JPH035046A - Graphite mold device for continuously casting metal cast billet - Google Patents
Graphite mold device for continuously casting metal cast billetInfo
- Publication number
- JPH035046A JPH035046A JP13837989A JP13837989A JPH035046A JP H035046 A JPH035046 A JP H035046A JP 13837989 A JP13837989 A JP 13837989A JP 13837989 A JP13837989 A JP 13837989A JP H035046 A JPH035046 A JP H035046A
- Authority
- JP
- Japan
- Prior art keywords
- graphite mold
- mold
- casting
- cooling
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 80
- 239000010439 graphite Substances 0.000 title claims abstract description 80
- 239000002184 metal Substances 0.000 title claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 40
- 238000005266 casting Methods 0.000 title abstract description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052802 copper Inorganic materials 0.000 claims abstract description 35
- 239000010949 copper Substances 0.000 claims abstract description 35
- 238000009749 continuous casting Methods 0.000 claims abstract description 20
- 239000002826 coolant Substances 0.000 claims abstract description 9
- 238000007711 solidification Methods 0.000 claims description 17
- 230000008023 solidification Effects 0.000 claims description 17
- 239000011810 insulating material Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract 1
- 239000003507 refrigerant Substances 0.000 description 17
- 239000000498 cooling water Substances 0.000 description 9
- 238000000465 moulding Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007531 graphite casting Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〉
本発明は金属鋳塊の連続鋳造、殊に銅及び銅合金の板状
鋳塊の水平連続鋳造に適した黒鉛鋳型装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a graphite mold apparatus suitable for continuous casting of metal ingots, particularly horizontal continuous casting of plate-shaped ingots of copper and copper alloys.
(従来の技術)
従来金属の鋳塊、例えば銅及び銅合金の如き金属の板状
鋳塊等を製造するなめには第2図にその構造の概要を示
す如き水平連続鋳造用黒鉛鋳型装置が多用されている。(Prior Art) Conventionally, in order to produce metal ingots, such as plate-shaped ingots of metals such as copper and copper alloys, there has been a horizontal continuous casting graphite mold apparatus as shown in FIG. It is widely used.
即ち、第2図はこの種の黒鉛鋳型装置の概要を示すもの
\側断面図であって、1は黒鉛鋳型、2は黒鉛鋳型1に
外接する水冷銅ブロック、3は該水冷銅ブロック2を覆
いこれを補強保護するための鋼製被覆板である。黒鉛鋳
型1、水冷銅ブロック2及び鋼製被覆材3は複数個のボ
ルト4a、4bによって強固に緊締した上でフレーム材
12によって一体に組立てられて鋳型装置Aを形成し、
断熱材5及びシール材7を介して黒鉛鋳型1が水平を維
持されるようにして溶湯保持炉Bのライニング6に対峙
連結させである。黒鉛鋳型1は天板及び底板、並びに両
側板を所定の間隔を隔て2夫々相対峙させて固定し、一
端が水冷銅ブロック2から突出させて溶湯8の流入口を
形成し、他端は鋳塊10の出口を形成するように両端が
開口する中空体を構成していて、その中空断面の口径は
鋳造する鋳塊の断面とほぼ同一の形状寸法となるように
形成する。水冷銅ブロック2は内部に冷却水を循環させ
るための通水路(図示せず)を形成する。That is, FIG. 2 is a side sectional view showing an outline of this type of graphite mold apparatus, in which 1 is a graphite mold, 2 is a water-cooled copper block circumscribing the graphite mold 1, and 3 is a water-cooled copper block 2. This is a steel cover plate to reinforce and protect the cover. The graphite mold 1, the water-cooled copper block 2, and the steel sheathing material 3 are tightly tightened with a plurality of bolts 4a and 4b, and then assembled together with a frame material 12 to form a mold device A,
A graphite mold 1 is connected to a lining 6 of a molten metal holding furnace B via a heat insulating material 5 and a sealing material 7 so as to be maintained horizontally. The graphite mold 1 has a top plate, a bottom plate, and both side plates facing each other at a predetermined interval and is fixed, with one end protruding from the water-cooled copper block 2 to form an inlet for the molten metal 8, and the other end being a casting hole. A hollow body is formed which is open at both ends to form an outlet of the ingot 10, and the diameter of the hollow cross section is formed to have substantially the same shape and dimensions as the cross section of the ingot to be cast. The water-cooled copper block 2 forms a passageway (not shown) for circulating cooling water therein.
