JPH0352574B2 - - Google Patents
Info
- Publication number
- JPH0352574B2 JPH0352574B2 JP57183720A JP18372082A JPH0352574B2 JP H0352574 B2 JPH0352574 B2 JP H0352574B2 JP 57183720 A JP57183720 A JP 57183720A JP 18372082 A JP18372082 A JP 18372082A JP H0352574 B2 JPH0352574 B2 JP H0352574B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- droplet
- glass fibers
- suction
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 claims description 41
- 238000004140 cleaning Methods 0.000 claims description 19
- 238000002835 absorbance Methods 0.000 claims description 14
- 230000005484 gravity Effects 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 description 44
- 241001507928 Aria Species 0.000 description 8
- 235000004494 Sorbus aria Nutrition 0.000 description 8
- 238000004611 spectroscopical analysis Methods 0.000 description 7
- 238000011109 contamination Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000011481 absorbance measurement Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N2021/0346—Capillary cells; Microcells
- G01N2021/035—Supports for sample drops
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、試料液の吸光度測定可能な分光光
度計の技術分野に属する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention belongs to the technical field of spectrophotometers capable of measuring the absorbance of a sample liquid.
従来の分光光度計、たとえば自動化学分析装置
に装備された分光光度計は、試料液を収容するガ
ラス容器(セル)と、前記セルに単色光を照射す
る投光手段と、セル内の試料液を透過した単色光
を受光して光電変換する受光素子とを備え、試料
液を透過しない単色光と試料液の透過した単色光
との光強度を比較することによつて試料液の吸光
度を測定することができるように構成されてい
た。
A conventional spectrophotometer, for example, a spectrophotometer installed in an automatic chemical analyzer, consists of a glass container (cell) containing a sample liquid, a light projection means for irradiating the cell with monochromatic light, and a sample liquid inside the cell. The absorbance of the sample liquid is measured by comparing the light intensity of the monochromatic light that does not pass through the sample liquid and the monochromatic light that passes through the sample liquid. It was configured so that it could be done.
前記構成の分光光度計は、セルをいくらでも小
型化することができるというわけではないので、
小型化を図つたとしても少なくとも1mlの試料液
を必要としていた。したがつて、前記分光光度計
は1ml以下の超微量の試料液の分光分析に適する
ものではなかつた。 In the spectrophotometer with the above configuration, the cell cannot be made as small as desired;
Even if miniaturization was achieved, at least 1 ml of sample liquid was required. Therefore, the spectrophotometer is not suitable for spectroscopic analysis of an ultra-trace amount of sample liquid of 1 ml or less.
また、前記構成の分光光度計は、セルの洗浄に
手間がかかり煩雑であつた。しかも、手間をかけ
て洗浄したとしても、セルを完全に清浄にするこ
とは困難であつた。したがつて、完全に清浄にな
つていないままそのセルを使用すると、コンタミ
ネーシヨンにより分光分析の結果に誤差を生ずる
ことがあつた。さらに、セルを完全に清浄にする
ためには、洗浄水を多量に必要として不経済であ
つた。 Further, in the spectrophotometer having the above configuration, cleaning the cell was time-consuming and complicated. Furthermore, even if the cell is cleaned with great effort, it is difficult to completely clean the cell. Therefore, if the cell is used without being completely cleaned, contamination may cause errors in the spectroscopic analysis results. Furthermore, in order to completely clean the cell, a large amount of washing water is required, which is uneconomical.
この発明は、前記事情に鑑みてなされたもので
あり、1ml以下の超微量の試料液についての分光
分析が可能であり、しかも、少量の洗浄液で完全
に洗浄することができて、正確な分光分析をする
ことのできる超微量分光光度計を提供することを
目的とするものである。
This invention was made in view of the above circumstances, and allows for spectroscopic analysis of ultra-trace amounts of sample liquid of 1 ml or less, as well as complete cleaning with a small amount of cleaning solution, resulting in accurate spectroscopic analysis. The purpose of this invention is to provide an ultra-trace spectrophotometer that can perform analysis.
