Nothing Special   »   [go: up one dir, main page]

JPH0347713A - Composite sheet for fiber-reinforced material - Google Patents

Composite sheet for fiber-reinforced material

Info

Publication number
JPH0347713A
JPH0347713A JP1324078A JP32407889A JPH0347713A JP H0347713 A JPH0347713 A JP H0347713A JP 1324078 A JP1324078 A JP 1324078A JP 32407889 A JP32407889 A JP 32407889A JP H0347713 A JPH0347713 A JP H0347713A
Authority
JP
Japan
Prior art keywords
fibers
composite sheet
sheet
reinforcing
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1324078A
Other languages
Japanese (ja)
Other versions
JPH089164B2 (en
Inventor
Keiichi Haraguchi
慶一 原口
Bungo Goto
後藤 文悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1324078A priority Critical patent/JPH089164B2/en
Priority claimed from CA002010559A external-priority patent/CA2010559C/en
Publication of JPH0347713A publication Critical patent/JPH0347713A/en
Publication of JPH089164B2 publication Critical patent/JPH089164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a composite sheet for a fiber-reinforced material, which is superior in moldability and processability, by a method wherein a quantity of a reinforcing long-sized fiber bundle is of a specific capacity % based on the composite sheet, thermoplastic polymeric fibers are entered into spaces among long-sized fibers constituting a web and entwined each other for unification. CONSTITUTION:A quantity of a reinforcing long-sized fiber bundle within a composite sheet is 5-80vol.%, preferably 30-80vol.%, far preferably 45-70vol.% based on a composite sheet. In the case where the quantity of the reinforcing long-sized fiber bundle is less than 5vol.%, the composite sheet is inferior in strength or the other physical properties and in the case where the quantity of the same exceeds 80vol.%, a void rate becomes high and the same is inferior in the strength and the other physical properties. Then the composite sheet, which is easy in mixing and entwined each other at far larger number of places as compared with fabric or knitting, is obtained by mixing a thermoplastic polymer fiber with the composite sheet under a single fibrous state whose degree of freedom is high. This composite sheet, which does not fall into pieces even if the same is cut into fine pieces, has extremely high shape retension properties and is superior in workability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化材料用複合シートに関する、さらに詳
しくは、強化用長繊維束を含むウェブと熱可塑性重合体
繊維とからなり、繊維強化材料として好適な交絡混合状
態を有し、成形性および加工性に優れた複合シートに関
する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a composite sheet for fiber-reinforced materials, and more specifically, the present invention relates to a composite sheet for fiber-reinforced materials, and more specifically, it is composed of a web containing reinforcing long fiber bundles and thermoplastic polymer fibers, and is made of a composite sheet for fiber-reinforced materials. This invention relates to a composite sheet that has a suitable entangled mixture state and has excellent moldability and processability.

(従来技術〕 近年、強化用繊維を各種マトリックス樹脂により結合し
てなる繊維強化材料は、その優れた特性、例えば、高強
度、高剛性、低比重、高耐疲労性などを有していること
から、幅広い用途が期待され工業的に重要な材料として
注目されている。
(Prior Art) In recent years, fiber-reinforced materials made by bonding reinforcing fibers with various matrix resins have been known to have excellent properties such as high strength, high rigidity, low specific gravity, and high fatigue resistance. Because of this, it is expected to have a wide range of uses and is attracting attention as an industrially important material.

一般に、これら強化用繊維をマトリックス樹脂で結合し
た繊維強化材料を得る場合、樹脂が繊維中に均一に分散
し易く、柔軟で賦形性に優れていることなどのために、
未硬化の状態で流動性に優れた熱硬化性樹脂が一般に使
用されている。
Generally, when obtaining a fiber-reinforced material in which these reinforcing fibers are combined with a matrix resin, the resin is easily dispersed uniformly in the fibers, and is flexible and has excellent shapeability.
Thermosetting resins that have excellent fluidity in an uncured state are generally used.

