Nothing Special   »   [go: up one dir, main page]

JPH0347184B2 - - Google Patents

Info

Publication number
JPH0347184B2
JPH0347184B2 JP61005462A JP546286A JPH0347184B2 JP H0347184 B2 JPH0347184 B2 JP H0347184B2 JP 61005462 A JP61005462 A JP 61005462A JP 546286 A JP546286 A JP 546286A JP H0347184 B2 JPH0347184 B2 JP H0347184B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
reinforced
alumina
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61005462A
Other languages
Japanese (ja)
Other versions
JPS62162519A (en
Inventor
Akira Morii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP61005462A priority Critical patent/JPS62162519A/en
Publication of JPS62162519A publication Critical patent/JPS62162519A/en
Publication of JPH0347184B2 publication Critical patent/JPH0347184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は合成樹脂および/またはゴム類をマト
リツクスとし、無機、有機または金属繊維の少く
とも1種を強化材とした複合材料とアルミナ質繊
維を強化材とした複合材料が積層一体化された繊
維強化管状または棒状構造体およびその製造法に
関する。
Detailed Description of the Invention <Field of Industrial Application> The present invention is directed to a composite material having a matrix of synthetic resin and/or rubber and reinforced with at least one type of inorganic, organic or metal fiber, and alumina fiber. The present invention relates to a fiber-reinforced tubular or rod-shaped structure in which composite materials using as reinforcing materials are laminated and integrated, and a method for manufacturing the same.

<従来の技術> 近年、航空宇宙産業、輸送機械産業を始めとす
る多くの産業分野で、さらに、スポーツレジヤー
用などの民生分野で、炭素繊維強化樹脂
(CFRP)、ガラス繊維強化樹脂(GFRP)、アル
ミナ繊維強化樹脂(ALFRP)等の繊維強化樹脂
(FRP)は広く利用されておりその利用分野はさ
らに多岐に拡がりつつある。
<Conventional technology> In recent years, carbon fiber reinforced resins (CFRP) and glass fiber reinforced resins (GFRP ), fiber-reinforced resins (FRP) such as alumina fiber-reinforced resin (ALFRP) are widely used, and their fields of use are expanding further.

<発明が解決しようとする問題点> 一般にFRPは、その強化繊維の特性に従つて、
それぞれ特有の長所、短所を有する。例えば
CFRPは軽量で高強度、高剛性という特長を有す
るが、電気伝導性であるので、絶縁性を求められ
る用途には使用できないし、金属との接合物で電
食という問題を生じる、また炭素繊維は黒いの
で、FRP自体への着色は不可能である。GFRP
は、他のFRPと比較すれば安価で、絶縁性であ
り、着色も可能であるが、剛性がCFRPの1/3と
低く、圧縮強度疲労強度も低い。ALFRPは絶縁
性で、着色も可能で、剛性はCFRP並であり、圧
縮強度層間剪断強度、圧潰強度、座屈強度、ねじ
り強度、衝激強度はCFRPより優れるが、引張強
度はCFRPよりも劣り、比重も2.5と、CFRPの
1.5より大きく重い。芳香族ポリアミド繊維強化
樹脂は軽量、高引張強度で、絶縁性であるが、剛
性はCFRP、ALFRPの1/2〜2/3と低く、圧縮強
度も低く、着色もできない。
<Problems to be solved by the invention> In general, FRP has the following characteristics depending on the characteristics of its reinforcing fibers:
Each has its own unique strengths and weaknesses. for example
CFRP has the features of being lightweight, high strength, and high rigidity, but because it is electrically conductive, it cannot be used in applications that require insulation, and it also causes the problem of electrolytic corrosion when bonded with metal. Since it is black, it is impossible to color the FRP itself. GFRP
Compared to other FRPs, it is inexpensive, has insulating properties, and can be colored, but its rigidity is 1/3 that of CFRP, and its compressive strength and fatigue strength are also low. ALFRP is insulating, can be colored, has a stiffness comparable to CFRP, and has superior compressive strength, interlaminar shear strength, crushing strength, buckling strength, torsional strength, and impact strength, but is inferior to CFRP in tensile strength. , specific gravity is 2.5, CFRP
Bigger and heavier than 1.5. Aromatic polyamide fiber-reinforced resin is lightweight, has high tensile strength, and is insulating, but its rigidity is 1/2 to 2/3 that of CFRP and ALFRP, its compressive strength is low, and it cannot be colored.

特にこの中でCFRPはその軽量、高強度、高剛
性という特長を生かして、釣竿、ゴルフシヤフト
として多く用いられている。しかしながら、この
ような長尺物は長さ方向の曲げに対する強度が弱
く、径方向の圧潰強度やねじり強度についても必
ずしも充分に効果的に上げることができていな
い。また、GFRPや芳香族ポリアミド繊維強化樹
脂では、剛性が不足で性能的に満足なものが得ら
れない。
In particular, CFRP is widely used in fishing rods and golf shafts due to its light weight, high strength, and high rigidity. However, such elongated objects have low strength against bending in the longitudinal direction, and it is not always possible to sufficiently effectively increase the crushing strength and torsional strength in the radial direction. Furthermore, GFRP and aromatic polyamide fiber-reinforced resins lack rigidity and cannot provide satisfactory performance.

