Nothing Special   »   [go: up one dir, main page]

JPH0352053B2 - - Google Patents

Info

Publication number
JPH0352053B2
JPH0352053B2 JP26641884A JP26641884A JPH0352053B2 JP H0352053 B2 JPH0352053 B2 JP H0352053B2 JP 26641884 A JP26641884 A JP 26641884A JP 26641884 A JP26641884 A JP 26641884A JP H0352053 B2 JPH0352053 B2 JP H0352053B2
Authority
JP
Japan
Prior art keywords
component
dielectric layer
weight
recording medium
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26641884A
Other languages
Japanese (ja)
Other versions
JPS61144654A (en
Inventor
Kozo Arahara
Tatsuo Takeuchi
Yoshio Takasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26641884A priority Critical patent/JPS61144654A/en
Priority to US06/785,616 priority patent/US4745030A/en
Publication of JPS61144654A publication Critical patent/JPS61144654A/en
Publication of JPH0352053B2 publication Critical patent/JPH0352053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/41Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing
    • B41J2/415Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/0202Dielectric layers for electrography
    • G03G5/0205Macromolecular components
    • G03G5/0208Macromolecular components obtained by reactions only involving carbon-to-carbon unsatured bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/0202Dielectric layers for electrography
    • G03G5/0205Macromolecular components
    • G03G5/0211Macromolecular components obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Fixing For Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、静電記録媒体、特に複数回使用可能
な静電記録媒体に関する。 〔従来技術〕 従来、静電記録装置における記録媒体としては
記録層と基紙の中間に導電層を設けた静電記録紙
が一般に用いられており、該記録層表面にマルチ
スタイラスなどの針電極を用いて静電潜像を形成
しこれをトナーで現像、定着させて記録画像を得
ている。しかしこの様な静電記録紙を用いた場合
記録紙表面への余分なトナーの付着は避けられ
ず、また使用時の雰囲気(水分や熱など)に非常
に左右され易い等の欠点をもつばかりでなく、静
電記録紙自体が普通紙に比べて特殊であるため消
耗品として使用することはランニングコストが著
るしく高くなるという欠点があつた。これらの欠
点を解決するため普通紙に転写する方式の静電記
録装置が開発されている(例えば特公昭46−
34077号公報)。この方式によれば、例えば二軸延
伸されたポリエステル基材上に1012Ω・cm以上の
体積抵抗率を有する誘電体層を設けた記録媒体を
ベルト形に構成しマルチスタイラスによつて針電
極と誘電体表面との間に高電圧を印加し放電を生
ぜしめることにより誘電体表面を帯電し、ついで
形成された静電潜像をトナーで現像し粉体像を
得、これを普通紙に静電的に転写することにより
画像が得られている。しかし乍ら、この方式では
普通紙へ静電的にトナー画像を転写するため転写
効率が80%程度と低く、画像濃度の低下、さらに
残留トナーのクリーニング、飛散の面で不利であ
るほか、静電転写による画像の乱れが生じる。 一方、導電性の剛体シリンダーの表面に誘電体
薄層を設け、この誘電体薄層表面に静電潜像を形
成し、この潜像をトナーで現像したのち圧力によ
り普通紙に転写かつ定着する方式が知られている
(例えば特開昭54−78134号公報、特開昭55−
134872号公報)。この方式では誘電体薄層は紙に
より摺擦を受けるため表面が研摩されることとな
る。従つて誘電体層の硬度を高くする見地より陽
極酸化アルミニウム、溶射によるAl2O3、ガラス
エナメルなどの無機誘電体及びポリアミド、ポリ
イミド、フツ素樹脂などの有機誘電体が使用され
ている。しかし陽極酸化アルミニウム、溶射
Al2O3、ガラスエナメルなどの無機誘電体層は雰
囲気中の水分の付着により著しい表面抵抗の低下
を招き、良好な画像が得られない。またポリアミ
ド、ポリイミド等の有機誘電体層は耐摩耗性が不
十分であるためクリーナーによる表面の切削や摺
擦傷などの問題を生じ十分な耐久性が得られない
という欠点がある。特に圧力転写同時定着を行な
うにさいし転写紙との摩擦も加味され有機記録層
は一層使用が困難となる。又これらの有機記録層
は長期使用にさいし高電界下ではオゾンによる酸
化をうけ耐湿性が低下する。ポリイミド系やポリ
アミド系樹脂は衝撃に弱くクラツク状の傷が発生
し易くその場所から剥離が生じ、更に圧力転写式
では表面エネルギーが大きいため転写効率が80%
以下と低い傾向にある。またフツ素樹脂は転写効
率は良好であるが軟質のため摺擦傷が発生し易
い。更に圧力転写方式の場合、誘電体層表面が普
通紙及び加工ローラと加圧下で接触するため誘電
体層表面に摩擦帯電電荷が誘起される。この時誘
起される電荷の極性及び量は加圧接触部材の材質
たとえば転写材の成分及び加圧ローラーの樹脂成
分、及び加圧接触部材の表面粗さ、さらに使用環
境下の温度・湿度により異つており、著しい影響
を受ける。この為、静電潜像の電位に比べ著しく
高い電位の摩擦帯電、又は静電潜像とは逆極性の
摩擦帯電が生じた場合、均一な除電が困難とな
る。また誘電体表面の不要な摩擦帯電は、放電生
成物の付着及び紙粉等の帯電微粉子の付着を促進
することになり、更にこれらの付着物が吸湿する
ことにより、著しい表面抵抗の低下による画像へ
の悪影響を及ぼす。また、誘電体層表面の摩擦帯
電電荷の分布が不均一である場合、静電潜像形成
時のイオン注入が阻害され画像のボケ、白ヌケ等
の悪影響を引き起こすことがある。 上記欠点をなくすために摩擦帯電の発生を少な
くすること、又は摩擦帯電電位の減衰速度を早く
することにより摩擦帯電を安定化することは誘電
体材料として絶縁抵抗値の低いものを使用するこ
とにより達成されるが、低い抵抗値の材料であれ
ば誘電体の表面抵抗も低下してしまい、安定な静
電潜像が得られなく画像が乱れてしまうため使用
できなかつた。 上述のように、空気中の水分の影響を受けにく
く、転写効率がよく、かつ耐摩耗性、耐衝撃性、
耐オゾン性の全ての特性を同時に満足し、さらに
摩擦帯電による画像への悪影響がなく長期使用に
耐えるものは得られていない。 〔発明が解決しようとする問題点〕 本発明の目的は静電記録装置、特に圧力によつ
て記録媒体の誘電体層表面のトナー像を普通紙に
転写する方式の静電記録装置に用いられる複数回
使用可能な記録媒体であつて、オゾン等による酸
化の影響を受けることなく、トナーの転写効率が
良く、摩擦帯電による画像への悪影響を防ぎ、長
期的に良質の画像が得られる良好な静電記録用媒
体を提供することにある。 〔問題点を解決するための手段〕 すなわち本発明は、転写方式に用いられる、誘
電体層及び導電性基材を有する静電記録媒体にお
いて、該誘電体層が下記成分(A)乃至(D) (A) 体積抵抗率が1010Ω・cm以上の無機質粉末 (B) 成膜後の表面抵抗が1012Ω以上の成膜用樹脂 (C) 静摩擦係数が0.4以下の滑剤及び表面移行性
を有する機能性セグメントと成膜用樹脂に相溶
する相溶性セグメントを有する含フツ素ブロツ
ク共重合体、又は該含フツ素ブロツク共重合体 (D) 体積抵抗率1010Ω・cm未満の無機質粉末を含
有する混合物を含有し、該混合物は該成分(A)
100重量部に対し該成分(D)0.1〜100重量部を含
有し、該誘電体層が該導電性基材上に直接ある
いは他の誘電体層を介して成膜されていること
を特徴とする静電記録媒体である。 第1図は導電性基材3に記録層として誘電体層
2を設けた記録媒体となる誘電体ドラム1を示
す。ここで記録体の形状は第1図に示す如きドラ
ム形状に限定されず、ベルト状あるいは平板状で
あつても差しつかえない。 導電性基材3はアルミニウム、アルミニウム合
金、ステンレススチール及びその他の金属から選
ばれ、圧力転写又は圧力転写同時定着のときの加
圧によつて変形しない程度の厚さを有することが
望ましい。また導電性基材の表面を軟化させるた
め、又は導電性基材の表面積を大きくしてコーテ
イングされる誘電体層の密着力を向上させるた
め、例えばアルミニウム合金表面の陽極酸化ある
いはステンレススチール表面のハードクロムメツ
キを行なつてもよい。 次に誘電体層2の構成成分として用いられる成
膜用樹脂(成分(B))は成膜後の表面抵抗が1012Ω
以上、好ましくは1013Ω以上であることが安定な
静電潜像が得られるという点よりみて適切であ
る。 使用される成膜用樹脂は具体的には、例えばポ
リイミド、ポリアミドイミド、ポリアミド、ポリ
エステルイミド、ポリエステル、ポリビニルホル
マール、エポキシ樹脂、ポリウレタン、メラミン
樹脂、アクリル樹脂、ポリメチルメタアクリレー
ト、ポリアクリルアミド、シリコーン樹脂、シリ
コーンポリイミド樹脂、シリコーンエポキシ樹
脂、シリコーンエステル樹脂、イミドエポキシ樹
脂、ウレタンアクリレート樹脂、エポキシアクリ
レート樹脂、フエノール樹脂、ポリアセタール、
フツ素樹脂などが挙げられる。 また成分(A)の無機質微粉末は体積抵抗率が
1010Ω・cm以上好ましくは1011Ω・cm以上である
ことが望ましく、これにより誘電体全体の体積抵
抗率が上げられ安定な静電潜像が得られる。更に
平均粒径が10μm以下であることが好ましく、こ
れにより微粉末の塗膜中の分散性が良好となり均
一な塗膜が得られる。かかる微粉末としては具体
的にはたとえばアルミナ、酸化マグネシウム、ボ
ロンナイトライド、アスベスト、シリカ、ガラス
粉末、天然雲母、合成雲母、チタン酸バリウム、
チタン酸マグネシウム、チタン酸ジルコニウム、
ジルコン、ベリリア等またはこれらの混合物を使
用することができる。 特に天然雲母の結晶の中の結晶水(OH)をフ
ツ素(F)で置き換えたフツ素雲母を使用すると高湿
時でも画像特性が良好な誘電体層が得られる。 無機質微粉末(成分A)の粒度分布は均一であ
つてもよく、また誘電体層が可及的に緻密な構造
となるよう粒度のことなる粒子が組合された状態
であつてもよく、更にリン片状や繊維状のものを
用いてもよい。 無機質微粉末(成分A)と成膜用樹脂(成分
B)の混合割合は前者100重量部に対し後者5〜
300重量部、好ましくは20〜200重量部の範囲であ
る。成膜用樹脂が5重量部未満であれば誘電体の
耐衝撃性が低下し高湿度環境下で画像の劣化が生
じる、一方300重量部をこえると耐オゾン特性が
低下しさらにクリーナーによる誘電体表面の切削
や摺擦傷を生じ易いので十分な耐久性が得られな
い。 次に、前記混合物の(C)成分として25℃における
静摩擦係数が0.4以下の滑剤及び/又はフルオロ
アルキル基を含有するA−B型のブロツク重合体
などの含フツ素ブロツク共重合体が用いられる。
静摩擦係数が0.4をこえると十分な滑り特性及び
現像剤の転写効率の良いものが得られない。 (C)成分の滑剤として、たとえばポリテトラフル
オロエチレン、ポリカーボンモノフルオライド等
のフツ素含有化合物及びポリエチレン、ナイロン
等である。 上記の滑剤の1種又は2種以上を混合物の(C)成
分として使用することにより、誘電体層の離型
性、非粘着性、平滑性、滑り性を向上させ、従つ
て現像剤の転写効率が高くなり、現像剤中の有機
成分が誘電体層に付着しにくくなり、また誘電体
層の耐摩耗性が良好になる。 本発明で用いる含フツ素ブロツク共重合体は、
表面移行性をもつ機能性セグメントと前述の成膜
用樹脂に相溶する相溶性セグメントを有してい
る。具体的には相溶性セグメントとして作用する
重合体の一端に機能性セグメントとして作用する
含フツ素モノマー成分(例えば下述の含フツ素ア
ルキル基)をブロツク重合させたA−B型ブロツ
ク共重体である。機能性セグメントとして作用す
る含フツ素モノマー成分としては、−CH2
(CF22H,−CH2(CF24H,−CH2CF3,−CH2CH2
(CF27CF3,−CF3,C2F6などのフルオロアルキ
ル基が好適である。又、相溶性セグメントとして
作用する重合体としては、ビニルモノマー成分を
含むものが好ましく、具体的にはポリメチルメタ
クリレート、ポリブチルメタクリレート、ポリメ
チルアクリレート、ポリエチルアクリレートなど
が適している。 このフルオロアルキル基を一成分とするA−B
型含フツ素ブロツク共重合体は、その相溶性セグ
メントが成膜用樹脂と相溶し、塗膜の基体との密
着力の向上、硬度の向上が可能となり、さらには
機能性セグメントとして作用するフルオロアルキ
ル基が表面に移行し、塗膜表面の発水性、離型
性、非粘着性、滑り性を向上させることができ
る。これらの点は同一組成のランダムポリマーを