しかしながら、これら熱硬化性樹脂の硬化反応には、−
船釣に長時間(通常−時間以上)の高温加圧条件が必要
であり、生産性に問題があり、繊維強化材料の一般的な
普及に制限があった。
However, in the curing reaction of these thermosetting resins, -
Boat fishing requires high-temperature and pressurized conditions for a long period of time (usually more than an hour), which poses problems in productivity and limits the general spread of fiber-reinforced materials.

熱硬化性樹脂のかわりに、熱可塑性重合体を用いる試み
がなされている(例えば、特開昭58−29651号公
報)。これら繊維強化材料用に使用されている熱可塑性
重合体は室温において剛性が高く、そのために、単純に
重合体溶液を繊維に含浸後説溶媒する方法、またはシー
ト状フィルムを熱熔融させて繊維中に圧入分散させる方
法が採られる。
Attempts have been made to use thermoplastic polymers instead of thermosetting resins (for example, JP-A-58-29651). The thermoplastic polymers used for these fiber-reinforced materials have high rigidity at room temperature, and for this reason, it is necessary to simply impregnate the fibers with a polymer solution and then add a solvent to the fibers, or to heat-melt a sheet-like film and insert it into the fibers. A method of press-fitting and dispersing is adopted.

しかしながら、上記の方法で得られるプリプレグは、室
温の状態で剛性であり、賦形性に乏しく、無理に曲げた
りすると繊維が切断するので、その使用に制限があった
However, the prepreg obtained by the above method is rigid at room temperature, has poor shapeability, and the fibers break when bent forcibly, so its use is limited.

そこで、賦形性に優れた熱可塑性重合体をマトリックス
とした強化用繊維束のプリプレグの開発が近年盛んに行
われている0例えば、熱可塑性重合体を繊維状にして、
強化用繊維と混ぜることが、特開昭60−56545号
公報および特開昭60−209033号公報に開示され
ている。
Therefore, in recent years, the development of prepreg reinforcing fiber bundles using thermoplastic polymers with excellent formability as a matrix has been actively conducted.
Mixing with reinforcing fibers is disclosed in JP-A-60-56545 and JP-A-60-209033.

特開昭60−56545号公報において、熱可塑性重合
体繊維(以下、FTP繊維」と略す。)と強化用長繊維
は単に繊維束同士を合糸しただけであり、両者の繊維は
均一に混繊していない。この混合物は、強化用長繊維の
単繊維の単繊維切れ等が少なく、後工程において取扱い
に優れてはいるものの、熱溶融成形時に重合体が均一に
強化用長繊維に含浸し難いという欠点がある。
In JP-A No. 60-56545, thermoplastic polymer fibers (hereinafter abbreviated as "FTP fibers") and reinforcing long fibers are simply fiber bundles spliced together, and both fibers are uniformly mixed. Not thin. Although this mixture has fewer single fiber breaks in the reinforcing long fibers and is easy to handle in subsequent processes, it has the disadvantage that it is difficult to uniformly impregnate the reinforcing long fibers with the polymer during hot melt molding. be.