また9は鋳塊の凝固ゾーンである。Further, 9 is the solidification zone of the ingot.
なお上記黒鉛鋳型1と水冷銅ブロックとの接合に際して
使用される結合ボルトの配列や数量は使用される鋳型の
寸法によって異なる。The arrangement and number of connecting bolts used for joining the graphite mold 1 and the water-cooled copper block vary depending on the dimensions of the mold used.
(発明が解決しようとする課題)
従来の金属鋳塊の水平連続鋳造用黒鉛鋳造装置において
は、上記したように多数のボルトを使用して黒鉛鋳型1
と水冷銅ブロック2の結合をはかっているのであるが、
このように多数のボルトによる結合を行なっても黒鉛鋳
型1と水冷銅ブロック2との密着性は必ずしも全面的に
完全なものとは云えない。例えば鋳造中において黒鉛鋳
型1には水冷銅ブロック2との熱膨張差等に基く歪み変
形が発生するために、殊に熱負荷の高い鋳塊凝固ゾーン
9付近においては十分に両者の密着性が確保されず、密
着部分はボルト締結部近傍のみで他の部分は殆ど両者間
に完全に隙間を生じているようなケースも稀ではない。(Problems to be Solved by the Invention) In the conventional graphite casting apparatus for horizontal continuous casting of metal ingots, as described above, a large number of bolts are used to connect the graphite mold 1.
I am trying to connect the water-cooled copper block 2 with the
Even if the connection is made using a large number of bolts in this way, the adhesion between the graphite mold 1 and the water-cooled copper block 2 cannot necessarily be said to be completely perfect. For example, during casting, strain deformation occurs in the graphite mold 1 due to the difference in thermal expansion with the water-cooled copper block 2, so the adhesion between the two is insufficient, especially near the ingot solidification zone 9 where the heat load is high. It is not rare that this is not ensured, and the only close contact is in the vicinity of the bolt fastening part, with almost all other parts leaving a gap between the two.
そこで鋳塊凝固ゾーン9付近における黒鉛鋳型1と水冷
銅ブロック2との接触面の密着性を高めるためにこの部
分におけるボルト設置密度を高めることも試みられたが
、そのようにすると黒鉛鋳型1に余りにも多数のボルト
穴が穿たれる結果、黒鉛材料に亀裂を生じ、場合によっ
ては鋳造不能に陥るなどの問題を生ずるためにその設置
密度には限界があり、その結果として黒鉛鋳型1と水冷
銅ブロック2との接触面には常時不可避的な非密着部を
生じ、これによるエアーギャップの存在によって黒鉛鋳
型1の鋳造金属に対する冷却効率の著しい低下が避けら
れなかった。Therefore, in order to improve the adhesion of the contact surface between the graphite mold 1 and the water-cooled copper block 2 near the ingot solidification zone 9, an attempt was made to increase the density of bolt installation in this area, but this resulted in the graphite mold 1 As a result of drilling too many bolt holes, cracks may occur in the graphite material and, in some cases, it may become impossible to cast, so there is a limit to the installation density. An unavoidable non-adhesive area always occurs on the contact surface with the copper block 2, and the existence of an air gap due to this inevitably causes a significant decrease in cooling efficiency for the cast metal of the graphite mold 1.
発明者の実測によると、上記したような従来から使用さ
れている黒鉛鋳型装置においては、例えば鋳造幅1an
当たりの設計冷却能を40〜60KCal/’minと
し、鋳造速度100〜200 mm/minにて銅若し
くは銅合金の鋳造を行なった場合にエアーギャップの存
在によって鋳塊凝固ゾーンにおける黒鉛鋳型表面直下の
温度は実に1100℃付近或はそれ以上の温度に達し、
凝固温度から僅か数十度低い温度を示すに過ぎず、接触
面の全面に亘って密着性がほぼ完全に近い理想的な鋳型
装置における場合(黒鉛被覆形式の水冷式竪型連続鋳造
装置においでは、はぼこのような理想的形態を容易に取
り得るのでその実測値を採用した)の鋳塊凝固ゾーン付
近における黒鉛表面温度が約500℃程度であるのに比
較するとその冷却効率が如何に低いかが判かる。According to the inventor's actual measurements, in the conventionally used graphite molding equipment as described above, for example, the casting width is 1 ann.