用いた場合には得られないものである。 これらの含フツ素ブロツク共重合体は、ポリメ
リツクベルオキシドを重合開始剤として合成する
ことができる〔第33回高分子学会年次大会予稿集
第266頁(Vol.33,No.2,1984年)〕。又、含フツ
素ブロツク共重合体としては、日本油脂(株)製のモ
バイバーF100,F110,F200,F210を用いること
ができる。 この含フツ素ブロツク共重合体は上述の転写効
率、耐摩耗性の向上はもちろん、オゾン酸化を受
けることなく常に電気特性の安定な静電記録体を
得る上で好ましい滑剤である。この理由はまだ十
分に解明されていないが、一つにはフルオロアル
キル成分はオゾン酸化を受けにくいものであり、
これをブロツク重合をした基質成分は、使用する
成膜用樹脂(B)成分と相溶しやすく、極くミクロな
状態でフロロアルキル成分が規則的に記録体表面
に分布している事が推察される。これら滑剤の配
合量は(A)成分無機質粉末100重量部に対し0.001〜
300重量部、好ましくは0.01〜100重量部の範囲で
ある。配合量が0.001重量部未満では離型性、滑
り性向上の効果が十分でなく、一方300重量部を
こえると得られる塗膜の耐衝撃性が低下する。 また、前記混合物の成分(D)として摩擦帯電の影
響を受けにくくするため体積抵抗率1010Ω・cm未
満の無機粉末を用いる。好ましくは体積抵抗率は
107Ω・cm以下である。また成分(D)の無機粉末の
平均粒径は10μm以下が好ましい。10μmをこえ
ると塗膜中の無機粉末分散性が低下する傾向にあ
る。かかる無機質粉末は、例えばSnO2,SnO2
TiO2,SnO2−BaSO4等の酸化スズ系無機酸化
物、三二酸化鉄、四三酸化鉄、三二酸化ニツケ
ル、酸化亜鉛やその他の金属酸化物や、或いは炭
化ケイ素、ポリカーボンモノフルオライド、カー
ボンブラツク等の非酸化性無機化合物、或いは
銅、亜鉛、アルミニウム、シリコン、鉄、コバル
ト、ニツケル、マンガンタングステン、スズ、ア
ンチモン等の金属微粉末、或いは導電処理を行つ
たそれ自体は高抵抗(体積抵抗1010Ω・cm以上)
の無機微粉末として二酸化ケイ素、活性白土、酸
性白土、カオリンアルミナ粉、ゼオライトなどに
金、銀、銅、ニツケルなどの無電解メツキを施し
たものが挙げられる。 体積抵抗率1010Ω・cm未満の無機粉末(成分
D)を誘電体層形成の一成分として使用すること
により誘電体層の表面抵抗を大きく低下させるこ
となく、安定な静電潜像が得られると同時に、転
写紙である普通紙又は加圧ローラーとの摩擦帯電
による画像乱れを生じない誘電体層が提供され
る。成分(D)の配合量は成分(A)100重量部に対し0.1
〜100重量部の範囲である。配合量が0.1重量部未
満では摩擦帯電の抑制効果が十分でなく、100重
量部をこえると塗膜の基材への密着力が低下す
る。 誘電体表面の離型性、平滑性、転写材の転写効
率と摩擦帯電は微妙な相関関係を有するもので、
前述の滑材、体積抵抗率1010Ω・cm未満の微粉末
を体積抵抗率1012Ω・cm以上の成膜用樹脂に添加
して得られる誘電体層を使用することにより始め
て良好な画像が長期的に安定して得られるのであ
る。 そして上述のような誘電体層を導電性基材上に
形成するためには、前記混合物を導電性基材上も
しくは他の誘電体層が形成されている導電性基材
上に押出被覆してもよいし、あるいは前記混合物
に希釈剤を加えて液状とし、これをコーテイング
してもよい。 次に記録媒体の作成の好ましい態様について述
べる。ドラム形状の記録媒体の場合、アルミニウ
ム及びアルミニウム合金、ステンレス鋼などの導
電性基材からなるシリンダを作成する。このとき
のシリンダーの肉厚は圧力転写又は圧力転写同時
定着の際の圧力に耐える厚みが必要となる。アル
ミニウム、アルミニウム合金の場合10mm以上ある
ことが望ましい。次に前記シリンダー表面に直接
又は他の誘電体層を介して本発明で使用する成分
(A),(B),(C)及び(D)更に必要により溶媒、硬化剤、
分散助剤、硬度向上用添加剤、顔料、染料等を添
加してなる塗料を塗布、乾燥して成膜する。この
ときの膜厚は電気絶縁性保持のため少なくとも
3μm以上が望ましく、好ましくは10μm以上であ
る。 次に前記のように作成した誘電体ドラムを記録
媒体として第2図に示す静電記録装置に組み込
む。第2図の静電記録装置の構成を細述すると、
静電潜像の形成には記録ヘツド4を用いて行い、
方式としては特公昭36−4119号公報に開示された
マルチスタイラス又は特開昭53−96834号公報、
同54−53537号公報に開示されたイオン注入タイ
プのものいずれのものでも使用でき、基本的には
ドツト形状で誘電体2の表面に静電潜像が形成さ
れ得るものであればよい。望ましくは後者のイオ
ン注入タイプの如く誘電体2と記録ヘツド4間で
直接放電を伴なわないものが使用される。 次に前記の方法によつて形成された静電潜像
は、現像部5で顕像化された後、加圧ローラー7
によつて圧力により普通紙9に転写される。この
さい圧力定着性のトナーを用いれば、可視像が普
通紙に転写されると同時に定着される。ついで常
法に従い、可視像転写後の記録媒体は除電器ユニ
ツト8により除電され、クリーナーユニツト6に
より転写のこりのトナーが除去される。 なお静電記録ヘツド4で誘電体ドラム1に画像
信号に応じた静電潜像を記録するには、特開昭54
−78134号公報に開示された静電記録ヘツド(イ
オン発生器)を使用することができる。その静電
記録ヘツド4は、第3図に示すように、誘電体3
5、ドライブ電極36、コントロール電極37、
イオン放出アパーチヤ38を有するスクリーン電
極39からなる。ドライブ電極36とコントロー
ル電極37との間には電源34によつて交流電圧
が印加され、コントロール電極37と誘電体ドラ
ム1の導電性基体3との間にはスイツチ33を介
して電源31から直流電圧が印加され、スクリー
ン電極39と導電性基体3との間には電源32か
ら直流電圧が印加されている。ドライブ電極36
と、コントロール電極37との間に印加された交
流電圧により、正負のイオンが交互に発生する。
画像信号によりスイツチ33がオン(接点Yに導
通)していれば、負イオンは加速され誘電体ドラ
ム1の誘電体層2に到達し、保持される。このと
き正イオンは加速されないのでコントロール電極
37との間で放電してしまう。画像信号がなくて
スイツチ33がオフ(接点Xに導通)していれ
ば、正負ともイオンは加速されないので共にコン
トロール電極37との間で放電してしまう。この
ようにして画像信号に応じた静電潜像を記録でき
る。 次に実施例について説明する。 実施例において静摩擦係数は、物体(潤滑剤)
が同一物質に静止する場合の値であり、実際には
東洋精機製TSS式摩擦係数試験機により測定し
た値である。 実施例 1 環化ブタジエンゴム塗料JSR CBR−M(日本
合成ゴム株式会社の商品、キシレン80重量%含
有)を内径60mm、外径100mm、長さ230mmのアルミ
合金製シリンダーの外周表面に塗布後180℃で60
分加熱乾燥し塗膜厚3μmで成膜されたシリンダ
ーを得た。このシリンダーに、 (1) 合成雲母であるカリ四ケイ素雲母〔KMg2.5
(Si4O10)F2〕粉末(体積抵抗率5.0×1014Ω・
cm;平均粒径2.5μm) 30g (2) アルミナ(Al2O3)粉末(体積抵抗率4.0×
1014Ω・cm;平均粒径1.0μm) 70g (3) 酸化スズ(SnO2)粉末(体積抵抗率1Ω・
cm;平均粒径0.1μm) 5g (4) フルオロアルキル基を1成分とするA−B型
のブロツク重合体 モデイバーF200(日本油脂
株式会社の商品) 5g (5) 紫外線硬化型エポキシアクリレート塗料(樹
脂分100%)ユニデツクV5502(大日本インキ化
学工業株式会社の商品)(生膜後の表面抵抗8.0
×1015Ω) 70g (6) 2−エチルアントラキノン(光反応促進剤)
1.4g (7) メチルエチルケトン 50g を混合して得られた塗料を塗布し、80℃で10分乾
燥後、4kW集光型紫外線ランプを照射距離15cm
で30秒間照射し、塗膜厚15μmで成膜された環化
ブタジエンゴム層と合わせて18μm厚の塗膜を有
するシリンダーを得た。 実施例 2 実施例1で使用したシリンダー(環化ブタジエ
ンゴム層3μm)と同じシリンダーに、 (1) 合成雲母であるフツ素金雲母〔KMg3
(AlSi3O10)F2〕(体積抵抗率80×1015Ω・cm;
325メツシユ以下の大きさ) 5g (2) アルミナ(Al2O3)粉末(体積抵抗率4.0×
1014Ω・cm;平均粒径1.0μm) 90g (3) ポリカーボンモノフルオライド粉末(体積抵
抗率2.0×103Ω・cm;平均粒径1.0μm,静摩擦
係数0.02) 20g (4) フルオロアルキル基を1成分とするA−B型
のブロツク重合体 モデイバーF100(日本油脂
株式会社の商品) 1g (5) 紫外線硬化型ウレタンアクリレート塗料(樹
脂分75%)ユニデツク17−824(大日本インキ化
学工業株式会社の商品)(成膜後の表面抵抗8.2
×1015Ω) 50g (6) 酢酸ブチル 40g を混合して得られた塗料を塗布し、80℃で10分乾
燥後、4kW集光型紫外線ランプを照射距離15cm
で30秒間照射し、塗膜厚12μmで成膜された環化
ブタジエンゴム層と合わせて15μm厚の塗膜を有
するシリンダーを得た。 比較例 1 実施例1の表面塗布用に使用した酸化スズを除
いた以外は実施例1と全く同様の方法で塗膜厚
17μm(環化ブタジエンゴム層3μmを含む)のシ
リンダーを得た。 比較例 2 実施例1の表面塗布用に使用したフルオロアル
キル基を1成分とするA−B型のブロツク重合体
モデイバーF200を除いた以外は実施例1と全く
同様の方法でシリンダーを作成し塗膜厚18μm
(環化ブタジエンゴム層3μmを含む)のシリンダ
ーを得た。 比較例 3 実施例1の表面塗布用に使用した、ユニデツク
V5502と2−エチルアントラキノンとメチルエチ
ルケトンの混合物(他成分は除く)を用いて実施
例1と全く同様の方法で塗膜厚19μm(環化ブタ
ジエンゴム層を含む)のシリンダーを得た。 前記実施例1及び2と比較例1,2及び3につ
いて下記の要領で比較実験を行い以下の結果を得
た。 〔試験1〕 前述の静電記録装置に実施例1及び2と比較例
1の記録体シリンダーを各々組み込み、ポリアセ
タール製の加圧ローラーを圧接し、回転させこの
時の加圧ローラーとの摩擦帯電を、記録シリンダ
ーの表面電位として測定した。加えた圧力は100
Kg/cm2である。結果を表1に示す。値は絶対値で
ある。また、加圧ローラー表面は毎回除電斜を用
いて除電を行つた。
[Industrial Application Field] The present invention relates to an electrostatic recording medium, particularly an electrostatic recording medium that can be used multiple times. [Prior Art] Conventionally, electrostatic recording paper in which a conductive layer is provided between the recording layer and the base paper is generally used as a recording medium in an electrostatic recording device, and a needle electrode such as a multi-stylus is attached to the surface of the recording layer. An electrostatic latent image is formed using toner, which is developed and fixed with toner to obtain a recorded image. However, when such electrostatic recording paper is used, it is unavoidable that excess toner adheres to the surface of the recording paper, and it also has disadvantages such as being highly susceptible to the atmosphere (moisture, heat, etc.) during use. Moreover, since electrostatic recording paper itself is special compared to plain paper, it has the disadvantage that running costs are significantly higher when used as a consumable item. To solve these drawbacks, electrostatic recording devices that transfer onto plain paper have been developed (for example, the