特開昭60−209033号公報においては、溶融熱可
塑性重合体の含浸を容易にするために単繊維同士レベル
で混ぜようと試みている。しかるに、長繊維束(連続フ
ィラメント束)同士を単繊維レベルで混ぜた製品は、ヤ
ーンの状態であり、実用される成形品とするためには、
これをシート状にして、それから所望の繊維方向角度お
よび大きさに切り離し、これらを複数枚積層して、溶融
冷却固化する工程が必要である。特に、積層作業が行え
るようハンドリングを可能にするためにシート状にする
に際し、織物または編物状にする手法が採られる。しか
しながら、織物化工程で、多数本の糸を狭い空間に並べ
て、機械的に何回も往復運動を経るために毛羽が発生し
やすいこと、また、たとえ織物状にしても、強化用長繊
維束を織物状に保持している力は、−束の強化用長繊維
束と直角に交わる強化用長繊維束との摩擦力であり、切
断後の端面ば、この摩擦力が働かず、糸こぼれを必ず起
こすこと、糸こぼれを起こした強化用長繊維束は、一般
に強度を上げるために無撚状態であるので、−本として
まとまる力が働かず、わずかな力で単繊維に分離、浮遊
して、人体に刺さるなどして、工程上問題点が多かった
In JP-A-60-209033, an attempt is made to mix single fibers with each other in order to facilitate impregnation with a molten thermoplastic polymer. However, products made by mixing long fiber bundles (continuous filament bundles) at the level of single fibers are in the form of yarn, and in order to make a molded product for practical use,
It is necessary to form this into a sheet, cut it into desired fiber orientation angles and sizes, laminate a plurality of sheets, and then melt, cool, and solidify. In particular, in order to make it into a sheet so that it can be handled for lamination work, a method is adopted in which it is made into a woven or knitted fabric. However, in the weaving process, many yarns are lined up in a narrow space and undergo mechanical reciprocating motion many times, so fuzz is likely to occur. The force that holds it in a woven form is the frictional force between the reinforcing long fiber bundle and the reinforcing long fiber bundle that intersects at right angles to the reinforcing long fiber bundle, and this frictional force does not work on the end surface after cutting, and the yarn spills. Since reinforcing long fiber bundles that cause yarn spillage are generally untwisted to increase their strength, there is no force to hold them together, and they separate into single fibers with a slight force and float. There were many problems in the process, such as the needle sticking to the human body.

更に、後述するように、強化用長繊維束は、衣料用繊維
に比べて、一般的に太い束として生産され、しかもコン
ポジットにしたとき強度および剛性が要求されるので、
無撚で、且つ織り密度を15本/ cm以下、好ましく
は8本/ cm以下にして、糸の屈曲を少なくするよう
にして織られている。そのために、円形に近い単純な多
角形に切り込む時はシートとして比較的容易に扱えるが
、オツ型に切り込むような複雑な形になると、バラバラ
になりシートとしての取扱いが非常に困難になる。
Furthermore, as will be described later, reinforcing long fiber bundles are generally produced as thicker bundles than clothing fibers, and when made into a composite, strength and rigidity are required.
It is woven without twisting and with a weaving density of 15 threads/cm or less, preferably 8 threads/cm or less, to reduce bending of the threads. Therefore, when it is cut into a simple polygon close to a circle, it can be handled relatively easily as a sheet, but when it is cut into a complicated shape, such as an oval shape, it falls apart and becomes extremely difficult to handle as a sheet.

強化用長繊維と熱可塑性重合体長繊維を合わせ引き揃え
て経糸とし、熱可塑性重合体長繊維のみを緯糸として平
織シートにする方法(特開昭60−28543号公報)
、および強化用長繊維束が熱可塑性重合体繊維に巻き込
まれた状態で編成されている編物を製造する方法(特開
昭60−45362号公報)が提案されている。しかし
ながら、これらの平織シートおよび編物においては、熱
可塑性重合体繊維と強化用長繊維とが均一に混じり合っ
ておらず、得られるコンポジットは機械的強度、特に強
化用長繊維束に直交する方向の引張強度に劣る。
A method in which reinforcing long fibers and thermoplastic polymer long fibers are combined and aligned to form a warp, and only the thermoplastic polymer long fibers are used as a weft to form a plain weave sheet (Japanese Patent Application Laid-Open No. 60-28543).
, and a method for producing a knitted fabric in which reinforcing long fiber bundles are wound around thermoplastic polymer fibers (Japanese Unexamined Patent Publication No. 60-45362) has been proposed. However, in these plain woven sheets and knitted fabrics, the thermoplastic polymer fibers and the reinforcing long fibers are not uniformly mixed, and the resulting composite has poor mechanical strength, especially in the direction perpendicular to the reinforcing long fiber bundles. Poor tensile strength.

