 (en) Barium titanate-based semiconductor porcelain composition
JPS5910951B2 (en) Raw material composition for manufacturing high dielectric constant porcelain
JPH03155352A (en) Small direct current motor
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2000264726A (en) Semiconductor porcelain
JPH07220902A (en) Barium titanate semiconductor ceramic
JPS6243522B2 (en)
KR20020048101A (en) A method for preparing Barium Titanate powders for X7R type multilayer ceramic Chip Capacitor
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH07118062A (en) Barium titanate-based semiconductor porcelain composition and production thereof
JPS6217806B2 (en)
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH07183104A (en) Manufacture of barium titanate semiconductor porcelain
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JPH1072254A (en) Production of barium titanate-base semiconductor porcelain
JPH05213666A (en) Dielectric porcelain composition and its production
JPS5919442B2 (en) Semiconductor ceramic material and its manufacturing method
JPH05301766A (en) Barium titanate-based semiconductive porcelain and its production
JPH0794020A (en) Composition for barium titanate semiconductor ceramic
JPH10289804A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH06310363A (en) Semiconductor ceramic and manufacture thereof