Publication No. 34077). According to this method, a recording medium is formed in the form of a belt, in which a dielectric layer having a volume resistivity of 10 12 Ω·cm or more is provided on a biaxially stretched polyester base material, and a needle electrode is connected to the recording medium using a multi-stylus. The dielectric surface is charged by applying a high voltage between the surface and the dielectric surface, and the electrostatic latent image formed is then developed with toner to obtain a powder image, which is then printed on plain paper. Images are obtained by electrostatic transfer. However, since this method electrostatically transfers toner images onto plain paper, the transfer efficiency is as low as about 80%, which reduces image density and is disadvantageous in terms of cleaning and scattering of residual toner. Image distortion occurs due to electrical transfer. On the other hand, a dielectric thin layer is provided on the surface of a conductive rigid cylinder, an electrostatic latent image is formed on the surface of this dielectric thin layer, and after this latent image is developed with toner, it is transferred and fixed onto plain paper using pressure. The method is known (for example, JP-A-54-78134, JP-A-55-
134872). In this method, the dielectric thin layer is rubbed by the paper, resulting in its surface being polished. Therefore, in order to increase the hardness of the dielectric layer, inorganic dielectrics such as anodized aluminum, Al 2 O 3 formed by thermal spraying, and glass enamel, and organic dielectrics such as polyamide, polyimide, and fluororesin are used. But anodized aluminum, thermal sprayed
Inorganic dielectric layers such as Al 2 O 3 and glass enamel suffer from a significant decrease in surface resistance due to adhesion of moisture in the atmosphere, making it impossible to obtain good images. Furthermore, organic dielectric layers such as polyamide and polyimide have insufficient abrasion resistance, resulting in problems such as surface cutting by cleaners and scratches, and sufficient durability cannot be obtained. Particularly when carrying out simultaneous pressure transfer and fixing, friction with the transfer paper is taken into account, making it even more difficult to use an organic recording layer. Furthermore, during long-term use, these organic recording layers are subject to oxidation by ozone under a high electric field, resulting in a decrease in moisture resistance. Polyimide and polyamide resins are weak against impact and are prone to crack-like scratches, causing peeling at these locations.Furthermore, pressure transfer methods have a high surface energy, resulting in a transfer efficiency of 80%.
It tends to be low. Further, although fluororesin has good transfer efficiency, it is soft and easily causes scratches. Furthermore, in the case of the pressure transfer method, since the surface of the dielectric layer contacts the plain paper and the processing roller under pressure, triboelectric charges are induced on the surface of the dielectric layer. The polarity and amount of charge induced at this time vary depending on the material of the pressure contact member, such as the composition of the transfer material and the resin composition of the pressure roller, the surface roughness of the pressure contact member, and the temperature and humidity of the usage environment. The impact is significant. For this reason, if triboelectric charging with a significantly higher potential than the potential of the electrostatic latent image or triboelectrical charging with a polarity opposite to that of the electrostatic latent image occurs, uniform charge removal becomes difficult. In addition, unnecessary triboelectrification on the dielectric surface promotes the adhesion of discharge products and charged fine particles such as paper dust, and when these adhering substances absorb moisture, the surface resistance decreases significantly. This will have a negative effect on the image. Furthermore, if the distribution of triboelectric charges on the surface of the dielectric layer is non-uniform, ion implantation during formation of an electrostatic latent image may be inhibited, resulting in adverse effects such as image blurring and white spots. In order to eliminate the above-mentioned drawbacks, it is possible to stabilize triboelectric charging by reducing the occurrence of triboelectrification or by increasing the attenuation rate of the triboelectric potential by using a dielectric material with a low insulation resistance value. However, a material with a low resistance value could not be used because the surface resistance of the dielectric material would also decrease, making it impossible to obtain a stable electrostatic latent image and distorting the image. As mentioned above, it is not easily affected by moisture in the air, has good transfer efficiency, and has excellent abrasion resistance, impact resistance,
No material has yet been obtained that simultaneously satisfies all the characteristics of ozone resistance, has no adverse effect on images due to triboelectrification, and is durable for long-term use. [Problems to be Solved by the Invention] The object of the present invention is to use an electrostatic recording device, particularly an electrostatic recording device that uses pressure to transfer a toner image on the surface of a dielectric layer of a recording medium onto plain paper. A recording medium that can be used multiple times, has good toner transfer efficiency without being affected by oxidation caused by ozone, etc., prevents negative effects on images due to frictional charging, and is a good recording medium that can provide high-quality images over a long period of time. An object of the present invention is to provide an electrostatic recording medium. [Means for Solving the Problems] That is, the present invention provides an electrostatic recording medium that is used in a transfer method and has a dielectric layer and a conductive base material, in which the dielectric layer contains the following components (A) to (D). ) (A) Inorganic powder with a volume resistivity of 10-10 Ω・cm or more (B) Film-forming resin with a surface resistance of 10-12 Ω or more after film formation (C) Lubricant with a static friction coefficient of 0.4 or less and surface migration properties A fluorine-containing block copolymer having a functional segment having the following properties and a compatible segment that is compatible with the film-forming resin , or the fluorine-containing block copolymer (D); a mixture containing a powder, said mixture comprising said component (A);