本発明の目的は上記の欠点を改良した繊維強化
構造体およびその製造法を提供することにある。
An object of the present invention is to provide a fiber-reinforced structure and a method for producing the same, which improve the above-mentioned drawbacks.

<問題点を解決するための手段> 本発明は有機、無機および金属繊維から選ばれ
た少くとも1種の繊維を強化材とし、合成樹脂お
よび/またはゴムをマトリツクスとした繊維強化
複合材料からなる棒状または管状の構造体におい
て、該構造体の長さ方向に対して0〜20度の繊維
配向角度の該繊維を少なくとも50容量%を含む強
化繊維からなる複合材料(以下複合材料Aと略称
する)からなり、かつ該構造体の内面および/ま
たは外面に、Al2O372重量%以上、SiO228重量%
以下の成分からなりX線的構造においてα−
Al2O3の反射を実質的に示さないアルミナ質繊維
を強化材とした複合材料(以下複合材料Bと略称
する)が、該アルミナ質繊維が該構造体の長さ方
向に対して20〜90度の繊維配向角度でもつて配置
された複合材料が積層一体化されていることを特
徴とする繊維強化構造体を提供する。
<Means for solving the problems> The present invention consists of a fiber-reinforced composite material in which at least one type of fiber selected from organic, inorganic and metal fibers is used as a reinforcing material, and a synthetic resin and/or rubber is used as a matrix. In a rod-shaped or tubular structure, a composite material (hereinafter abbreviated as composite material A) made of reinforcing fibers containing at least 50% by volume of fibers with a fiber orientation angle of 0 to 20 degrees with respect to the longitudinal direction of the structure. ), and at least 72% by weight of Al 2 O 3 and 28% by weight of SiO 2 on the inner and/or outer surfaces of the structure.
α-
A composite material reinforced with alumina fibers that does not substantially reflect Al 2 O 3 (hereinafter referred to as composite material B) has a structure in which the alumina fibers are A fiber-reinforced structure is provided, characterized in that composite materials arranged with fiber orientation angles of 90 degrees are laminated and integrated.

さらに第二の発明は有機、無機および金属繊維
から選ばれた少くとも1種の繊維を強化材とし、
合成樹脂および/またはゴムをマトリツクスとし
た複合材料よりなる棒状または管状の構造体の製
造において、構造体の長さ方向に対して0〜20度
の繊維配向角度の繊維が少なくとも50容量%含ま
れる繊維を強化材とした構造体の外面に、
Al2O372重量%以上、SiO228重量%以下の成分か
らなりX線的構造においてα−Al2O3の反射を実
質的に示さないアルミナ質繊維を強化材とし、こ
れに合成樹脂および/またはゴムを含浸させた幅
0.5〜10mmのテープ状プリプレグを該構造体の長
さ方向に対して20〜90度繊維配向角度に巻きつ
け、ついで加熱成形せしめることを特徴とする繊
維強化構造体の製造方法を提供する。
Furthermore, the second invention uses at least one type of fiber selected from organic, inorganic and metal fibers as a reinforcing material,
In the production of rod-shaped or tubular structures made of composite materials with a synthetic resin and/or rubber matrix, at least 50% by volume of fibers with a fiber orientation angle of 0 to 20 degrees with respect to the longitudinal direction of the structure are included. On the outer surface of the structure reinforced with fibers,
The reinforcing material is alumina fiber containing 72% by weight or more of Al 2 O 3 and 28% by weight or less of SiO 2 , which does not substantially reflect α-Al 2 O 3 in its X-ray structure, and is reinforced with synthetic resin. and/or rubber impregnated width
A method for producing a fiber-reinforced structure is provided, which comprises wrapping a 0.5-10 mm tape-like prepreg at a fiber orientation angle of 20-90 degrees with respect to the length direction of the structure, and then heat-forming it.

本発明は前記の問題を改良すべく鋭意検討の結
果、FRP中の強化繊維を特定の配向角度に組合
せ、かつ長さ方向に対する配向角度が20〜90度の
繊維をアルミナ質繊維とすることにより従来の
FRPの物性を損うことなく、加えて圧潰強度、
座屈強度、ねじり強度等すぐれた特性の構造体が
得られることを見い出したものである。
The present invention was developed as a result of intensive studies to solve the above problems, by combining the reinforcing fibers in FRP with a specific orientation angle, and using the fibers with an orientation angle of 20 to 90 degrees with respect to the length direction as alumina fibers. Traditional
In addition, crushing strength is improved without impairing the physical properties of FRP.
It has been discovered that a structure with excellent properties such as buckling strength and torsional strength can be obtained.

以下本発明について詳術する。 The present invention will be explained in detail below.