When copper or copper alloy is cast at a casting speed of 100 to 200 mm/min with a design cooling capacity of 40 to 60 KCal/min, the presence of an air gap will cause a drop in the temperature just below the surface of the graphite mold in the ingot solidification zone. The temperature actually reaches around 1100℃ or higher,
In an ideal mold device, the temperature is only several tens of degrees lower than the solidification temperature, and the adhesion is almost perfect over the entire contact surface (in a graphite-coated water-cooled vertical continuous casting device) , the graphite surface temperature in the vicinity of the ingot solidification zone is approximately 500°C, so the cooling efficiency is very low. I can see how.
従って、上記したような構造を有する水平連続鋳造用黒
鉛鋳型装置においては、鋳塊凝固ゾーン付近における溶
湯乃至は鋳造金属の保有する熱を如何にして黒鉛鋳型1
から効果的に除去するかが重要な課題であった。Therefore, in the graphite mold apparatus for horizontal continuous casting having the above-described structure, how is the heat held by the molten metal or cast metal near the ingot solidification zone used to cool the graphite mold 1?
An important issue was how to effectively remove them.
(課題を解決するための手段)
本発明は従来の水平連続鋳造用黒鉛鋳型装置における上
記した課題を解決することを目的とするものであって、
従来水冷銅ブロック2のみによって行なわれていた黒鉛
鋳型1を介しての鋳造金属の冷却を黒鉛鋳型1自体にも
冷却用の媒体を通ずる管路を設けることによって直接黒
鉛鋳型1からも鋳造する金属溶湯の抜熱を行ない得るよ
うにしなものである。(Means for Solving the Problems) The present invention aims to solve the above-mentioned problems in conventional graphite mold devices for horizontal continuous casting,
Cooling of the cast metal via the graphite mold 1, which was conventionally performed only by the water-cooled copper block 2, can now be performed directly from the graphite mold 1 by providing a conduit through which the cooling medium passes through the graphite mold 1 itself. It is designed to remove heat from the molten metal.
即ち、本発明においては鋳型装置における黒鉛鋳型1に
適宜径の貫通穴を穿ち、これに鋼管等の金属管を通すこ
とによって冷媒用管路を形成し、この管路内に高圧水な
どの冷却媒体を通過させるようにするものである。しか
して発明者らの実験によればこのような冷媒用管路は主
として黒鉛鋳型における凝固ゾーン対応部分等の最も熱
負荷が大きく、熱歪み等の発生によって水冷銅ブロック
との接触部の密着性が著しく不十分となるような箇所に
設けるのが効果的であることが判明した。That is, in the present invention, a through hole of an appropriate diameter is bored in the graphite mold 1 in the molding device, a metal pipe such as a steel pipe is passed through the through hole to form a refrigerant conduit, and a cooling medium such as high pressure water is inserted into this conduit. It allows the medium to pass through. However, according to experiments conducted by the inventors, such refrigerant pipes are subject to the highest heat load, mainly in the areas corresponding to the solidification zone of the graphite mold, and the adhesion of the contact area with the water-cooled copper block may be affected due to thermal distortion. It has been found that it is effective to provide it in locations where the
また本発明により凝固ゾーン付近の黒鉛鋳型にこのよう
な冷媒用管路を設けた場合、黒鉛鋳型の溶湯入口部付近
における過度の冷却による金属溶湯の早すぎる凝固や、
粘性の増大に伴う溶湯の鋳型への流入不足が発生して円
滑な鋳造が妨げられるようなことがあるので、場合によ
っては、その防止のために黒鉛鋳型における溶湯流入側
の水冷銅ブロックからの突出部を耐火断熱材によって置
換し、黒鉛鋳型における溶湯入口側端部付近における保
温性を高めてやることが望ましい。Furthermore, when such a refrigerant pipe is provided in the graphite mold near the solidification zone according to the present invention, premature solidification of the molten metal due to excessive cooling near the molten metal inlet of the graphite mold,
As the viscosity increases, the flow of molten metal into the mold may become insufficient, which may impede smooth casting. It is desirable to replace the protrusion with a refractory heat insulating material to improve heat retention near the end of the graphite mold on the molten metal inlet side.