It contains 0.1 to 100 parts by weight of the component (D) per 100 parts by weight, and the dielectric layer is formed directly on the conductive substrate or via another dielectric layer. It is an electrostatic recording medium. FIG. 1 shows a dielectric drum 1 serving as a recording medium in which a dielectric layer 2 is provided as a recording layer on a conductive base material 3. Here, the shape of the recording body is not limited to the drum shape as shown in FIG. 1, but may be belt-shaped or flat plate-shaped. The conductive base material 3 is selected from aluminum, aluminum alloy, stainless steel, and other metals, and preferably has a thickness that is not deformed by pressure during pressure transfer or pressure transfer and simultaneous fixing. In addition, in order to soften the surface of the conductive base material or increase the surface area of the conductive base material to improve the adhesion of the coated dielectric layer, for example, anodizing the aluminum alloy surface or hardening the stainless steel surface. Chrome plating may also be performed. Next, the film-forming resin (component (B)) used as a component of the dielectric layer 2 has a surface resistance of 10 12 Ω after film formation.
As mentioned above, preferably 10 13 Ω or more is appropriate from the viewpoint of obtaining a stable electrostatic latent image. Specifically, the film-forming resins used include, for example, polyimide, polyamideimide, polyamide, polyesterimide, polyester, polyvinyl formal, epoxy resin, polyurethane, melamine resin, acrylic resin, polymethylmethacrylate, polyacrylamide, and silicone resin. , silicone polyimide resin, silicone epoxy resin, silicone ester resin, imide epoxy resin, urethane acrylate resin, epoxy acrylate resin, phenolic resin, polyacetal,
Examples include fluororesin. In addition, the volume resistivity of the inorganic fine powder of component (A) is
It is desirable that the resistance is 10 10 Ω·cm or more, preferably 10 11 Ω·cm or more, so that the volume resistivity of the entire dielectric can be increased and a stable electrostatic latent image can be obtained. Furthermore, it is preferable that the average particle size is 10 μm or less, so that the dispersibility of the fine powder in the coating film becomes good and a uniform coating film can be obtained. Specifically, such fine powders include alumina, magnesium oxide, boron nitride, asbestos, silica, glass powder, natural mica, synthetic mica, barium titanate,
Magnesium titanate, zirconium titanate,
Zircon, beryllia, etc. or mixtures thereof can be used. In particular, by using fluorine mica in which the water of crystallization (OH) in natural mica crystals is replaced with fluorine (F), a dielectric layer with good image characteristics even under high humidity can be obtained. The particle size distribution of the inorganic fine powder (component A) may be uniform, or may be a combination of particles with different particle sizes so that the dielectric layer has a structure as dense as possible, and A flaky or fibrous material may also be used. The mixing ratio of the inorganic fine powder (component A) and the film-forming resin (component B) is 100 parts by weight of the former to 5 to 5 parts by weight of the latter.
300 parts by weight, preferably in the range of 20-200 parts by weight. If the film-forming resin is less than 5 parts by weight, the impact resistance of the dielectric will decrease and image deterioration will occur in a high humidity environment, while if it exceeds 300 parts by weight, the ozone resistance will decrease and the dielectric will be damaged by the cleaner. Sufficient durability cannot be obtained because the surface is easily cut or scratched. Next, as component (C) of the mixture, a fluorine-containing block copolymer such as a lubricant having a static friction coefficient of 0.4 or less at 25°C and/or an A-B type block polymer containing a fluoroalkyl group is used. .
If the static friction coefficient exceeds 0.4, sufficient sliding properties and developer transfer efficiency cannot be obtained. Examples of the lubricant component (C) include fluorine-containing compounds such as polytetrafluoroethylene and polycarbon monofluoride, as well as polyethylene and nylon. By using one or more of the above lubricants as component (C) of the mixture, the releasability, non-adhesiveness, smoothness, and slipperiness of the dielectric layer can be improved, and the transfer of the developer can be improved. Efficiency is increased, organic components in the developer are less likely to adhere to the dielectric layer, and the wear resistance of the dielectric layer is improved. The fluorine-containing block copolymer used in the present invention is
It has a functional segment that has surface migration properties and a compatible segment that is compatible with the above-mentioned film-forming resin. Specifically, it is an A-B type block copolymer obtained by block polymerizing a fluorine-containing monomer component (for example, the fluorine-containing alkyl group described below) that acts as a functional segment on one end of a polymer that acts as a compatible segment. be. The fluorine-containing monomer component that acts as a functional segment is -CH 2
(CF 2 ) 2 H, −CH 2 (CF 2 ) 4 H, −CH 2 CF 3 , −CH 2 CH 2
Fluoroalkyl groups such as ( CF2 ) 7CF3 , -CF3 , C2F6 are preferred. Further, as the polymer that acts as a compatible segment, one containing a vinyl monomer component is preferable, and specifically, polymethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, etc. are suitable. A-B containing this fluoroalkyl group as one component
The compatible segments of the type fluorine-containing block copolymer are compatible with the film-forming resin, making it possible to improve the adhesion of the coating film to the substrate and the hardness, and also act as functional segments. The fluoroalkyl group migrates to the surface and can improve the water repellency, mold releasability, non-adhesiveness, and slipperiness of the coating surface. These points cannot be obtained when random polymers of the same composition are used. These fluorine-containing block copolymers can be synthesized using polymeric peroxide as a polymerization initiator [Proceedings of the 33rd Annual Conference of the Society of Polymer Science and Technology, p. 266 (Vol. 33, No. 2, 1984 Year)〕. Furthermore, as the fluorine-containing block copolymer, Moviver F100, F110, F200, and F210 manufactured by NOF Corporation can be used. This fluorine-containing block copolymer is a preferred lubricant not only for improving the transfer efficiency and abrasion resistance as described above, but also for obtaining an electrostatic recording material with always stable electrical properties without being subjected to ozone oxidation. The reason for this is not yet fully understood, but one reason is that fluoroalkyl components are resistant to ozone oxidation.