本発明において用いられるアルミナ質繊維は
Al2O372重量%以上、SiO228重量%以下の成分か
らなり、X線的構造においてα−Al2O3の反射を
実質的に示さないものである。詳述すればアルミ
ナ(Al2O3)含有量が72〜100重量%であり、シ
リカ(SiO2)含有量が0〜28重量%、好ましく
は2〜25重量%の組成のものである。またシリカ
含有量中の繊維全体重量に対して10%以下、好ま
しくは5%以下の範囲でこれをリチウム、ベリリ
ウム、ホウ素、ナトリウム、マグネシウム、ケイ
素、リン、カリウム、カルシウム、チタン、クロ
ム、マンガン、イツトリウム、ジルコニウム、ラ
ンタン、タングステン、バリウムの一種または二
種以上の酸化物で置き換えてもよい。
The alumina fiber used in the present invention is
It is composed of 72% by weight or more of Al 2 O 3 and 28% by weight or less of SiO 2 , and does not substantially show α-Al 2 O 3 reflection in its X-ray structure. Specifically, the composition has an alumina (Al 2 O 3 ) content of 72 to 100% by weight and a silica (SiO 2 ) content of 0 to 28% by weight, preferably 2 to 25% by weight. In addition, the silica content may be lithium, beryllium, boron, sodium, magnesium, silicon, phosphorus, potassium, calcium, titanium, chromium, manganese, It may be replaced with one or more oxides of ytrium, zirconium, lanthanum, tungsten, and barium.

また該アルミナ質繊維のX線的構造においてα
−アルミナの反射を実質的に示さないものが望ま
しく、また引張強度、弾性率はそれぞれ200Kg/
mm2、25t/mm2以上の値を有するものが好ましい。
In addition, in the X-ray structure of the alumina fiber, α
- It is desirable that the alumina exhibits virtually no reflection, and the tensile strength and elastic modulus are each 200 kg/
It is preferable to have a value of mm 2 , 25t/mm 2 or more.

上記のアルミナ質繊維は例えば特公昭51−
12736号公報、同51−13768号公報等に記載された
方法で製造することができる。
The above alumina fibers are, for example,
It can be produced by the methods described in JP-A No. 12736, JP-A No. 51-13768, and the like.

一方、本発明においてアルミナ質繊維と組合せ
て使用される無機、有機および金属繊維(以下繊
維Aと略称する。)としては一般にFRP用に使用
される強化繊維が使用可能である。例を挙げれば
無機繊維としては炭素繊維、グラフアイト繊維、
ボロン繊維、シリコンカーバイト繊維、アルミナ
質繊維、ガラス繊維等、有機繊維としては芳香族
ポリアミド繊維、ポリエステル繊維、ナイロン繊
維等、および金属繊維としてはステンレス繊維、
スチール繊維等が例示される。これらは要求性能
に従つて1種または2種以上が用いられる。
On the other hand, as the inorganic, organic, and metallic fibers (hereinafter abbreviated as fibers A) used in combination with the alumina fibers in the present invention, reinforcing fibers generally used for FRP can be used. Examples of inorganic fibers include carbon fiber, graphite fiber,
Boron fibers, silicon carbide fibers, alumina fibers, glass fibers, etc. Organic fibers include aromatic polyamide fibers, polyester fibers, nylon fibers, etc. Metal fibers include stainless steel fibers,
Examples include steel fibers. One or more of these may be used depending on the required performance.

上記繊維中では炭素繊維、ガラス繊維、ポリア
ミド繊維、ポリエステル繊維、ナイロン繊維が効
果の向上の点から好ましく、特に炭素繊維が好ま
しい。
Among the above-mentioned fibers, carbon fibers, glass fibers, polyamide fibers, polyester fibers, and nylon fibers are preferred from the viewpoint of improving effects, and carbon fibers are particularly preferred.

これら繊維は通常市販されているものがそのま
ま使用し得る。一例として炭素繊維としてマグナ
マイトAS−4、IM−6(住化ハーキニレス(株)
製)、ガラス繊維としてマイクログラスヤーン
(日本硝子繊維(株))、芳香族ポリアミド繊維として
ケプラー49(デユポン社製)、ポリエステル繊維
としてエコノール繊維(住友化学(株)製)、ステン
レス繊維としてナスロン(日本精線(株)製)等が
挙げられる。
As these fibers, commercially available fibers can be used as they are. For example, carbon fibers such as Magnamite AS-4 and IM-6 (Sumika Harkinires Co., Ltd.)
microglass yarn (manufactured by Nippon Glass Fiber Co., Ltd.) as glass fiber, Kepler 49 (manufactured by DuPont) as aromatic polyamide fiber, Econol fiber (manufactured by Sumitomo Chemical Co., Ltd.) as polyester fiber, and Naslon (manufactured by Sumitomo Chemical Co., Ltd.) as stainless fiber. (manufactured by Nippon Seisen Co., Ltd.), etc.