(作用)
次に本発明による金属鋳塊の連続鋳造用黒鉛鋳型装置の
構成及び作用の概略について述べる。(Function) Next, an outline of the structure and function of the graphite mold device for continuous casting of metal ingots according to the present invention will be described.
第1図は本発明の詳細な説明するために示した装置の要
部側断面図である。なお、第1図において示される符号
は本発明に特有なものを除いて先に示した第2図で示さ
れたものと同様である。FIG. 1 is a sectional side view of a main part of an apparatus shown for explaining the present invention in detail. Note that the symbols shown in FIG. 1 are the same as those shown in FIG. 2 shown above, except for those specific to the present invention.
第1図において示されるように、本発明の鋳型装置にお
ける基本的な構成は第2図に示される従来の鋳型装置と
変わるものでない。As shown in FIG. 1, the basic structure of the molding apparatus of the present invention is the same as that of the conventional molding apparatus shown in FIG.
しかして本発明においては黒鉛鋳型1における鋳塊凝固
ゾーン9相当部分に直接冷却のための冷媒用管路11を
設けると共に第2図における黒鉛鋳型1の水冷銅ブロッ
ク2から突出する部分、即ち溶湯入口端部を耐火断熱材
5aによって置換した。Therefore, in the present invention, a refrigerant pipe 11 for direct cooling is provided in a portion of the graphite mold 1 corresponding to the ingot solidification zone 9, and a portion of the graphite mold 1 protruding from the water-cooled copper block 2 in FIG. The inlet end was replaced with a refractory heat insulating material 5a.
冷媒用管路11を設けるにあたっては、黒鉛鋳型1を構
成する黒鉛板の厚み方向のほぼ中央に厚みの約173の
径の穴を鋳造方向に直角に穿って、その穴に穴径とほぼ
同等の外径を有する比較的薄肉の鋼管を穴壁に密着する
ように圧入した。To provide the refrigerant conduit 11, a hole with a diameter of approximately 173 mm in thickness is bored at right angles to the casting direction approximately in the center of the graphite plate constituting the graphite mold 1 in the thickness direction, and a hole approximately equal to the diameter of the hole is drilled into the hole. A relatively thin-walled steel pipe with an outer diameter of 1 was press-fitted into the hole wall so that it was in close contact with the hole wall.
この冷媒用管路11に高圧水を通すことによって、鋳造
に際して最も熱負荷のかかる凝固ゾーン付近において黒
鉛鋳型からの直接的な抜熱が可能となるので、水冷銅ブ
ロック単独使用の場合に較べて格段に冷却効率を高める
ことが出来る。By passing high-pressure water through this refrigerant conduit 11, it is possible to directly remove heat from the graphite mold near the solidification zone, which is subject to the highest thermal load during casting, so it is possible to remove heat directly from the graphite mold, compared to the case where a water-cooled copper block is used alone. Cooling efficiency can be significantly increased.
また本発明においては黒鉛鋳型1を貫通する冷媒用管路
11には薄肉の小径管が使用されているので、管体自体
が極めて柔軟性を有するために黒鉛鋳型1に熱変形を生
じた場合においても、冷媒用管路11も黒鉛鋳型1に穿
った貫通穴の変形に対応して自在に変形することが出来
るのでこの種の熱歪み等による変形が起っても両者間の
密着性が十分に保持され、従って冷却効率の低下を招く
ようなことがない。Furthermore, in the present invention, since a thin-walled, small-diameter tube is used for the refrigerant conduit 11 that penetrates the graphite mold 1, the tube body itself is extremely flexible, so that if thermal deformation occurs in the graphite mold 1, Also, since the refrigerant conduit 11 can also be deformed freely in response to the deformation of the through hole drilled in the graphite mold 1, even if deformation due to this type of thermal distortion occurs, the adhesion between the two can be maintained. It is sufficiently retained and therefore does not cause a decrease in cooling efficiency.