The substrate component obtained by block polymerization is easily compatible with the film-forming resin (B) component used, and it is inferred that the fluoroalkyl component is regularly distributed on the surface of the recording medium in an extremely microscopic state. be done. The blending amount of these lubricants is 0.001 to 100 parts by weight of component (A) inorganic powder.
300 parts by weight, preferably in the range of 0.01 to 100 parts by weight. If the amount is less than 0.001 part by weight, the effect of improving mold releasability and slipperiness will not be sufficient, while if it exceeds 300 parts by weight, the impact resistance of the resulting coating film will decrease. Further, as component (D) of the mixture, an inorganic powder having a volume resistivity of less than 10 10 Ω·cm is used to make it less susceptible to triboelectric charging. Preferably the volume resistivity is
10 7 Ω・cm or less. Further, the average particle size of the inorganic powder of component (D) is preferably 10 μm or less. If it exceeds 10 μm, the dispersibility of the inorganic powder in the coating film tends to decrease. Such inorganic powders include, for example, SnO 2 , SnO 2
Tin oxide-based inorganic oxides such as TiO 2 , SnO 2 -BaSO 4 , iron sesquioxide, triiron tetroxide, nickel sesquioxide, zinc oxide and other metal oxides, silicon carbide, polycarbon monofluoride, Non-oxidizing inorganic compounds such as carbon black, fine metal powders such as copper, zinc, aluminum, silicon, iron, cobalt, nickel, manganese tungsten, tin, antimony, etc., or conductive treated materials with high resistance (volume) Resistance 10 10 Ω・cm or more)
Examples of inorganic fine powders include silicon dioxide, activated clay, acid clay, kaolin alumina powder, zeolite, etc., which are electrolessly plated with gold, silver, copper, nickel, etc. By using an inorganic powder (component D) with a volume resistivity of less than 10 10 Ω・cm as a component for forming the dielectric layer, a stable electrostatic latent image can be obtained without significantly reducing the surface resistance of the dielectric layer. At the same time, a dielectric layer is provided that does not cause image disturbance due to frictional electrification with the plain paper used as the transfer paper or the pressure roller. The blending amount of component (D) is 0.1 per 100 parts by weight of component (A).
~100 parts by weight. If the amount is less than 0.1 part by weight, the effect of suppressing frictional charging will not be sufficient, and if it exceeds 100 parts by weight, the adhesion of the coating film to the substrate will decrease. There is a delicate correlation between the releasability and smoothness of the dielectric surface, the transfer efficiency of the transfer material, and triboelectric charging.
Good images can only be obtained by using a dielectric layer obtained by adding the aforementioned lubricant, a fine powder with a volume resistivity of less than 10 10 Ω·cm, to a film-forming resin with a volume resistivity of 10 12 Ω·cm or more. can be obtained stably over the long term. In order to form a dielectric layer as described above on a conductive base material, the mixture is extruded and coated on the conductive base material or on a conductive base material on which another dielectric layer is formed. Alternatively, a diluent may be added to the mixture to make it into a liquid, and this may be used for coating. Next, a preferred mode of creating a recording medium will be described. In the case of a drum-shaped recording medium, a cylinder is made of a conductive base material such as aluminum, aluminum alloy, or stainless steel. The wall thickness of the cylinder at this time needs to be thick enough to withstand pressure during pressure transfer or pressure transfer simultaneous fixing. In the case of aluminum and aluminum alloys, it is desirable to have a thickness of 10 mm or more. Next, the components used in the present invention are applied directly to the cylinder surface or through another dielectric layer.
(A), (B), (C) and (D) Furthermore, if necessary, a solvent, a curing agent,
A coating containing a dispersion aid, hardness improving additive, pigment, dye, etc. is applied and dried to form a film. The film thickness at this time should be at least
The thickness is desirably 3 μm or more, preferably 10 μm or more. Next, the dielectric drum prepared as described above is incorporated into an electrostatic recording apparatus shown in FIG. 2 as a recording medium. The configuration of the electrostatic recording device shown in FIG. 2 will be described in detail.
The electrostatic latent image is formed using the recording head 4,
The method is the multi-stylus disclosed in Japanese Patent Publication No. 36-4119, or the method disclosed in Japanese Patent Application Publication No. 53-96834,
Any of the ion implantation type disclosed in Japanese Patent Publication No. 54-53537 can be used, and basically any type that can form an electrostatic latent image on the surface of the dielectric 2 in a dot shape may be used. Preferably, a type that does not involve direct discharge between the dielectric 2 and the recording head 4, such as the latter ion implantation type, is used. Next, the electrostatic latent image formed by the above method is visualized in the developing section 5, and then the pressure roller 7
is transferred onto plain paper 9 by pressure. In this case, if a pressure fixable toner is used, the visible image is transferred to the plain paper and fixed at the same time. Next, in accordance with a conventional method, the recording medium after the visible image has been transferred is neutralized by the static eliminator unit 8, and the residual toner remaining after the transfer is removed by the cleaner unit 6. Note that in order to record an electrostatic latent image on the dielectric drum 1 using the electrostatic recording head 4 in accordance with an image signal, Japanese Patent Laid-Open No. 54