これら繊維の形態は連続繊維シート、ストラン
ド、トウ、ヤーンが好ましいが目的とする構造体
の長さ方向に対する配向角度が0〜20度のものが
少くとも50体積%になるのであれば目的に応じて
チヨツプドストランド、ウイスカーなどの短繊
維、朱子織物、平織などの織布、さらには三次元
織布を併用してもよい。
The form of these fibers is preferably a continuous fiber sheet, strand, tow, or yarn, but it depends on the purpose as long as at least 50% by volume has an orientation angle of 0 to 20 degrees with respect to the length direction of the target structure. Short fibers such as chopped strands and whiskers, woven fabrics such as satin fabrics and plain weaves, and even three-dimensional woven fabrics may be used in combination.

また本発明においてマトリツクスとして用いら
れる合成樹脂およびゴム類としてはエポキシ樹
脂、フエノール樹脂、アルキツド樹脂、尿素ホル
ムアルデヒド樹脂、メラミン−ホルムアルデヒド
樹脂、不飽和ポリエステル樹脂、芳香族ポリアミ
ド樹脂、ポリアミド−イミド樹脂、ポリエステル
−イミド樹脂、ポリイミド樹脂、ポリベンゾチア
ゾール樹脂、ケイ素樹脂などの熱硬化性樹脂、ポ
リエチレン、ポリプロピレン、ポリメチルメタア
クリレート、ポリスチレン(いわゆるハイ・イン
パクト・ポリチレンも含む)、ポリ塩化ビニール、
ABS樹脂、スチレン−アクリロニトリル共重合
体、ポリアミド(ナイロン6、6・6、6・10、
6・11、6・12など)、ポリアセタール、ポリス
ルホン、ポリカーボネート、ポリフエニレンオキ
サイド、ポリエーテルスルホン、ポリエーテルエ
ーテルケトンなどの熱可塑性樹脂、ポリブタジエ
ン、ポリイソプレン、ポリクロロプレン、スチレ
ン−ブタジエン共重合体(SBR)、アクリロニト
リル−ブタジエン共重合体(NBR)シリコーン
ゴムなどの合成ゴム類および天然ゴムをあげるこ
とができる。
The synthetic resins and rubbers used as the matrix in the present invention include epoxy resins, phenolic resins, alkyd resins, urea-formaldehyde resins, melamine-formaldehyde resins, unsaturated polyester resins, aromatic polyamide resins, polyamide-imide resins, and polyester-formaldehyde resins. Thermosetting resins such as imide resins, polyimide resins, polybenzothiazole resins, silicone resins, polyethylene, polypropylene, polymethyl methacrylate, polystyrene (including so-called high impact polyethylene), polyvinyl chloride,
ABS resin, styrene-acrylonitrile copolymer, polyamide (nylon 6, 6.6, 6.10,
6・11, 6・12, etc.), thermoplastic resins such as polyacetal, polysulfone, polycarbonate, polyphenylene oxide, polyethersulfone, polyetheretherketone, polybutadiene, polyisoprene, polychloroprene, styrene-butadiene copolymer ( SBR), acrylonitrile-butadiene copolymer (NBR) silicone rubber, and other synthetic rubbers and natural rubber.

これらの中でエポキシ樹脂、不飽和ポリエステ
ル、ポリスルホン、ポリエーテルスルホン、ポリ
エーテルエーテルケトン、ポリイミドが好適であ
る。
Among these, epoxy resins, unsaturated polyesters, polysulfones, polyethersulfones, polyetheretherketones, and polyimides are preferred.

本発明において、繊維Aを管状や棒状の構造体
中に長さ方向の曲げ強度や弾性率を維持する為に
0゜〜20゜の繊維配向角度が少なくとも全体の50容
積%以上配置された複合材料とする必要がある。
繊維配向角度が20゜を越え90゜までの範囲のものが
50容積%を越えると、構造体の曲げ強度が極度に
劣り、たわみが大となり釣竿やゴルフシヤフト等
に用いたとき実用上問題となる。
In the present invention, in order to maintain the bending strength and elastic modulus in the longitudinal direction of the fiber A in a tubular or rod-like structure,
It is necessary to make a composite material in which at least 50% by volume of the fibers are arranged at an angle of 0° to 20°.
Those with a fiber orientation angle of more than 20° and up to 90°
If it exceeds 50% by volume, the bending strength of the structure will be extremely poor and the deflection will be large, which will cause practical problems when used in fishing rods, golf shafts, etc.

一方、複合材料Bは構造体の長さ方向に対して
20〜90度好ましくは45〜90度の配向角度でもつて
アルミナ質繊維を配置し、かつ複合材料Aの内面
および/または外面に積層一体化されるが、少く
とも外面に積層一体化される場合、構造体の種々
の強度の他に外観、絶縁性が改良されるので好ま
しい。
On the other hand, composite material B is
Alumina fibers are arranged at an orientation angle of 20 to 90 degrees, preferably 45 to 90 degrees, and are laminated and integrated on the inner and/or outer surfaces of composite material A, but at least when laminated and integrated on the outer surface. This is preferable because it improves not only the various strengths of the structure but also the appearance and insulation properties.