前記目的を達成するためのこの発明の概要は、
試料液滴をその表面張力で保持するために対向配
置された一対の支持体を有する液滴保持手段と、
前記一対の支持体の間隙間に試料液滴を供給する
液滴供給手段と、前記一対の支持体の間隙に保持
された試料液滴の吸光度を測定する吸光度測定手
段とを有することを特徴とする超微量分光光度計
である。
The outline of this invention for achieving the above object is as follows:
a droplet holding means having a pair of supports arranged opposite to each other to hold the sample droplet by its surface tension;
It is characterized by comprising a droplet supply means for supplying a sample droplet into the gap between the pair of supports, and an absorbance measuring means for measuring the absorbance of the sample droplet held in the gap between the pair of supports. This is an ultra-trace spectrophotometer.
第1図はこの発明の一実施例を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
この発明の一実施例である超微量分光光度計
は、液滴保持手段と液滴供給手段と吸光度測定手
段とを有する。 An ultra-trace spectrophotometer according to an embodiment of the present invention includes droplet holding means, droplet supply means, and absorbance measuring means.
液滴保持手段は、第1図に示すように、試料液
滴1Aをその表面張力で重力方向に対して保持す
るものであつて、互いの端面を対向配置した一対
の支持体たとえばグラスフアイバ2A,2Bを有
し、前記グラスフアイバ2Aとグラスフアイバ2
Bとの端面間で試料液滴1Aを保持可能に構成さ
れている。前記グラスフアイバ2A,2Bの端面
間距離Xは、保持する試料液量に応じて適宜に決
定することができる。たとえば30μ以下の試料
液を保持するためには、グラスフアイバ2A,2
Bの端面間距離を4mm以下にするのが好ましい。 As shown in FIG. 1, the droplet holding means holds the sample droplet 1A in the direction of gravity by its surface tension, and includes a pair of supports such as glass fibers 2A with their end surfaces facing each other. , 2B, the glass fiber 2A and the glass fiber 2
The sample droplet 1A is configured to be able to be held between the end faces of the sample droplet 1A and the sample droplet 1A. The distance X between the end faces of the glass fibers 2A and 2B can be appropriately determined depending on the amount of sample liquid to be held. For example, in order to hold a sample liquid of 30μ or less, glass fibers 2A, 2
It is preferable that the distance between the end faces of B is 4 mm or less.
液滴供給手段は、前記グラスフアイバ2A,2
Bの端面間に試料液を供給する装置であつて、た
とえば、試料を収容した試料容器(図示せず。)
と、試料容器内に挿入して試料液を吸引後、試料
容器から前記グラスフアイバ2A,2Bの端面間
上方に移動し、次いで前記グラスフアイバ2A,
2Bの端面間に近接した後、微量の試料液滴1B
を吐出する吸引吐出ノズル3Aと、前記吸引吐出
ノズル3Aに連結されていて、吸引吐出ノズル3
Aの吸引圧、吐出圧を生ぜしめると共に洗浄液を
前記吸引吐出ノズル3Aより吐出するためのシリ
ンジポンプ3Bと、洗浄液を収容する洗浄液容器
3Cと、洗浄液容器3C内の洗浄液を輸送する流
通路3Dとシリンジポンプ3Bとの接続および吸
引吐出ノズル3Aとシリンジポンプ3Bとの接続
を切り換えるための三方コツク3Eとを備えて、
吸引吐出ノズル3Aの先端より試料液滴1Bおよ
び洗浄液を前記グラスフアイバ2A,2Bの端面
間に吐出することができるように構成されてい
る。なお、吸引吐出ノズル3Aの内径は、前記グ
ラスフアイバ2A,2Bの端面間に保持される試
料液滴1Aの体積に応じて適宜に決定することが
できる。 The droplet supply means includes the glass fibers 2A, 2.
A device for supplying a sample liquid between the end faces of B, such as a sample container containing a sample (not shown).
After inserting the sample into the sample container and aspirating the sample liquid, the glass fibers 2A and 2B are moved from the sample container upward between the end faces of the glass fibers 2A and 2B.