The electrostatic recording head (ion generator) disclosed in Japanese Patent No. 78134 can be used. The electrostatic recording head 4 includes a dielectric 3 as shown in FIG.
5, drive electrode 36, control electrode 37,
It consists of a screen electrode 39 with ion emitting apertures 38. An AC voltage is applied between the drive electrode 36 and the control electrode 37 by the power supply 34, and a DC voltage is applied from the power supply 31 between the control electrode 37 and the conductive substrate 3 of the dielectric drum 1 via the switch 33. A voltage is applied, and a DC voltage is applied between the screen electrode 39 and the conductive substrate 3 from the power source 32 . Drive electrode 36
By the alternating current voltage applied between the control electrode 37 and the control electrode 37, positive and negative ions are generated alternately.
If the switch 33 is turned on (conducted to the contact Y) by the image signal, the negative ions are accelerated and reach the dielectric layer 2 of the dielectric drum 1, where they are held. At this time, since positive ions are not accelerated, they are discharged between them and the control electrode 37. If there is no image signal and the switch 33 is off (conducting to contact X), both positive and negative ions will not be accelerated and will be discharged between them and the control electrode 37. In this way, an electrostatic latent image can be recorded according to the image signal. Next, an example will be described. In the examples, the static friction coefficient is the object (lubricant)
This is the value when the friction coefficient is stationary on the same material, and it is actually the value measured by Toyo Seiki's TSS type friction coefficient tester. Example 1 After applying cyclized butadiene rubber paint JSR CBR-M (product of Japan Synthetic Rubber Co., Ltd., containing 80% xylene by weight) to the outer peripheral surface of an aluminum alloy cylinder with an inner diameter of 60 mm, an outer diameter of 100 mm, and a length of 230 mm, 60℃
The cylinder was heated and dried for 30 minutes to obtain a cylinder coated with a film thickness of 3 μm. In this cylinder, (1) potassium tetrasilicon mica, which is a synthetic mica [KMg 2.5
(Si 4 O 10 )F 2 ] powder (volume resistivity 5.0×10 14 Ω・
cm; average particle size 2.5μm) 30g (2) Alumina (Al 2 O 3 ) powder (volume resistivity 4.0×
10 14 Ω・cm; average particle size 1.0μm) 70g (3) Tin oxide (SnO 2 ) powder (volume resistivity 1Ω・
cm; average particle size 0.1 μm) 5 g (4) A-B type block polymer containing a fluoroalkyl group as one component Modeiver F200 (product of NOF Corporation) 5 g (5) UV-curable epoxy acrylate paint (resin 100%) Unidek V5502 (product of Dainippon Ink & Chemicals Co., Ltd.) (Surface resistance after biofilm 8.0
×10 15 Ω) 70g (6) 2-ethylanthraquinone (photoreaction accelerator)
Apply the paint obtained by mixing 1.4g (7) of 50g of methyl ethyl ketone, dry at 80℃ for 10 minutes, and then use a 4kW concentrating ultraviolet lamp at an irradiation distance of 15cm.
The cylinder was irradiated for 30 seconds to obtain a cylinder having a coating film with a thickness of 18 μm including a cyclized butadiene rubber layer formed with a coating thickness of 15 μm. Example 2 In the same cylinder as that used in Example 1 (cyclized butadiene rubber layer 3 μm), (1) Fluorine phlogopite [KMg 3
(AlSi 3 O 10 )F 2 ] (volume resistivity 80×10 15 Ω・cm;
325 mesh or less) 5g (2) Alumina (Al 2 O 3 ) powder (volume resistivity 4.0×
10 14 Ω・cm; average particle size 1.0 μm) 90 g (3) Polycarbon monofluoride powder (volume resistivity 2.0×10 3 Ω・cm; average particle size 1.0 μm, static friction coefficient 0.02) 20 g (4) Fluoroalkyl A-B type block polymer with a group as one component Modeiver F100 (product of NOF Co., Ltd.) 1g (5) UV-curable urethane acrylate paint (resin content 75%) Unidec 17-824 (Dainippon Ink & Chemicals Co., Ltd.) Co., Ltd. product) (Surface resistance after film formation: 8.2
×10 15 Ω) 50g (6) Apply the paint obtained by mixing 40g of butyl acetate, dry it at 80℃ for 10 minutes, and then use a 4kW concentrating ultraviolet lamp at an irradiation distance of 15cm.
The cylinder was irradiated for 30 seconds to obtain a cylinder having a coating film with a thickness of 15 μm including the cyclized butadiene rubber layer formed with a coating thickness of 12 μm. Comparative Example 1 The coating thickness was determined in exactly the same manner as in Example 1, except that the tin oxide used for surface coating in Example 1 was removed.
A cylinder of 17 μm (including a 3 μm cyclized butadiene rubber layer) was obtained. Comparative Example 2 A cylinder was prepared and coated in exactly the same manner as in Example 1, except that the A-B type block polymer Modeler F200 containing a fluoroalkyl group as one component, which was used for surface coating in Example 1, was removed. Film thickness 18μm
A cylinder (including a cyclized butadiene rubber layer of 3 μm) was obtained. Comparative Example 3 Unidec used for surface coating in Example 1
A cylinder with a coating thickness of 19 μm (including the cyclized butadiene rubber layer) was obtained in exactly the same manner as in Example 1 using a mixture of V5502, 2-ethylanthraquinone, and methyl ethyl ketone (excluding other ingredients). Comparative experiments were conducted on Examples 1 and 2 and Comparative Examples 1, 2, and 3 in the manner described below, and the following results were obtained. [Test 1] The recording cylinders of Examples 1 and 2 and Comparative Example 1 were installed in the electrostatic recording device described above, and a pressure roller made of polyacetal was brought into contact with the pressure roller and rotated to cause frictional electrification with the pressure roller. was measured as the surface potential of the recording cylinder. The applied pressure is 100
Kg/ cm2 . The results are shown in Table 1. Values are absolute values. In addition, static electricity was removed from the surface of the pressure roller each time using a static electricity removal slope.