また上記の構造体中の繊維の体積含有率は目的
に応じて決めればよいが通常20〜80体積%好まし
くは40〜70体積%であり、またアルミナ質繊維と
繊維Aとの割合は特に限定されないが好ましくは
体積換算で2:1〜1:100、特に好ましくは
1:1〜1:10である。
The volume content of the fibers in the above structure may be determined depending on the purpose, but is usually 20 to 80% by volume, preferably 40 to 70% by volume, and the ratio of alumina fibers to fiber A is particularly limited. Although not, it is preferably 2:1 to 1:100, particularly preferably 1:1 to 1:10 in terms of volume.

以下に本発明の構造体の製造法について述べ
る。
The method for manufacturing the structure of the present invention will be described below.

繊維1を強化材とした複合材料部分については
公知のフイラメントワインデイング法、ハンドレ
イアツプ法、レジントランスフアーモールデイン
グ法により棒状体あるいは管状体を製造すること
ができるが好ましくは以下の方法で行う。
Regarding the composite material part using the fiber 1 as a reinforcing material, a rod-shaped body or a tubular body can be manufactured by the known filament winding method, hand lay-up method, or resin transfer molding method, but it is preferably carried out by the following method. .

管状構造体の場合はテーパーのついた棒状マン
ドレル上に繊維Bを樹脂またはゴムを含浸したプ
リプレグを長さ方向に対し0〜20度の配向角度で
巻きつける。なお、構造体が大きいものの場合は
シート状プリプレグを繊維配向角度が長さ方向に
対して0〜20度のものが50体積%以上になるよう
に貼り付けてもよい。ついでアルミナ質繊維の連
続プリプレグを長さ方向に対して20〜90度好まし
くは45〜90度の配向角度でもつて巻きつける。
In the case of a tubular structure, a prepreg in which fibers B are impregnated with resin or rubber is wound around a tapered rod-shaped mandrel at an orientation angle of 0 to 20 degrees with respect to the length direction. In addition, in the case of a large structure, sheet-like prepregs may be attached so that the fiber orientation angle of 0 to 20 degrees with respect to the length direction accounts for 50% by volume or more. A continuous prepreg of alumina fibers is then twisted around the length at an orientation angle of 20 to 90 degrees, preferably 45 to 90 degrees.

この連続プリプレグはテープ状プリプレグ、ト
ウプリプレグ、ストランドプリプレグまたはヤー
ンプリプレグであつてもよいが特に引揃えテープ
状プリプレグ、トウプリプレグが好ましい。プリ
プレグの幅は目的とする構造体の太さ、長さによ
つて変わるが0.5〜10mmの範囲が好ましい。また
プリプレグの厚みは幅の寸法以下であるが、テー
プ状プリプレグにおいては好ましくは0.02〜5
mm、特に好ましくは0.02〜0.3mmである。巻きつ
け回数は1層乃至数層であつて目的とする構造体
の大きさ、強度等を考慮して適宜決定される。
This continuous prepreg may be a tape prepreg, tow prepreg, strand prepreg or yarn prepreg, but drawn tape prepreg and tow prepreg are particularly preferred. The width of the prepreg varies depending on the thickness and length of the intended structure, but is preferably in the range of 0.5 to 10 mm. In addition, the thickness of the prepreg is less than the width dimension, but in the case of tape-shaped prepreg, it is preferably 0.02 to 5.
mm, particularly preferably 0.02 to 0.3 mm. The number of windings is one to several layers, and is appropriately determined in consideration of the size, strength, etc. of the target structure.

巻きつけた後、公知の方法により加熱成形し
て、目的とする構造体を得る。加熱成形法として
はテープラツピング法の他にそのまま加熱成形す
る方法、オートクレーブ成形等があるがテープラ
ツピング法が好ましい。
After winding, it is heated and formed by a known method to obtain the desired structure. In addition to the tape wrapping method, heat forming methods include methods of directly heat forming, autoclave molding, etc., but the tape wrapping method is preferred.

また、繊維Aの強化複合材料部を予め成形し、
ついでそれにアルミナ質繊維の前記プレプリグを
巻きつけ、ついで加熱成形する方法もあるが繊維
Bの強化複合材料部の加熱成形前にアルミナ質繊
維のプリプレグを巻きつけ、ついで加熱成形する
方法が好ましい。またマンドレル上に最初にアル
ミナ質繊維プリプレグを巻きつけることにより内
面がアルミナ質繊維で強化された複合材料からな
る構造体を得ることができる。
In addition, the reinforced composite material portion of fiber A is preformed,
There is also a method of wrapping the prepreg of alumina fiber around it and then heat-forming it, but it is preferable to wrap the prepreg of alumina fiber around it before heat-forming the reinforced composite material portion of fiber B and then heat-forming it. Furthermore, by first winding an alumina fiber prepreg on a mandrel, a structure made of a composite material whose inner surface is reinforced with alumina fibers can be obtained.