After approaching between the end faces of 2B, a small amount of sample droplet 1B
The suction discharge nozzle 3A is connected to the suction discharge nozzle 3A and the suction discharge nozzle 3A discharges the
A syringe pump 3B that generates the suction pressure and discharge pressure of A and discharges the cleaning liquid from the suction and discharge nozzle 3A, a cleaning liquid container 3C that stores the cleaning liquid, and a flow path 3D that transports the cleaning liquid in the cleaning liquid container 3C. Equipped with a three-way socket 3E for switching the connection with the syringe pump 3B and the connection between the suction discharge nozzle 3A and the syringe pump 3B,
The sample droplet 1B and the cleaning liquid can be ejected between the end faces of the glass fibers 2A and 2B from the tip of the suction and ejection nozzle 3A. The inner diameter of the suction and discharge nozzle 3A can be appropriately determined depending on the volume of the sample droplet 1A held between the end faces of the glass fibers 2A and 2B.
吸光度測定手段は、図示しない光源、光源より
の光をビーム光とするためのスリツト4Aと、ス
リツト4Aを介して入射する白色ビーム光を分光
する分光素子4Bと、前記分光素子4Bで分光さ
れた単色光を導光し、液滴保持手段で保持されて
いる試料液滴1Aに前記単色光を出射するグラス
フアイバ2Aと、前記試料液滴1Aを通過した単
色光を受光し、導光するグラスフアイバ2Bと、
グラスフアイバ2Bにより導光された単色光を光
電変換する光電変換素子4Cとを備え、液滴保持
手段で保持されている試料液滴1Aに分光素子4
Bで分光された単色光を照射し、試料液滴1Aを
通過した単色光を光電変換素子4Cで光電変換す
ることにより、試料液の吸光度測定をすることが
できるように構成されている。なお、吸光度測定
手段の一要素であるグラスフアイバ2A,2B
は、液滴保持手段における支持体ともなつてい
る。 The absorbance measurement means includes a light source (not shown), a slit 4A for converting light from the light source into a beam light, a spectroscopic element 4B for dispersing the white beam light incident through the slit 4A, and a light beam that is separated by the spectroscopic element 4B. A glass fiber 2A that guides monochromatic light and emits the monochromatic light to the sample droplet 1A held by the droplet holding means, and a glass that receives and guides the monochromatic light that has passed through the sample droplet 1A. Fiber 2B and
It is equipped with a photoelectric conversion element 4C that photoelectrically converts the monochromatic light guided by the glass fiber 2B, and a spectroscopic element 4 is attached to the sample droplet 1A held by the droplet holding means.
It is configured so that the absorbance of the sample liquid can be measured by irradiating monochromatic light separated by B and photoelectrically converting the monochromatic light that has passed through the sample droplet 1A with the photoelectric conversion element 4C. Note that the glass fibers 2A and 2B, which are one element of the absorbance measuring means,
also serves as a support in the droplet holding means.
以上構成の作用について次に述べる。 The operation of the above configuration will be described next.
初期状態として、吸引吐出ノズル3A、流通路
3Dおよびシリンジポンプ3B内を洗浄液で充満
しておき、また、シリンジポンプ3Bにおけるプ
ランジヤ3Fはシリンジポンプ3B内に殆んど押
し込まれた状態になつているものとする。 In the initial state, the suction/discharge nozzle 3A, the flow path 3D, and the syringe pump 3B are filled with cleaning liquid, and the plunger 3F of the syringe pump 3B is almost pushed into the syringe pump 3B. shall be taken as a thing.