更に重要なことは、上記したように冷媒用管路11を最
も熱負荷が大きく高温になりやすい鋳塊凝固ゾーン9近
辺の黒鉛鋳型1に配置したのでこの部分の冷却が効率的
に行なわれる結果、黒鉛鋳型1及び水冷銅ブロック2両
者の熱歪みによる変形が軽減されて両者間における間隙
、即ちエアーギャップの発生は大幅に減少するので水冷
銅プロ・ツク2自体による冷却効果も従来に較べて一段
と改善されるし、またこれらのことから従来の鋳型装置
に較べて一層合理的な冷却水の通水配分を行なうことが
出来、従ってより効率的な鋳型設計が可能となるために
鋳造生産性の向上が期待できるなと種々優れた波及効果
を生ずる。More importantly, as mentioned above, the refrigerant conduit 11 is placed in the graphite mold 1 near the ingot solidification zone 9, which has the highest heat load and tends to reach high temperatures, so that this area can be efficiently cooled. , the deformation of both the graphite mold 1 and the water-cooled copper block 2 due to thermal strain is reduced, and the occurrence of gaps between them, that is, air gaps, is greatly reduced, so the cooling effect of the water-cooled copper block 2 itself is also greater than before. Furthermore, compared to conventional mold equipment, it is possible to distribute cooling water more rationally, and therefore, more efficient mold design is possible, resulting in improved casting productivity. This will bring about various excellent ripple effects, such as the expected improvement in the quality of life.
なお、黒鉛鋳型1における冷媒用管路11の設置は上記
した鋳塊凝固ゾーン9付近のみに限られることなく、鋳
塊の大きさ、形状等に応じ鋳塊凝固ゾーン9に加えて更
にその他の任意の箇所に設けることが出来ることは云う
までもない。Note that the installation of the refrigerant pipe 11 in the graphite mold 1 is not limited to the vicinity of the ingot solidification zone 9 described above, but may be installed in the ingot solidification zone 9 or other locations depending on the size, shape, etc. of the ingot. It goes without saying that it can be provided at any location.
また黒鉛鋳型1の溶湯入口側端部に連設する耐火断熱材
5aは鋳造に際して鋳型内に導入される金属溶湯8が黒
鉛鋳型1の管路11による直接的な冷却により入口付近
で急激な温度低下を来し、この部分で部分的な凝固を起
こしなり、溶湯粘度が低下して操業に支障を来すことを
防止する役割を果たすものであるから、鋳造温度に耐え
かつ鋳造金属合金と反応しない材質のものが用いられ、
例えば銅及び銅合金の場合であればハイアルミナキャス
タブルの如きものが推奨される。In addition, the fireproof heat insulating material 5a connected to the end of the molten metal inlet of the graphite mold 1 is such that the molten metal 8 introduced into the mold during casting is cooled directly by the conduit 11 of the graphite mold 1, so that the temperature rises rapidly near the inlet. The viscosity of the molten metal decreases and partially solidifies in this area, which prevents the molten metal from decreasing in viscosity and hindering operations. Materials that do not
For example, in the case of copper and copper alloys, high alumina castable is recommended.
本発明の連続鋳造用鋳型装置の上記以外の部分の構造は
第2図に示した従来装置のものに準するので説明を省略
する。The structure of the continuous casting mold apparatus of the present invention other than the above is similar to that of the conventional apparatus shown in FIG. 2, and therefore a description thereof will be omitted.
次に本発明の実施例について述べる。Next, examples of the present invention will be described.
(実施例)
第1図に示すような水平連続鋳造用黒鉛鋳型装置を用い
て厚さ18mm、幅550 mmの純銅の板状連続鋳造
塊を鋳造するに際して、黒鉛鋳型1の天板及び底板に厚
み30mmの黒鉛板を使用して、水冷銅ブロック2に所
定の冷却水流通路(図示せず)を設けるとともに黒鉛鋳
型1の溶湯流入側端部から25m及び75mmの位置の
厚み方向はぼ中央に10nymφの0
貫通穴を鋳造方向に直角即ち幅方向に穿ち、この貫通穴
に内接するような外径を有し、且つ鋳型幅よりも若干長
い長さを有する肉厚1.0mの薄肉鋼管を押し込んでそ
の両端各数十mの鋳型の幅方向両端に突き出るように挿
入し、その両端部を夫々冷却水の給排水管(図示せず)
に接続しな。この場合の冷却水系統は従来の水冷銅ブロ
ック2に施す冷却水系統と共通にしてもよいが、操業中
鋳型の熱的変形に伴う管路の座屈圧潰等を防止する意味
から独立系統とし高圧水を用いるようにすることが望ま
しい。(Example) When casting a plate-shaped continuous casting ingot of pure copper with a thickness of 18 mm and a width of 550 mm using a graphite mold device for horizontal continuous casting as shown in FIG. Using a graphite plate with a thickness of 30 mm, a predetermined cooling water flow path (not shown) is provided in the water-cooled copper block 2, and the thickness direction at positions 25 m and 75 mm from the molten metal inflow side end of the graphite mold 1 is approximately in the center. A thin-walled steel pipe with a wall thickness of 1.0 m, which has a diameter of 10 nmφ and a diameter slightly longer than the width of the mold, is drilled at right angles to the casting direction, that is, in the width direction, and has an outer diameter that is inscribed in the through hole. Push it in and insert it so that it protrudes from both ends of the mold in the width direction, each several tens of meters long, and connect each end to cooling water supply and drainage pipes (not shown).