また棒状の構造体についても公知の方法で棒状
の繊維Aの強化複合体を作製しておき、その外面
にアルミナ質繊維のプリプレグを巻くことによ
り、管状体と同じようにして構造体を得ることが
できる。
In addition, for a rod-shaped structure, a reinforced composite of rod-shaped fibers A is prepared by a known method, and a prepreg of alumina fiber is wrapped around the outer surface of the reinforced composite, and the structure can be obtained in the same manner as for the tubular structure. I can do it.

特に本発明の構造体は前述のとおり種々の強度
にすぐれ、また着色も可能であるので外観もよく
釣竿、ゴルフシヤフト、ロボツトアーム等長尺物
の用途に適している。
In particular, the structure of the present invention has various strengths as mentioned above and can be colored, so it has a good appearance and is suitable for use in long objects such as fishing rods, golf shafts, and robot arms.

<発明の効果> 本発明の構造体は従来のFRPの特性を損うこ
となく、加えて圧潰強度、座屈強度、ねじり特性
等の機械的物性等に優れている。
<Effects of the Invention> The structure of the present invention has excellent mechanical properties such as crushing strength, buckling strength, and torsional properties without impairing the properties of conventional FRP.

<実施例> 次に本発明についてより具体的に説明するが、
本発明はこれらによつて限定されるものではな
い。
<Example> Next, the present invention will be explained in more detail.
The present invention is not limited thereto.

実施例 1 径15mm、長さ1200mm、テーパー1.5/1000のマ
ンドレルに住化アルミナ繊維(直径15μ)〔住友
化学工業(株)製〕の引揃えプリプレグ(ALF目付
235g/m2、エポキシ樹脂含量30wt%)の2mm幅
の細幅テープを、螺旋状で、かつ密接状に、繊維
方向がマンドレルの長さ方向に対して88゜になる
ように長さ方向一端から他端に至る1000mm長にわ
たつて連続的に1回巻きつけた。その上に炭素繊
維引揃えプリプレグシートIM−6/J−1201
(CF目付130g/m2、樹脂含量38wt%)〔住化ハ
ーキユレス(株)製〕を繊維方向がマンドレルの長さ
方向と一致するように3回巻きつけ、その上にポ
リエチレンテレフタレート20μ厚テープを巻きつ
け、80℃1時間ついで120℃2時間加熱成形して
外径16mm、長さ1000mm2、厚み0.5mmのパイプを成
形した。
Example 1 A mandrel with a diameter of 15 mm, a length of 1200 mm, and a taper of 1.5/1000 was coated with prepreg (ALF fabric weight) of Sumika alumina fiber (diameter 15 μ) [manufactured by Sumitomo Chemical Co., Ltd.].
A narrow tape of 2 mm width (235 g/m 2 , epoxy resin content 30 wt%) was spirally and closely spaced at one end in the longitudinal direction so that the fiber direction was 88° with respect to the length direction of the mandrel. It was continuously wrapped once over a length of 1000 mm from one end to the other end. On top of that, carbon fiber alignment prepreg sheet IM-6/J-1201
(CF fabric weight 130g/m 2 , resin content 38wt%) [manufactured by Sumika Harkyuress Co., Ltd.] was wound three times so that the fiber direction coincided with the length direction of the mandrel, and a 20μ thick polyethylene terephthalate tape was wrapped on top of it. It was wound and heated at 80°C for 1 hour and then at 120°C for 2 hours to form a pipe with an outer diameter of 16 mm, a length of 1000 mm 2 and a thickness of 0.5 mm.

このパイプの曲げ強度は105Kg/mm2、曲げ弾性
率は18t/mm2、圧潰強度は30Kg/mm2、座屈強度は
150Kg/mm2であつた。
The bending strength of this pipe is 105Kg/mm 2 , the bending modulus is 18t/mm 2 , the crushing strength is 30Kg/mm 2 , and the buckling strength is
It was 150Kg/ mm2 .

比較例 1 実施例1で用いた炭素繊維引揃えプリプレグシ
ートを2mm幅の細幅テープとし、実施例1と同じ
マンドレルに同様に螺旋状に1回巻きつけた。そ
れ以外は実施例1と同様にその上に炭素繊維引揃
えプリプレグシートを繊維方向がマンドレルの長
さ方向と一致するように3回巻きつけ、テープラ
ツピング成形して外径16mm、長さ1000mm、厚み
0.5mmのパイプを成形した。
Comparative Example 1 The carbon fiber aligned prepreg sheet used in Example 1 was made into a narrow tape with a width of 2 mm, and similarly wrapped once in a spiral shape around the same mandrel as in Example 1. Other than that, in the same manner as in Example 1, a carbon fiber aligned prepreg sheet was wrapped three times so that the fiber direction coincided with the length direction of the mandrel, and tape wrapping was performed to obtain an outer diameter of 16 mm and a length of 1000 mm. , thickness
A 0.5mm pipe was molded.