さらに、強化用短繊維と熱可塑性重合体短繊維を混合し
てシート状にした製品も提案されている(特公昭62−
1969号公報)。これは、強化用繊維が短繊維で、し
かも繊維の方向がランダムに配置されていて、強化用長
繊維からなるシートと比較して強化用繊維同士が交差す
る割合が非常に多く、この交差部に多量の空間を必要と
し、そのために強化用繊維の充填量に限界があること、
および当然のことながら短繊維では強化効果が劣るとい
う問題点があり、高性能を要求される用途には使用に著
しい制限があった。
Furthermore, a sheet-shaped product made by mixing reinforcing short fibers and thermoplastic polymer short fibers has also been proposed (Japanese Patent Publication No. 1986-
Publication No. 1969). This is because the reinforcing fibers are short fibers, and the direction of the fibers is randomly arranged, and compared to a sheet made of long reinforcing fibers, the reinforcing fibers intersect with each other at a much higher rate. requires a large amount of space, which limits the amount of reinforcing fibers that can be filled;
As a matter of course, short fibers have the problem of poor reinforcing effect, which severely limits their use in applications requiring high performance.

さらに、上記シート状製品においては、繊維は混合され
てはいるが、交絡一体化されていないことから、特に乾
燥すると強化用繊維が非常に分離し易く、取扱中に作業
者に付着して刺さること、また、たとえ熱融着、接着剤
での接着を試みても、柔軟性のコントロールが困難で、
接着しすぎると柔軟性がなくなるという欠点があった。
Furthermore, in the above-mentioned sheet-like products, the fibers are mixed, but not intertwined and integrated, so the reinforcing fibers are very easy to separate, especially when dried, and can stick to and sting workers during handling. Also, even if you try to bond with heat fusion or adhesive, it is difficult to control the flexibility.
There was a drawback that if too much adhesive was applied, flexibility would be lost.

加えて、上記シート状製品は、乾燥後の嵩密度が非常に
低く、プレス金型に挿入する際、ストロークを長くとら
なければならないとか、オートクレーブ成形をする際、
バギングフィルムがシワになり、成形品表面に残るとい
った欠点もあり、一般的な普及には至っていない。
In addition, the above-mentioned sheet-like products have a very low bulk density after drying, so when inserting them into a press mold, a long stroke is required, and when performing autoclave molding,
There are also drawbacks such as the bagging film wrinkles and remains on the surface of the molded product, so it has not been widely used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のような状況から、強化用長繊維とTP織繊維混合
シートに関し、側繊維が良く混合され、交絡一体化され
た材料はこれまで見出されておらず、この開発が強く望
まれていた。
Based on the above circumstances, regarding the reinforcing long fiber and TP woven fiber mixed sheet, a material in which the side fibers are well mixed and intertwined has not been found so far, and the development of this material has been strongly desired. .

本発明の目的は、かかる要望を充足し、繊維同志が均一
に混合され、交絡一体化している成形性および加工性に
優れた繊維強化材料用複合シートを提供するにある。
It is an object of the present invention to provide a composite sheet for fiber-reinforced materials that satisfies such demands and has excellent moldability and processability, in which fibers are uniformly mixed and intertwined and integrated.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、強化用長繊維束を含んでなるウェブと単繊維
状の熱可塑性重合体繊維とからなる複合シートであって
、該強化用長繊維束の量が複合シートに基づき5〜80
容量%であり、該熱可塑性重合体繊維が上記ウェブを構
成する長繊維の間に入り混んで交絡一体化していること
を特徴とする繊維強化材料用複合シートを提供する。
The present invention provides a composite sheet comprising a web containing reinforcing long fiber bundles and monofilament thermoplastic polymer fibers, wherein the amount of the reinforcing long fiber bundles is 5 to 80% based on the composite sheet.
% by volume, and the thermoplastic polymer fibers are entangled and integrated among the long fibers constituting the web, to provide a composite sheet for a fiber reinforced material.