Do not connect to The cooling water system in this case may be the same as the cooling water system for the conventional water-cooled copper block 2, but it should be an independent system in order to prevent conduit buckling and crushing due to thermal deformation of the mold during operation. It is desirable to use high pressure water.
この様にして黒鉛鋳型1に冷媒用管路11を設けた黒鉛
鋳型装置Aを使用して、管路11に冷媒として温度26
℃、圧カフkg/Cxnの高圧水を供給して保持炉Bに
装入した1180℃の純銅溶湯を黒鉛鋳型1内に導入し
て鋳造を行なったところ、平均380 mm/minの
鋳造速度で順調な連続鋳造を行なうことが出来た。この
鋳造速度は従来の冷却を水冷銅ブロック2のみに依存し
た鋳型装置を使用した場合の平均鋳造速度100〜20
0 ITffn/’m!nに較べて約21
〜3倍であり、本発明によるときは著しく鋳造生産性を
向上させることが出来ることが判かる。なお、得られた
板状鋳塊10の品質は従来の方法で得られたものと同様
で何等欠陥の発生が見られなかった。Using the graphite mold apparatus A in which the graphite mold 1 is provided with the refrigerant pipe 11 in this way, the refrigerant is supplied to the pipe 11 at a temperature of 26
℃, pressure cuff kg/Cxn was supplied, pure copper molten metal at 1180℃ was charged into holding furnace B and introduced into graphite mold 1, and casting was performed at an average casting speed of 380 mm/min. Successful continuous casting was possible. This casting speed is an average casting speed of 100 to 20 when using a conventional mold device that relies only on the water-cooled copper block 2 for cooling.
0 ITffn/'m! It is about 21 to 3 times as large as n, indicating that the present invention can significantly improve casting productivity. The quality of the obtained plate-shaped ingot 10 was the same as that obtained by the conventional method, and no defects were observed.
また念の為に本発明の鋳型装置における鋳型冷却能の測
定を行なったところ、黒鉛鋳型1の冷媒用管路11設置
部位における鋳型表面温度は約700℃であって抜熱効
果は極めて高く、また冷媒用管路11における冷却水の
持ち去り熱量は鋳造板幅1印当たり約40KCal/…
inであり、これと水冷銅ブロックにおける冷却水の持
ち去り熱量の40〜60Kcal/…inとを合せると
本発明による鋳型装置は従来のものに較べて約2倍の冷
却能を有することが判かっな。Also, just to be sure, we measured the mold cooling capacity of the mold apparatus of the present invention and found that the mold surface temperature at the location where the refrigerant pipe 11 of the graphite mold 1 was installed was approximately 700°C, and the heat removal effect was extremely high. In addition, the amount of heat removed by the cooling water in the refrigerant pipe 11 is approximately 40 KCal/mark per width of the cast plate...
In, and when this is combined with the 40 to 60 Kcal/in of the heat carried away by the cooling water in the water-cooled copper block, it is found that the molding device according to the present invention has approximately twice the cooling capacity compared to the conventional molding device. That's right.