そこで先ず、三方コツク3Eを駆動してシリン
ジポンプ3Bと吸引吐出ノズル3Aとを接続、連
絡した後、シリンジポンプ3Bにおけるプランジ
ヤ3Fを若干引き抜くことにより、吸引吐出ノズ
ル3A内の洗浄液の液面を後退させる。次いで、
吸引吐出ノズル3Aを図示しない試料容器内に挿
入して試料液に没入させる。そして、シリンジポ
ンプ3Bにおけるプランジヤ3Fを再び若干引き
抜くことにより、吸引吐出ノズル3A内に試料液
を吸引する。この後、吸引吐出ノズル3Aを試料
容器からグラスフアイバ2A,2Bの端面間上方
に移動する。この場合、吸引吐出ノズル3A内で
は、空気層を介して洗浄液と試料液とが保持され
ている。 Therefore, first, connect and communicate the syringe pump 3B and the suction discharge nozzle 3A by driving the three-way pot 3E, and then pull out the plunger 3F of the syringe pump 3B slightly to lower the liquid level of the cleaning liquid in the suction discharge nozzle 3A. let Then,
The suction/discharge nozzle 3A is inserted into a sample container (not shown) and immersed in the sample liquid. Then, by slightly pulling out the plunger 3F of the syringe pump 3B again, the sample liquid is sucked into the suction/discharge nozzle 3A. Thereafter, the suction/discharge nozzle 3A is moved from the sample container to above the end surfaces of the glass fibers 2A, 2B. In this case, the cleaning liquid and the sample liquid are held within the suction/discharge nozzle 3A via an air layer.
次いで、シリンジポンプ3Bにおけるプランジ
ヤ3Fを若干押し込むことによつて、吸引吐出ノ
ズル3Aの先端開口部から内部の試料液を押し出
し、第1図に示すように吸引吐出ノズル3Aの先
端開口部に試料液滴1Bを保持する。保持した状
態のまま、吸引吐出ノズル3Aを下降させてグラ
スフアイバ2A,2Bの端面間に近接させる。吸
引吐出ノズル3Aの先端開口部に保持された試料
液滴1Bが、グラスフアイバ2A,2Bの端面に
接触すると、前記試料液滴1Bがグラスフアイバ
2A,2Bの端面間に移動し、第1図に示すよう
に前記端面間でブリツジ状に保持されることにな
る。 Next, by slightly pushing the plunger 3F in the syringe pump 3B, the sample liquid inside is pushed out from the tip opening of the suction/discharge nozzle 3A, and the sample liquid is poured into the tip opening of the suction/discharge nozzle 3A as shown in FIG. Hold drop 1B. While holding the glass fibers 2A and 2B, the suction and discharge nozzle 3A is lowered and brought close to between the end faces of the glass fibers 2A and 2B. When the sample droplet 1B held at the tip opening of the suction/discharge nozzle 3A comes into contact with the end faces of the glass fibers 2A, 2B, the sample droplet 1B moves between the end faces of the glass fibers 2A, 2B, and as shown in FIG. As shown in FIG. 3, it is held like a bridge between the end faces.
一方、図示しない光源より発する白色光が、ス
リツト4Aにより白色ビーム光になり、この白色
ビーム光は凹面回折格子4Bに分光され、分光さ
れた特定波長の単色光がグラスフアイバ2Aの一
端より入射し、その内部を伝播していく。 On the other hand, white light emitted from a light source (not shown) is turned into a white beam by the slit 4A, and this white beam is split into concave diffraction gratings 4B, and the split monochromatic light of a specific wavelength is incident on one end of the glass fiber 2A. , and propagate inside it.
グラスフアイバ2Aで導光された単色光は、グ
ラスフアイバ2A,2Bの端面間に保持された試
料液滴1Aに入射し、通過後、他のグラスフアイ
バ2Bの端面に入射する。そして、グラスフアイ
バ2Bを伝播した単色光は光電変換素子4Cで電
流に変換され、たとえば図示しないデジタル演算
装置で吸光度の計算が行なわれる。 The monochromatic light guided by the glass fiber 2A enters the sample droplet 1A held between the end faces of the glass fibers 2A and 2B, and after passing, enters the end face of the other glass fiber 2B. The monochromatic light propagated through the glass fiber 2B is converted into a current by the photoelectric conversion element 4C, and the absorbance is calculated by, for example, a digital arithmetic unit (not shown).