上記繊維強化材料用複合シートは、強化用長繊維束を含
んでなるウェブに熱可塑性重合体繊維を単繊維状に堆積
または含有させて、流体噴流を当てて、上記ウェブを構
成する長繊維の間に該熱可塑性重合体繊維を入り込ませ
交絡一体化する方法によって製造することができる。
The above-mentioned composite sheet for fiber-reinforced materials is produced by depositing or containing thermoplastic polymer fibers in the form of single fibers in a web containing reinforcing long-fiber bundles, and applying a fluid jet to the long-fiber fibers constituting the web. It can be produced by interlacing and integrating the thermoplastic polymer fibers between the fibers.

本発明においては、強化用長繊維束が用いられる。一般
に、強化用繊維は単位断面積当たりの強度は高いものの
、剛性が高く伸度が15%以下なので、細い単繊維状で
は非常に弱いために、束の状態で生産される。そして、
この束を、複数本平行に揃えたり、織ったり、編んだり
してシート状に加工されて使用される0本発明は、この
様なシート状の強化用長繊維ウェブについて適用するも
のである。
In the present invention, a reinforcing long fiber bundle is used. Generally, reinforcing fibers have high strength per unit cross-sectional area, but are highly rigid and have an elongation of 15% or less, so they are very weak in the form of thin single fibers, so they are produced in bundles. and,
A plurality of these bundles are arranged in parallel, woven, or knitted to form a sheet and used.The present invention is applied to such a sheet-like reinforcing long fiber web.

本発明でいう「ウェブ」とは、形状保持力があっても無
くても、平面状になっている繊維の集合体をいい、また
、「シート」とは、形状保持力のある平面状の繊維の集
合体をいう特に本発明ではシートとは幅と厚さとの比が
2以上、好ましくは6以上のものを指す。
In the present invention, the term "web" refers to a flat aggregate of fibers with or without shape retention, and the term "sheet" refers to a flat fiber assembly with shape retention. Specifically, in the present invention, a sheet refers to an aggregate of fibers, and refers to a sheet having a width-to-thickness ratio of 2 or more, preferably 6 or more.

本発明において、ウェブとしては、強化用長繊維束を一
方向に引き揃えたウェブ、ならびに平織、朱子織などの
織物状シートおよび編物状シートが用いられる。特に、
織り密度が15本/(1以下、より好ましくは8本/ 
cm以下の織物シート、ならびに強化用長繊維束を一方
向に引き揃えたウェブ(以下、rUDウェブ」と略する
)はより好ましい。これらは、成形品に必要な方向の強
度および剛性を効果的に与えることができるからである
In the present invention, as the web, a web in which reinforcing long fiber bundles are aligned in one direction, a woven sheet such as a plain weave or a satin weave, and a knitted sheet are used. especially,
Weaving density is 15/(1 or less, more preferably 8/
Fabric sheets of cm or less in size and webs in which reinforcing long fiber bundles are aligned in one direction (hereinafter abbreviated as "rUD web") are more preferable. This is because these can effectively provide the molded product with strength and rigidity in the necessary directions.

中でも、UDウェブが最良である。UDウェブを構成す
る強化用長繊維束は個々の長繊維が一方向に揃っていて
強化用長繊維同士が交絡していないものが好ましい。そ
の交絡の有無は、複合シートから熱可塑性重合体繊維の
みを溶媒で抽出除去すれば容易に観察することができる
Among them, UD Web is the best. In the reinforcing long fiber bundle constituting the UD web, it is preferable that the individual long fibers are aligned in one direction and the reinforcing long fibers are not intertwined with each other. The presence or absence of entanglement can be easily observed by extracting and removing only the thermoplastic polymer fibers from the composite sheet using a solvent.