このパイプの曲げ強度は95Kg/mm2、曲げ弾性率
は13t/mm2、圧潰強度は20Kg/mm2、座屈強度は125
Kg/mm2であつた。
The bending strength of this pipe is 95Kg/mm 2 , the bending modulus is 13t/mm 2 , the crushing strength is 20Kg/mm 2 , and the buckling strength is 125
It was Kg/ mm2 .

実施例 2 比較例1で巻きつけた積層構造の更に最外層
に、1000本の住化アルミナ繊維(直径15μ)〔住
友化学工業(株)製〕を一方向に引揃えたものに
30wt%程エポキシ樹脂を含浸させたアルミナ繊
維トウプリプレグを、35mmのピツチで繊維方向が
マンドレルの長さ方向に対して±45゜になるよう
に長さ方向一端から他端に至る1000mm長にわたつ
てあや巻き状に巻回した以外は、比較例1と同様
にテープラツピング成形して外径16mm、長さ1000
mm、厚み0.5mmのパイプを成形した。
Example 2 In the outermost layer of the laminated structure wrapped in Comparative Example 1, 1000 Sumika alumina fibers (diameter 15μ) [manufactured by Sumitomo Chemical Co., Ltd.] were arranged in one direction.
Alumina fiber tow prepreg impregnated with about 30wt% epoxy resin was spread over a length of 1000mm from one end to the other end with a pitch of 35mm so that the fiber direction was ±45° with respect to the length direction of the mandrel. The tape wrapping was formed in the same manner as in Comparative Example 1, except that it was wound in a twill shape, and the outer diameter was 16 mm and the length was 1000 mm.
A pipe with a thickness of 0.5 mm and a thickness of 0.5 mm was formed.

このパイプの曲げ強度は125Kg/mm2、曲げ弾性
率は13t/mm2、圧潰強度は25Kg/mm2、座屈強度は
150Kg/mm2であつた。
The bending strength of this pipe is 125Kg/mm 2 , the bending modulus is 13t/mm 2 , the crushing strength is 25Kg/mm 2 , and the buckling strength is
It was 150Kg/ mm2 .

比較例 2 比較例1で巻きつけた積層構造の更に最外層に
3000本の炭素繊維〔住化ハーキユレス(株)製IM−
6〕を引揃えたものに30wt%程エポキシ樹脂を
含浸させた炭素繊維トウプリプレグを、実施例2
と同様に35mmのピツチで繊維方向がマンドレルの
長さ方向に対して±45゜になるように長さ方向一
端から他端に至る1000mm長にわたつてあや巻き状
に巻回した以外は、比較例1と同様にテープラツ
ピング成形して外径16mm、長さ1000mm、厚み0.5
mmのパイプを成形した。
Comparative Example 2 The outermost layer of the laminated structure wrapped in Comparative Example 1
3000 carbon fibers [IM- manufactured by Sumika Harkyuress Co., Ltd.]
Example 2 A carbon fiber tow prepreg prepared by impregnating approximately 30 wt% of epoxy resin with [6]
The comparison was made in the same manner as in 35mm pitch, except that the fiber direction was wound at ±45° with respect to the length direction of the mandrel over a length of 1000mm from one end of the length direction to the other end. Tape wrapping molded in the same way as Example 1, outer diameter 16 mm, length 1000 mm, thickness 0.5
mm pipe was formed.

このパイプの曲げ強度は100Kg/mm2、曲げ弾性
率は13t/mm2、圧潰強度は22Kg/mm2、座屈強度は
130Kg/mm2であつた。
The bending strength of this pipe is 100Kg/mm 2 , the bending modulus is 13t/mm 2 , the crushing strength is 22Kg/mm 2 , and the buckling strength is
It was 130Kg/ mm2 .

Claims (1)