吸光度の測定中、三方コツク3Eを駆動して流
通路3Dとシリンジポンプ3Bとを連絡し、プラ
ンジヤ3Fを引き抜くことによりシリンジポンプ
3B内に洗浄液を充填しておく。次いで、前記の
ような吸光度の測定後、三方コツク3Eを駆動し
て吸引吐出ノズル3Aとシリンジポンプ3Bとを
連絡し、プランジヤ3Fを押し込むことにより吸
引吐出ノズル3Aの先端開口部より洗浄液を噴出
させ、洗浄液をグラスフアイバ2A,2Bの端面
間に降り注ぐことによりグラスフアイバ2A,2
Bの端面間を洗浄する。 During absorbance measurement, the three-way pot 3E is driven to connect the flow path 3D and the syringe pump 3B, and the plunger 3F is pulled out to fill the syringe pump 3B with cleaning liquid. Next, after measuring the absorbance as described above, the three-way pot 3E is driven to connect the suction/discharge nozzle 3A and the syringe pump 3B, and the plunger 3F is pushed in to squirt the cleaning liquid from the tip opening of the suction/discharge nozzle 3A. , by pouring a cleaning liquid between the end faces of the glass fibers 2A, 2B.
Clean between the end faces of B.
以上のように超微量分光光度計を構成している
ので、測定に供される試料液量はたとえば30μ
以下で済み、しかもグラスフアイバ2A,2Bの
端面を少量の洗浄液で清浄にすることができる。 Since the ultra-trace spectrophotometer is configured as described above, the amount of sample liquid used for measurement is, for example, 30μ.
It is possible to clean the end surfaces of the glass fibers 2A and 2B with a small amount of cleaning liquid.
以上、この発明の一実施例について詳述した
が、この発明は前記実施例に限定されるものでは
なく、この発明の要旨を変更しない範囲内で適宜
に変形して実施することができるのはいうまでも
ない。 Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above embodiment, and can be implemented with appropriate modifications within the scope of the gist of the invention. Needless to say.
第2の実施例として第2図に示すものが挙げら
れる。 A second embodiment is shown in FIG. 2.
第2の実施例が前記実施例と相違するところ
は、グラスフアイバ2A,2Bが第2図に示す矢
印方向に振動可能に構成されていること、および
グラスフアイバ2Aは他端より白色ビーム光を入
射してこれを伝播し、また、グラスフアイバ2B
はグラスフアイバ2A,2Bの端面間に保持され
た試料液滴1Aを通過した白色ビーム光を伝播
し、これを他端より出射するものであり、グラス
フアイバ2Bの他端には分光素子4Bとフオトダ
イオードアレイ4Dとが配置されていて、グラス
フアイバ2Bの他端より出射した白色ビーム光を
分光素子で各単色光に分光した後に、各単色光を
フオトダイオードアレイ4Dに照射することによ
り、各波長の単色光についての吸光度測定が可能
に構成されていることである。グラスフアイバ2
A,2Bが図示矢印方向に振動可能に構成されて
いると、試料液が検体と試薬との混合物である場
合、振動により混合を十分に行なうことによつ
て、グラスフアイバ2A,2Bの端面間に保持さ
れる試料液滴を均一なものとすることができる。
また、グラスフアイバ2A,2B内を白色ビーム
光を伝播させ、グラスフアイバ2Bの出射端に分
光素子4Bとして回折格子を配置し、回折格子4
Bで分光された各単色光をフオトダイオードアレ
イ4Dで受光するように構成しておくと、超微量
分光光度計を超微量多波長分光光度計とすること
ができる。もつとも、前記実施例においても、グ
ラスフアイバ2Aの入射端に前置される分光素子
4Bを回折格子として回折格子4Bを回動可能と
し、グラスフアイバ2Aの入射端に順次に波長の
異なる単色光が入射するようにしておけば、前記
実施例の超微量分光光度計を超微量多波長分光光
度計ともすることができる。しかしながら、第2
の実施例におけるように、グラスフアイバ2Bに
おける白色ビーム光の出射端側に回折格子4Bを
配置しておくと、回折格子4Bを回動しなくても
フオトダイオードアレイ4Dにより多波長分光分
析が可能となり、回折格子4Bの回動装置を省略
することができる。 The second embodiment differs from the previous embodiment in that the glass fibers 2A and 2B are configured to be able to vibrate in the direction of the arrow shown in FIG. 2, and that the glass fiber 2A emits white beam light from the other end. The glass fiber 2B
Propagates the white beam light that has passed through the sample droplet 1A held between the end faces of the glass fibers 2A and 2B, and emits it from the other end, and the other end of the glass fiber 2B is equipped with a spectroscopic element 4B. A photodiode array 4D is arranged, and after the white beam light emitted from the other end of the glass fiber 2B is split into each monochromatic light by a spectroscopic element, each monochromatic light is irradiated onto the photodiode array 4D. The structure is such that it is possible to measure the absorbance of monochromatic light of different wavelengths. glass fiber 2
When A and 2B are configured to be able to vibrate in the direction of the arrow shown in the figure, when the sample liquid is a mixture of a specimen and a reagent, sufficient mixing is performed by vibration, and the end faces of the glass fibers 2A and 2B are separated. The sample droplets held in the sample can be made uniform.