UDウェブが繊物シートより優る理由は次のとおりと考
えられる。織物では経糸と緯糸の交差部で糸が屈曲し、
この屈曲によって強化用長繊維束が結束するため、コン
ポジットにした場合、強化用長繊維がコンポジット中で
均一に分散せず、応力集中が起こり、機械的性質に劣る
。また、経糸間もしくは緯糸間の境界がはっきりしてい
るため、コンポジットにしたとき、強化用長繊維の方向
に伸びる熱可塑性重合体リッチな部分ができ、コンポジ
ットの強化用長繊維に直交する方向の強度が劣る結果と
なる。
The reason why the UD web is superior to the fiber sheet is considered to be as follows. In textiles, the threads bend at the intersection of the warp and weft,
Since the reinforcing long fiber bundles are bundled by this bending, when a composite is made, the reinforcing long fibers are not uniformly dispersed in the composite, stress concentration occurs, and the mechanical properties are poor. In addition, because the boundaries between the warp or weft are clear, when made into a composite, a thermoplastic polymer-rich part is created that extends in the direction of the reinforcing long fibers, and the direction perpendicular to the reinforcing long fibers of the composite. This results in poor strength.

本発明でいう「強化用長繊維」とは、繊維強化材料に用
いられる実質的に連続した繊維をいうが、例えば、炭素
繊維、ガラス繊維、アラミド繊維、炭化ケイ素繊維、ボ
ロン繊維、金属繊維、ポリベンゾチアゾール繊維、ポリ
ベンゾオキサゾール繊維、アルミナ繊維が挙げられる。
The term "reinforcing long fibers" as used in the present invention refers to substantially continuous fibers used in fiber-reinforced materials, such as carbon fibers, glass fibers, aramid fibers, silicon carbide fibers, boron fibers, metal fibers, Examples include polybenzothiazole fiber, polybenzoxazole fiber, and alumina fiber.

強化用長繊維としては、マルチフィラメントの他、紡績
糸のように単繊維としては連続でないが、実質的に連続
した繊維として扱えるものも含まれる。中でも、強度お
よび弾性率が複合材にしたときに高(なるので、無撚の
連続フィラメントが好ましく使用される。
In addition to multifilaments, the reinforcing long fibers include those such as spun yarn, which are not continuous as single fibers but can be treated as substantially continuous fibers. Among these, untwisted continuous filaments are preferably used because they have high strength and elastic modulus when made into a composite material.

本発明では、熱可塑性重合体繊維を加熱溶融させる工程
において実質的に熔融せず、冷却固化後において強化機
能を示す繊維であれば、熱可塑性重合体長繊維を強化用
長繊維として用いることもできる0例えば、液晶性熱可
塑性重合体長繊維、超高分子量ポリエチレン繊維、ポリ
ビニルアルコール繊維およびレーヨンその他のセルロー
ス系1a維を挙げることができる。強化用長繊維の中で
も弾性率3000kg / mff12以上、特に50
00kg/圓2以上で、かつ、引張強度が100kg/
mm”以上の繊維が好ましい。かかる強化用長繊維とし
ては、炭素繊維およびアラミド繊維が挙げられる。
In the present invention, thermoplastic polymer long fibers can also be used as reinforcing long fibers as long as they do not substantially melt in the step of heating and melting the thermoplastic polymer fibers and exhibit a reinforcing function after cooling and solidifying. Examples include liquid crystalline thermoplastic polymer long fibers, ultra-high molecular weight polyethylene fibers, polyvinyl alcohol fibers, and rayon and other cellulose-based 1a fibers. Among long reinforcing fibers, elastic modulus is 3000kg/mff12 or more, especially 50
00kg/round 2 or more, and tensile strength is 100kg/
Fibers with a diameter of 2 mm or more are preferred. Examples of such reinforcing long fibers include carbon fibers and aramid fibers.