〔試験2〕[Test 2]

前記実施例2及び比較例2について、画像出し
による耐久を行つた。耐久条件は前述の静電記録
装置を用いて、記録シリンダーの塗膜上に静電潜
像を形成し、これを乾式圧定トナーを用いて現像
し、このトナー像を転写紙へ圧力転写同時定着を
行つた。耐久枚数はA4の用紙を用い、10万枚で
ある。この耐久の前後における両記録シリンダー
の転写効率を比較した。結果を表2に示す。
For Example 2 and Comparative Example 2, durability was conducted by image formation. The durability conditions are as follows: Using the electrostatic recording device mentioned above, an electrostatic latent image is formed on the coating film of the recording cylinder, this is developed using dry pressure toner, and this toner image is simultaneously pressure-transferred to transfer paper. I established myself. The durability is 100,000 sheets using A4 paper. The transfer efficiency of both recording cylinders before and after this durability test was compared. The results are shown in Table 2.

【表】 転写効率はトナー像を転写する前の転写紙の重
量を転写後の転写紙の重量から引き転写トナー量
agとし、記録媒体上の残留トナーをbgとして
a/a+b×100として求めた。表2より、表面
滑剤の混合によつて転写効率への影響が大である
ことが判明した。 〔試験3〕 実施例1及び2と比較例3についてコロナ照射
を行い、表面状態の変化を比較した。コロナ照射
時間は300分間で耐久前と耐久後の表面抵抗を常
温・常湿(23℃,60%)及び高温・高湿(33℃,
90%)の各条件下で測定した。結果を表3に示す
[Table] The transfer efficiency was calculated by subtracting the weight of the transfer paper before transferring the toner image from the weight of the transfer paper after transfer, giving the transferred toner amount ag, and taking the residual toner on the recording medium as bg, as a/a+b×100. . From Table 2, it was found that the mixing of the surface lubricant had a large effect on the transfer efficiency. [Test 3] Examples 1 and 2 and Comparative Example 3 were subjected to corona irradiation, and changes in surface conditions were compared. The corona irradiation time was 300 minutes, and the surface resistance before and after durability was measured at room temperature and humidity (23℃, 60%) and at high temperature and humidity (33℃, 60%).
90%). The results are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