In addition, a white beam light is propagated through the glass fibers 2A and 2B, and a diffraction grating is arranged as a spectroscopic element 4B at the output end of the glass fiber 2B.
By configuring the photodiode array 4D to receive each of the monochromatic lights separated by B, the ultra-trace spectrophotometer can be made into an ultra-trace multi-wavelength spectrophotometer. However, in the above embodiment as well, the diffraction grating 4B is made rotatable by using the spectroscopic element 4B placed in front of the input end of the glass fiber 2A as a diffraction grating, so that monochromatic light with different wavelengths is sequentially transmitted to the input end of the glass fiber 2A. By allowing the light to enter, the ultra-trace spectrophotometer of the embodiment described above can also be used as an ultra-trace multi-wavelength spectrophotometer. However, the second
As in the embodiment, if the diffraction grating 4B is placed on the emission end side of the white beam light in the glass fiber 2B, multi-wavelength spectroscopic analysis can be performed using the photodiode array 4D without rotating the diffraction grating 4B. Therefore, the rotating device for the diffraction grating 4B can be omitted.
第3の実施例として第3図に示すものが挙げら
れる。 A third embodiment is shown in FIG. 3.
第3の実施例が前記第1の実施例と相違すると
ころは、液滴保持手段である支持体2C,2Dが
グラスフアイバではない他の部材で構成されてい
ること、および吸光度測定手段が、支持体2Cに
対向する支持体2Dの端面に形成された光反射体
4Eと、支持体2Cに保持されると共に光ビーム
が出射する出射端面が支持体2Dに対向する支持
体2Cの端面に露出するように形成された第1の
グラスフアイバ2Fと、支持体2Cに保持される
と共に、第1のグラスフアイバ2Fの出射端面よ
り出射し、前記光反射体4Eで反射した光ビーム
を入射する入射端面が支持体2Dに対向する支持
体2Cの端面に露出するように形成された第2の
グラスフアイバ2Gとを有して構成されているこ
とである。 The third embodiment is different from the first embodiment in that the supports 2C and 2D, which are droplet holding means, are made of other members other than glass fibers, and the absorbance measuring means is A light reflector 4E formed on the end surface of the support 2D facing the support 2C, and an emitting end surface held by the support 2C and from which the light beam is emitted are exposed on the end surface of the support 2C facing the support 2D. The first glass fiber 2F is formed to A second glass fiber 2G is formed such that its end surface is exposed at the end surface of the support body 2C facing the support body 2D.
また、第4の実施例として第4図に示すものが
挙げられる。 Further, as a fourth embodiment, the one shown in FIG. 4 can be cited.
第4の実施例が第1の実施例と相違するところ
は、対向配置されると共にグラスフアイバ以外の
部材で形成された一対の支持体2E,2Fとビー
ム光を出射し、試料液滴1Cを通過したビーム光
を入射する一対のグラスフアイバ2H,2Iとが
同一平面内で互いに直交するように配置されてい
ることである。 The difference between the fourth embodiment and the first embodiment is that a pair of supports 2E and 2F are disposed facing each other and are made of a material other than glass fibers, and a beam light is emitted to form a sample droplet 1C. The pair of glass fibers 2H and 2I into which the transmitted beam light is incident are arranged so as to be orthogonal to each other within the same plane.