【特許請求の範囲】 1 有機、無機および金属繊維から選ばれた少く
とも1種の繊維を強化材とし、合成樹脂および/
またはゴムをマトリツクスとした繊維強化複合材
料からなる棒状または管状の構造体において、該
構造体の長さ方向に対して0〜20度の繊維配向角
度の該繊維が少なくとも50容量%を含む強化繊維
からなる複合材料からなり、かつ該構造体の内面
および/または外面に、Al2O372重量%以上、
SiO228重量%以下の成分からなりX線的構造に
おいてα−Al2O3の反射を実質的に示さないアル
ミナ質繊維を強化材とし、該アルミナ質繊維が該
構造体の長さ方向に対して20〜90度の繊維配向角
度でもつて配置された複合材料が積層一体化され
ていることを特徴とする繊維強化構造体。 2 有機、無機および金属繊維から選ばれた少く
とも1種の繊維を強化材とし、合成樹脂および/
またはゴムをマトリツクスとした複合材料よりな
る棒状または管状の構造体の製造において、構造
体の長さ方向に対して0〜20度の繊維配向角度の
該繊維が少なくとも50容量%含まれる繊維を強化
材とした構造体の外面に、Al2O372重量%以上、
SiO228重量%以下の成分からなりX線的構造に
おいてα−Al2O3の反射を実質的に示さないアル
ミナ質繊維を強化材とし、これに合成樹脂およ
び/またはゴムを含浸させた幅0.5〜10mmの連続
プリプレグを該構造体の長さ方向に対して20〜90
度の繊維配向角度に巻きつけ、ついで加熱成形せ
しめることを特徴とする繊維強化構造体の製造方
法。
[Claims] 1. At least one type of fiber selected from organic, inorganic and metal fibers is used as a reinforcing material, and synthetic resin and/or
Or in a rod-shaped or tubular structure made of a fiber-reinforced composite material with a rubber matrix, reinforcing fibers containing at least 50% by volume of fibers with a fiber orientation angle of 0 to 20 degrees with respect to the longitudinal direction of the structure. 72% by weight or more of Al 2 O 3 on the inner and/or outer surface of the structure,
Alumina fibers containing 28% by weight or less of SiO 2 and showing substantially no α-Al 2 O 3 reflection in the X-ray structure are used as reinforcing materials, and the alumina fibers extend in the longitudinal direction of the structure. A fiber-reinforced structure characterized in that composite materials are laminated and integrated with fiber orientation angles of 20 to 90 degrees. 2 At least one type of fiber selected from organic, inorganic and metal fibers is used as a reinforcing material, and synthetic resin and/or
Or, in the production of a rod-shaped or tubular structure made of a composite material with a rubber matrix, reinforcing fibers containing at least 50% by volume of said fibers with a fiber orientation angle of 0 to 20 degrees with respect to the longitudinal direction of the structure. 72% or more of Al 2 O 3 by weight on the outer surface of the structure made of material,
Width reinforced with alumina fibers containing 28% by weight or less of SiO 2 and showing virtually no α-Al 2 O 3 reflection in the X-ray structure, and impregnated with synthetic resin and/or rubber. Continuous prepreg of 0.5 to 10 mm is applied 20 to 90 times along the length of the structure.
1. A method for producing a fiber-reinforced structure, which comprises winding the fibers at a certain fiber orientation angle and then heat-forming them.
JP61005462A 1986-01-13 1986-01-13 Fiber reinforced structure and its manufacture Granted JPS62162519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61005462A JPS62162519A (en) 1986-01-13 1986-01-13 Fiber reinforced structure and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61005462A JPS62162519A (en) 1986-01-13 1986-01-13 Fiber reinforced structure and its manufacture

Publications (2)

Publication Number Publication Date
JPS62162519A JPS62162519A (en) 1987-07-18
JPH0347184B2 true JPH0347184B2 (en) 1991-07-18

Family

ID=11611893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61005462A Granted JPS62162519A (en) 1986-01-13 1986-01-13 Fiber reinforced structure and its manufacture

Country Status (1)

Country Link
JP (1) JPS62162519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140006856A (en) * 2011-02-25 2014-01-16 도레이 카부시키가이샤 Method for producing frp

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166935A (en) * 1987-12-23 1989-06-30 Sumitomo Chem Co Ltd Hybrid tubular structure
JPH0547824Y2 (en) * 1988-08-24 1993-12-16
DE58900355D1 (en) * 1988-08-29 1991-11-14 Geberit Ag PLASTIC PIECE FOR PIPE SYSTEMS.
JP6727008B2 (en) * 2016-04-11 2020-07-22 日本製鉄株式会社 Plate-shaped steel wire reinforced resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140006856A (en) * 2011-02-25 2014-01-16 도레이 카부시키가이샤 Method for producing frp

Also Published As

Publication number Publication date
JPS62162519A (en) 1987-07-18

Similar Documents

Publication Publication Date Title
Wang et al. Polymer matrix composites and technology
Park et al. Element and processing
US4968545A (en) Composite tube and method of manufacture
US4131701A (en) Composite tubular elements
JP2935569B2 (en) High thermal conductivity non-metallic honeycomb
US5601892A (en) Hollow rods with nickel coated graphite fibers
Watts Commercial opportunities for advanced composites
JPH0347184B2 (en)
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
JP2003238698A (en) Fiber-reinforced composite material, fibrous reinforcement for fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JPH09500840A (en) High thermal conductivity non-metallic honeycomb with laminated cell walls
US2613660A (en) Glass fiber-reinforced archery bow
EP0370147B1 (en) Tubular composite construction
JPS6041246B2 (en) Fiber-reinforced plastic propeller shaft
Behera et al. Fiber-reinforced metal matrix nanocomposites
JPH05105773A (en) Plate-like fiber-reinforced composite molded product
JPH0374691B2 (en)
JPH0587122A (en) Fiber reinforced resin roll
JPH02286323A (en) Resin fiber-reinforced composite material
JPH11254562A (en) Tubular body and prepreg
JPH03192129A (en) Heat-insulating support material and container
JPH0587123A (en) Fiber reinforced resin roll
JP3257238B2 (en) Fiber reinforced plastic cylinder
JP3278985B2 (en) FRP cylinder
KR100760168B1 (en) Transport member