これらの強化用長繊維は、コンポジット化に際し加熱溶
融時に熱可塑性重合体繊維熔融体の含浸を容易にするた
め、柔軟性を失わないようその単繊維表面が熱可塑性重
合体でコーティングされていることが好ましい。
These reinforcing long fibers must be coated with a thermoplastic polymer on the surface of the single fibers so as not to lose flexibility, in order to facilitate impregnation with the thermoplastic polymer fiber melt during heating and melting during composite formation. is preferred.

本発明でいう強化用長繊維束を含んでなるウェブとして
は、強化用長繊維束のみからなるウェブ、ならびに強化
用長繊維束と熱可塑性重合体繊維および/または熱可塑
性重合体粒子とからなるウェブが含まれる0強化長繊維
束のウェブ中に熱可塑性重合体の繊維や粒子を含有せし
める操作は、複合シート化の前後どの工程でなされても
よいが、熱可塑性重合体繊維の場合は複合シート化の前
におこなわれ、熱可塑性重合体粒子の場合は複合シート
化の後におこなわれる。これらの熱可塑性重合体の繊維
や粒子の混合により、強化用長繊維への熱可塑性重合体
の含浸がより容易になる。このウェブに含有せしめても
よい繊維状または粒子状の熱可塑性重合体と、単繊維状
の熱可塑性重合体とは、溶融含浸冷却後の材料物性に悪
影響がないかぎり、同一でなくても良いが、同一である
ことが好ましい。
The web comprising a reinforcing long fiber bundle as used in the present invention includes a web comprising only a reinforcing long fiber bundle, and a web comprising a reinforcing long fiber bundle and thermoplastic polymer fibers and/or thermoplastic polymer particles. The operation of incorporating thermoplastic polymer fibers or particles into the zero-reinforced long fiber bundle containing the web may be performed at any step before or after forming a composite sheet, but in the case of thermoplastic polymer fibers, This is done before forming into a sheet, and in the case of thermoplastic polymer particles, after forming into a composite sheet. By mixing these thermoplastic polymer fibers and particles, it becomes easier to impregnate the reinforcing long fibers with the thermoplastic polymer. The fibrous or particulate thermoplastic polymer that may be contained in this web and the monofilament thermoplastic polymer do not have to be the same, as long as there is no adverse effect on the physical properties of the material after melt impregnation and cooling. are preferably the same.

複合シート中の強化用長繊維束の量は複合シートに基づ
き5〜80容量%、好ましくは30〜80容量%、より
好ましくは45〜70容量%である。強化用長繊維束の
量が5容量%未満では強度その他の物性に劣り、また、
強化用長繊維束の量が80容量%を超えるとボイド率が
高くなって、やはり強度その他の物性に劣る。
The amount of reinforcing long fiber bundles in the composite sheet is 5 to 80% by volume, preferably 30 to 80% by volume, more preferably 45 to 70% by volume, based on the composite sheet. If the amount of reinforcing long fiber bundles is less than 5% by volume, strength and other physical properties will be poor;
If the amount of the reinforcing long fiber bundle exceeds 80% by volume, the void ratio will be high and the strength and other physical properties will be inferior.

本発明でいう「熱可塑性重合体繊維J  (TP織繊維
とは、熱可塑性重合体に熱または溶媒を適用して公知の
手段によって紡糸し、繊維化したものを指し、繊維の形
態は格別限定されるものではなく、狭義の繊維のほかり
ボン状のものも含む。
In the present invention, "thermoplastic polymer fiber J (TP woven fiber) refers to a material obtained by applying heat or a solvent to a thermoplastic polymer and spinning it into fibers by known means, and the form of the fiber is particularly limited. It does not include fibers in the narrow sense, but also includes fibers.