さらに、支持体であるグラスフアイバ2A,2
Bの間隙や支持体2C,2D,2E,2Fの端面
より洗浄液を噴出可能となるようにすると、自己
洗浄機能を有する超微量分光光度計とすることが
できる。 Furthermore, glass fibers 2A, 2 which are supports
By making it possible to spray the cleaning liquid from the gap B or the end faces of the supports 2C, 2D, 2E, and 2F, an ultra-trace spectrophotometer having a self-cleaning function can be obtained.
以上詳述したこの発明によると、超微量であつ
ても試料の分光分析をすることができる。しか
も、分析に供される試料液は超微量であるから各
波長成分に分けやすく精度高く吸光度を測定する
ことができ支持体の対向面の汚染の程度は僅少で
あり、かつセルの場合とは異なり汚染を簡単迅速
に除去することができるので、コンタミネーシヨ
ンによる分析誤差の発生を防止し、常に正確な分
光分析をすることができる。さらに、重力方向に
対して表面張力で試料液を保持するので、少量の
洗浄水で試料液を洗い流すことができる。また、
試料液が微量であるから、使用する洗浄水の量を
大幅に節約することができる。
According to the invention described in detail above, it is possible to perform spectroscopic analysis of a sample even in an ultra-trace amount. Moreover, since the sample liquid used for analysis is in an ultra-trace amount, it is easy to separate it into each wavelength component, and the absorbance can be measured with high precision.The degree of contamination on the opposing surface of the support is minimal, and it is different from that in the case of a cell. In contrast, since contamination can be removed easily and quickly, analysis errors due to contamination can be prevented and accurate spectroscopic analysis can be performed at all times. Furthermore, since the sample liquid is held by surface tension in the direction of gravity, the sample liquid can be washed away with a small amount of washing water. Also,
Since the amount of sample liquid is small, the amount of washing water used can be significantly reduced.
第1図はこの発明の一実施例を示す説明図、お
よび第2図から第4図まではこの発明の他の実施
例を示す説明図である。
1A,1B,1C…試料液滴、2A,2B,2
C,2D,2E,2F…支持体。
FIG. 1 is an explanatory diagram showing one embodiment of the invention, and FIGS. 2 to 4 are explanatory diagrams showing other embodiments of the invention. 1A, 1B, 1C...Sample droplet, 2A, 2B, 2
C, 2D, 2E, 2F...Support.
Claims (1)
力方向に設けて対向配置された一対の支持体から
なる液滴保持手段と、前記一対の支持体の前記間
隙間に試料液滴及び洗浄液を選択的に供給する供
給手段と、前記支持体の少なくとも一方から前記
間隙に光を供給し、前記間隙に保持された試料液
滴の吸光度を測定する吸光度測定手段とを有する
ことを特徴とする超微量分光光度計。1. A droplet holding means consisting of a pair of supports arranged opposite each other with a gap in the direction of gravity that holds the sample droplet by its surface tension, and a sample droplet and a cleaning liquid in the gap between the pair of supports. An ultrasonic device characterized by having a supply means for selectively supplying light, and an absorbance measuring means for supplying light from at least one of the supports to the gap and measuring the absorbance of a sample droplet held in the gap. Microvolume spectrophotometer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18372082A JPS5973753A (en) | 1982-10-21 | 1982-10-21 | Ultra-minute amount spectrophotometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18372082A JPS5973753A (en) | 1982-10-21 | 1982-10-21 | Ultra-minute amount spectrophotometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5973753A JPS5973753A (en) | 1984-04-26 |
JPH0352574B2 true JPH0352574B2 (en) | 1991-08-12 |
Family
ID=16140773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18372082A Granted JPS5973753A (en) | 1982-10-21 | 1982-10-21 | Ultra-minute amount spectrophotometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973753A (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4910402A (en) * | 1987-04-10 | 1990-03-20 | Mcmillan Norman | Apparatus and method for measuring a property of a liquid |
US5425152A (en) * | 1992-08-14 | 1995-06-20 | Teron International Building Technologies Ltd. | Bridge construction |