以上説明したように転写方式の静電記録装置、
特に圧力転写方式の静電記録装置に、体積抵抗率
1010Ω・cm以上の無機質粉末と体積抵抗率
1010Ω・cm未満の粉末と滑剤からなる誘電体層を
設けた記録媒体を用いることにより、誘電体表面
の耐コロナ性が良く、トナーの転写効率が良好で
あり、さらに摩擦帯電による誘電体表面への悪影
響を防ぐことができた。
As explained above, a transfer type electrostatic recording device,
Volume resistivity is especially important for pressure transfer electrostatic recording devices.
10 Inorganic powder and volume resistivity of 10 Ω・cm or more
By using a recording medium provided with a dielectric layer made of powder and lubricant with a diameter of less than 10 10 Ω・cm, the dielectric surface has good corona resistance, toner transfer efficiency is good, and the dielectric layer can be easily removed by frictional charging. We were able to prevent any negative effects on the surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は記録媒体としての誘電体ドラムの部分
断面図であり、第2図は第1図の誘電体ドラムを
組込んだ静電記録装置の1例の要部概略図であ
る。第3図は記録ヘツドを示す。 1:誘電体ドラム、2:誘電体層、3:導電性
基材、4:記録ヘツド、5:現像器、6:クリー
ナーセツト、7:加圧ローラー、8:除電器、
9:普通紙。
FIG. 1 is a partial cross-sectional view of a dielectric drum as a recording medium, and FIG. 2 is a schematic diagram of essential parts of an example of an electrostatic recording device incorporating the dielectric drum of FIG. 1. FIG. 3 shows the recording head. 1: dielectric drum, 2: dielectric layer, 3: conductive base material, 4: recording head, 5: developer, 6: cleaner set, 7: pressure roller, 8: static eliminator,
9: Plain paper.

Claims (1)

【特許請求の範囲】 1 転写方式に用いられる、誘電体層及び導電性
基材を有する静電記録媒体において、該誘電体層
が下記成分(A)乃至(D) (A) 体積抵抗率が1010Ω・cm以上の無機質粉末 (B) 成膜後の表面抵抗が1012Ω以上の成膜用樹脂 (C) 静摩擦係数が0.4以下の滑剤及び表面移行性
を有する機能性セグメントと成膜用樹脂に相溶
する相溶性セグメントを有する含フツ素ブロツ
ク共重合体、又は該含フツ素ブロツク共重合体 (D) 体積抵抗率1010Ω・cm未満の無機質粉末を含
有する混合物を含有し、該混合物は該成分(A)
100重量部に対し該成分(D)0.1〜100重量部を含
有し、該誘電体層が該導電性基材上に直接ある
いは他の誘電体層を介して成膜されていること
を特徴とする静電記録媒体。 2 前記混合物が、成分(A)100重量部に対し、成
分(B)5〜300重量部及び成分(C)0.001〜300重量部
を含有する特許請求の範囲第1項記載の静電記録
媒体。 3 前記成分(D)の少なくとも1種が、体積抵抗率
107Ω・cm以下の無機質粉末である特許請求の範
囲第1項記載の静電記録媒体。
[Claims] 1. An electrostatic recording medium having a dielectric layer and a conductive base material used in a transfer method, wherein the dielectric layer has the following components (A) to (D) (A) and has a volume resistivity. Inorganic powder with a resistance of 10 10 Ω・cm or more (B) Film-forming resin with a surface resistance of 10 12 Ω or more after film formation (C) Film formation with a lubricant with a static friction coefficient of 0.4 or less and a functional segment with surface migration properties A fluorine-containing block copolymer having a compatible segment that is compatible with the resin used, or the fluorine-containing block copolymer (D) containing a mixture containing an inorganic powder with a volume resistivity of less than 10-10 Ωcm. , the mixture contains the component (A)
It contains 0.1 to 100 parts by weight of the component (D) per 100 parts by weight, and the dielectric layer is formed directly on the conductive substrate or via another dielectric layer. electrostatic recording medium. 2. The electrostatic recording medium according to claim 1, wherein the mixture contains 5 to 300 parts by weight of component (B) and 0.001 to 300 parts by weight of component (C) per 100 parts by weight of component (A). . 3 At least one of the components (D) has a volume resistivity
The electrostatic recording medium according to claim 1, which is an inorganic powder having a resistance of 10 7 Ω·cm or less.
JP26641884A 1984-10-15 1984-12-19 Electrostatic recorder Granted JPS61144654A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26641884A JPS61144654A (en) 1984-12-19 1984-12-19 Electrostatic recorder
US06/785,616 US4745030A (en) 1984-10-15 1985-10-09 Electrostatic recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26641884A JPS61144654A (en) 1984-12-19 1984-12-19 Electrostatic recorder

Publications (2)

Publication Number Publication Date
JPS61144654A JPS61144654A (en) 1986-07-02
JPH0352053B2 true JPH0352053B2 (en) 1991-08-08

Family

ID=17430656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26641884A Granted JPS61144654A (en) 1984-10-15 1984-12-19 Electrostatic recorder

Country Status (1)

Country Link
JP (1) JPS61144654A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715579B2 (en) * 1985-03-20 1995-02-22 東レ株式会社 Electrostatic recording film

Also Published As

Publication number Publication date
JPS61144654A (en) 1986-07-02

Similar Documents

Publication Publication Date Title
GB2024718A (en) Electrographic apparatus and an abrading means
JPH0651589A (en) Ionography-image forming system
US4745030A (en) Electrostatic recording device
JPS63115179A (en) Offset type electrostatic image treatment and developing agent
JPH04232961A (en) Blocking and protecting film layer of electron acceptor
JPH0352053B2 (en)
JPH0352052B2 (en)
JPH0352054B2 (en)
JPS61184562A (en) Electrostatic recorder
JPS61144656A (en) Electrostatic recorder
JPS61184563A (en) Electrostatic recorder
JP2002278224A (en) Electrifying system and electrifying device
JPS5854384B2 (en) Electrophotographic development method
JPS61184564A (en) Electrostatic recorder
JPS6194047A (en) Electrostatic recording device
US4559260A (en) Image holding member having protective layers
JP2003140442A (en) Charging member and charging device
JPS61144650A (en) Electrostatic recorder
EP0083935B1 (en) Magnetic printing plate with protective coating
CN101382754B (en) Charge device coatings
JP2526727B2 (en) Method and apparatus for producing matte coated metal plate
JP2989873B2 (en) Developing roller, developing device and copier
JP2003323070A (en) Fixing roller, its manufacturing method and thermal fixing apparatus
JPH11174706A (en) Seamless belt
JPH073582B2 (en) Electrostatic recording device