また本実施例においては黒鉛鋳型1の溶湯入口側端面に
連続して長さ50mmに亘ってハイアルミナ質キャスタ
ブルによる耐火断熱材5aを保持炉B側に向かって拡大
するテーパー状に施したが、このようにすることによっ
て、黒鉛鋳型1の冷媒用2
管路11に鋳造開始前に冷却水を導入するようにしても
黒鉛鋳型1の溶湯入口部付近における溶湯の早すぎる凝
固による鋳型内への給湯不足が防止され順調な鋳造を行
なうことが出来ることが確認された。また黒鉛鋳型1に
おける冷媒用管#111による冷却によって鋳型を構成
する黒鉛板に対する悪影響も見られなかった。In addition, in this example, a fireproof insulation material 5a made of high alumina castable was continuously applied to the end face of the graphite mold 1 on the molten metal inlet side over a length of 50 mm in a tapered shape that expanded toward the holding furnace B side. By doing this, even if cooling water is introduced into the refrigerant pipe 11 of the graphite mold 1 before the start of casting, the molten metal near the molten metal inlet of the graphite mold 1 will solidify prematurely and enter the mold. It was confirmed that insufficient hot water supply was prevented and smooth casting could be performed. Moreover, no adverse effect on the graphite plate constituting the mold was observed due to cooling by the refrigerant pipe #111 in the graphite mold 1.
(発明の効果)
以上述べたように、本発明の連続鋳造用黒鉛鋳型装置に
おいては黒鉛鋳型自体に冷却媒体を通ずる管路を配設す
ることによって従来の水冷銅ブロックによる冷却に加え
て黒鉛鋳型よりの直接冷却を行ない得るようにしたので
、従来のこの種装置では見られない高い冷却効率の鋳型
装置を提供することが出来、またその構造は鋳型装置に
おける基本的構造に大きな改変を加えることなく、黒鉛
鋳型構成材として消耗材である黒鉛板の穴開は加工及び
金属管の挿入と云う単純な改造によるのみでよく、しか
も、その鋳造生産性を大幅に向上することが出来るので
経済的効果の極めて高い発明3
であると云うことが出来る。(Effects of the Invention) As described above, in the graphite mold apparatus for continuous casting of the present invention, by arranging a conduit through which a cooling medium flows in the graphite mold itself, in addition to cooling by a conventional water-cooled copper block, the graphite mold is Since we have made it possible to perform direct cooling, we are able to provide a molding device with high cooling efficiency not seen in conventional devices of this type, and its structure requires no major changes to the basic structure of the molding device. The graphite plate, which is a consumable material as a constituent material of the graphite mold, needs to be simply modified by machining and inserting a metal tube. Moreover, it is economical because the casting productivity can be greatly improved. It can be said that Invention 3 is extremely effective.
第1図は本発明の金属鋳塊の連続鋳造用黒鉛鋳型装置の
1実施態様を示すものにおける要部側断面図、第2図は
従来の連続鋳造用黒鉛鋳型装置の概念的側断面図である
。
1・・・黒鉛鋳型、2・・・水冷銅ブロック、3・・・
鋼製被覆材、4a、4b・・・ボルト、5.5a・・・
耐火断熱材、6・・・保持炉ライニング、7・・・シー
ル材、8・・・溶湯、9・・・凝固ゾーン、10・・・
鋳塊、11・・・冷媒用管路、12・・・フレーム材、
A・・・鋳型装置、B・・・溶湯保持炉FIG. 1 is a side sectional view of a main part showing one embodiment of the graphite mold device for continuous casting of metal ingots of the present invention, and FIG. 2 is a conceptual side sectional view of a conventional graphite mold device for continuous casting. be. 1...Graphite mold, 2...Water-cooled copper block, 3...
Steel covering material, 4a, 4b... Bolt, 5.5a...
Fireproof insulation material, 6... Holding furnace lining, 7... Sealing material, 8... Molten metal, 9... Solidification zone, 10...
Ingot, 11... refrigerant pipe, 12... frame material,
A... Mold equipment, B... Molten metal holding furnace
Claims (3)
と、該黒鉛鋳型に外接して鋳型を冷却する水冷銅ブロッ
クと、該水冷銅ブロックを外側より補強する銅製被覆板
とを一体に組合わせてなる黒鉛鋳型装置において、黒鉛
鋳型に冷却媒体を通ずる管路を配設してなる金属鋳塊の
連続鋳造用黒鉛鋳型装置。(1) Integrating a graphite mold for horizontal continuous casting to obtain a metal ingot, a water-cooled copper block that circumscribes the graphite mold to cool the mold, and a copper covering plate that reinforces the water-cooled copper block from the outside. A graphite mold device for continuous casting of metal ingots, which comprises a graphite mold and a pipe line for passing a cooling medium through the graphite mold.