EP1950553B1 (en) * | 1999-08-20 | 2016-02-24 | Nanodrop Technologies LLC | Liquid photometer using surface tension to contain sample |
WO2001014855A1 (en) * | 1999-08-20 | 2001-03-01 | Charles William Robertson | Liquid photometer using surface tension to contain sample |
JP3974588B2 (en) * | 2004-03-22 | 2007-09-12 | 株式会社日立製作所 | Nuclear magnetic resonance apparatus and method |
JP4654934B2 (en) * | 2006-02-17 | 2011-03-23 | 株式会社日立製作所 | Method for transporting minute droplets |
JP2007255936A (en) * | 2006-03-20 | 2007-10-04 | Horiba Ltd | Sample solution dropping/cleaning device and sample solution dropping/cleaning method |
WO2007111838A2 (en) * | 2006-03-23 | 2007-10-04 | Nanodrop Technologies, Inc. | Instrument for making optical measurements on multiple samples retained by surface tension |
JP4686723B2 (en) * | 2006-08-24 | 2011-05-25 | 独立行政法人国立高等専門学校機構 | Optical analyzer |
EP2045015B1 (en) * | 2007-10-01 | 2011-11-23 | Tecan Trading AG | Micro-cuvette assembly and its utilisation |
WO2010100502A1 (en) * | 2009-03-04 | 2010-09-10 | Malvern Instruments Limited | Particle characterization |
JP5163730B2 (en) * | 2010-11-05 | 2013-03-13 | 株式会社日立製作所 | Photodetector, analyzer, and droplet mixing method |
GB201120769D0 (en) * | 2011-12-02 | 2012-01-11 | Biochrom Ltd | Improvements in and relating to devices for recieving liquid samples |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424091A (en) * | 1977-07-26 | 1979-02-23 | Olympus Optical Co Ltd | Liquid sample analyzer |
-
1982
- 1982-10-21 JP JP18372082A patent/JPS5973753A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424091A (en) * | 1977-07-26 | 1979-02-23 | Olympus Optical Co Ltd | Liquid sample analyzer |
Also Published As
Publication number | Publication date |
---|---|
JPS5973753A (en) | 1984-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0352574B2 (en) | ||
US6104485A (en) | Method and apparatus for optical measurement of very small fluid samples | |
US11867710B2 (en) | Automatic analyzer and method for carrying out chemical, biochemical and/or immunochemical analyses | |
US4643580A (en) | Photometer head for small test volumes | |
US11635443B2 (en) | Automatic analyzer and method for carrying out chemical, biochemical, and/or immunochemical analyses | |
US8681340B2 (en) | Microvolume analysis system | |
EP1210579A4 (en) | Liquid photometer using surface tension to contain sample | |
CA1084727A (en) | Device for wiping optical window in turbidimeter or similar optical instrument for examining liquid sample | |
US6084667A (en) | System and method for molecular sample measurement | |
US4222670A (en) | Liquid sample analyzer | |
JP2637695B2 (en) | Solution suction device and suction type trace substance measuring device in solution | |
JPH07218423A (en) | Instrument for optically measuring liquid | |
JP2008116313A (en) | Device for measuring minute quantity liquid | |
CN102128809B (en) | Surface plasma resonance sensor chip assembly and cylindrical prism chip | |
EP0073501B1 (en) | A cell for measurement | |
JPH06100607B2 (en) | Automatic chemical analyzer | |
JP2009008470A (en) | Spectrophotometric measuring method, spectrophotometer, cell for spectrophotometry, and method of filling cell with specimen | |
US20070248300A1 (en) | Optical Coupling Device and Method | |
JP4861042B2 (en) | Spectrophotometer | |
JPS63148144A (en) | Photometric device for biochemical analytic equipment | |
RU2060499C1 (en) | Device determining number of somatic cells in milk | |
JPS6044851A (en) | Spectrophotometer | |
JPH0140947B2 (en) | ||
JPS566140A (en) | Spectrophotometer for trace sample | |
JP3019875B2 (en) | Flow cell for transmitted light measurement |