ンに相当する部分に設けた請求項1記載の金属鋳塊の連
続鋳造用黒鉛鋳型装置。(2) The graphite mold apparatus for continuous casting of metal ingots according to claim 1, wherein the pipe line for passing the cooling medium is provided in a portion corresponding to the molten metal solidification zone of the graphite mold.
た請求項1又は2記載の金属鋳塊の連続鋳造用黒鉛鋳型
装置。(3) The graphite mold device for continuous casting of metal ingots according to claim 1 or 2, wherein a fireproof heat insulating material is continuously provided at the end of the graphite mold on the molten metal inflow side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13837989A JPH035046A (en) | 1989-05-31 | 1989-05-31 | Graphite mold device for continuously casting metal cast billet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13837989A JPH035046A (en) | 1989-05-31 | 1989-05-31 | Graphite mold device for continuously casting metal cast billet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH035046A true JPH035046A (en) | 1991-01-10 |
Family
ID=15220559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13837989A Pending JPH035046A (en) | 1989-05-31 | 1989-05-31 | Graphite mold device for continuously casting metal cast billet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH035046A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011093310A1 (en) * | 2010-01-26 | 2011-08-04 | 三菱マテリアル株式会社 | Process for producing copper alloy wire containing active element |
JP2015199075A (en) * | 2014-04-04 | 2015-11-12 | 株式会社サーモグラフィティクス | Cooling structure and metal mold cooling device |
-
1989
- 1989-05-31 JP JP13837989A patent/JPH035046A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011093310A1 (en) * | 2010-01-26 | 2011-08-04 | 三菱マテリアル株式会社 | Process for producing copper alloy wire containing active element |
CN102686337A (en) * | 2010-01-26 | 2012-09-19 | 三菱综合材料株式会社 | Process for producing copper alloy wire containing active element |
JP5613907B2 (en) * | 2010-01-26 | 2014-10-29 | 三菱マテリアル株式会社 | Method for producing active element-containing copper alloy wire |
CN102686337B (en) * | 2010-01-26 | 2015-06-17 | 三菱综合材料株式会社 | Process for producing copper alloy wire containing active element |
JP2015199075A (en) * | 2014-04-04 | 2015-11-12 | 株式会社サーモグラフィティクス | Cooling structure and metal mold cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3045086U (en) | Cooling plate for metallurgical furnace | |
KR100828978B1 (en) | Furnace with cooling element | |
KR101277112B1 (en) | Cooling element and method for manufacturing the same | |
US9863707B2 (en) | Furnace with refractory bricks that define cooling channels for gaseous media | |
KR20010101877A (en) | Casting mould for manufacturing a cooling element and cooling element made in said mould | |
TW201807198A (en) | Furnace body protection stave | |
JP4064387B2 (en) | Furnace water cooling jacket | |
KR100328294B1 (en) | Stave for metallurgical furnace | |
JPH08246014A (en) | Blast furnace water-cooled slag gutter | |
JPH035046A (en) | Graphite mold device for continuously casting metal cast billet | |
US4572269A (en) | Method of manufacturing cooling plates for use in metallurgical furnaces and a cooling plate | |
JP4199419B2 (en) | Extract for molten iron | |
JP2000104106A (en) | Stave for metallurgical furnace | |
JP4582558B2 (en) | Refractory cooling device layout structure on the bottom wall of the blast furnace furnace | |
EP1637254B1 (en) | Die mounting | |
KR102728726B1 (en) | Cooling panels for furnaces | |
JP2002080908A (en) | Cooling stave | |
JP2002066719A (en) | Method of providing internal chill with cooling pipe in casting | |
RU2030955C1 (en) | Metal continuous pouring crystallizer | |
KR100456036B1 (en) | Cooling panel for a shaft furnace | |
JPH0715655Y2 (en) | Dummy bar for horizontal continuous casting | |
JPS5838639A (en) | Continuous casting device for metal | |
JPH034300B2 (en) | ||
JPH02303656A (en) | Graphite mold device for horizontal continuous casting of planar cast slab | |
JPH11323414A (en) | Blast furnace |