「熱可塑性重合体」とは、重合体の分解温度以下の温度
で流動する重合体を指す。熱可塑性重合体としては、例
えば、ポリオレフィン類、熱可塑性ポリエステル類、熱
可塑性ポリアミド類、アクリル樹脂類、ポリオキシメチ
レン、ポリカーボネート、ポリフェニレンエーテル、ポ
リスチレン類、ポリフェニレンサルファイド、ポリエー
テル、エーテルケトン、ポリエーテルケトン、ポリエー
テルイミド、ポリエーテルケトンォン、熱可塑性ポリア
ミドイミド、フッ素樹脂類などのポリマー類または、こ
れらのコポリマー類を挙げることができる。これらは繊
維中でアロイになっていても良いし、複合シートの物性
を損なわない限り2種以上の熱可塑性重合体繊維が使用
されても良い。
"Thermoplastic polymer" refers to a polymer that flows at temperatures below the decomposition temperature of the polymer. Examples of thermoplastic polymers include polyolefins, thermoplastic polyesters, thermoplastic polyamides, acrylic resins, polyoxymethylene, polycarbonate, polyphenylene ether, polystyrenes, polyphenylene sulfide, polyether, ether ketone, and polyether ketone. , polyetherimide, polyetherketone, thermoplastic polyamideimide, fluororesins, or copolymers thereof. These may be alloyed in the fibers, or two or more types of thermoplastic polymer fibers may be used as long as the physical properties of the composite sheet are not impaired.

本発明でいう「単繊維状」とは、繊維が織られたり編ま
れて布状になっているものでな(、例えば、短繊維をラ
ンダムまたは一方向もしくは多方向に配置して、単繊維
に自由度がある状態で不織布状にしたものであったり、
長繊維をスワール状に配置して自由度をあたえて不織布
状にしたものである。
In the present invention, "monofilament" does not mean that the fibers are woven or knitted to form a cloth (e.g., short fibers are arranged randomly or in one direction or in multiple directions to form a monofilament). It is made into a non-woven fabric with a degree of freedom,
It is made into a non-woven fabric by arranging long fibers in a swirl shape to give it flexibility.

本発明において熱可塑性重合体繊維を自由度が大きい単
繊維状で混合することにより、混合が容易であって、織
物、績み物に比べはるかに多数の地点で交絡された複合
シートが得られる。この複合シートは細断してもバラバ
ラにならず、形態保持性能が著しく大きく、作業性に優
れている。
In the present invention, by mixing thermoplastic polymer fibers in the form of single fibers with a large degree of freedom, a composite sheet can be obtained that is easy to mix and is entangled at a far greater number of points than woven or knitted materials. . This composite sheet does not fall apart even when shredded, has extremely high shape retention performance, and is excellent in workability.

単繊維状の熱可塑性重合体繊維の配合量は格別限定され
るものではなく、着色性、粘着性、耐酸化性、平滑性、
易含浸性を向上する目的のために、TPフィルムおよび
熱硬化性樹脂を併用したり、強化用繊維の表面に樹脂を
コートした場合には広い範囲で変えることができる。し
かしながら、その配合量は、一般に、複合シートに基づ
き0.1容量%以上、好ましくはl容量%以上である。
The blending amount of the monofilament thermoplastic polymer fiber is not particularly limited, and is determined based on colorability, adhesiveness, oxidation resistance, smoothness,
For the purpose of improving easy impregnability, when a TP film and a thermosetting resin are used together, or when the surface of reinforcing fibers is coated with a resin, it can be varied within a wide range. However, the amount incorporated is generally at least 0.1% by volume, preferably at least 1% by volume, based on the composite sheet.

0.1容量%未満では得られる複合シートは形態保持性
を欠く。特に、ボイド率が5%以下で高強度で高弾性率
の繊維強化材料とするためには20〜95容量%が好ま
しく、特にボイド率が1%以下でより高強度で高弾性率
とするには30〜70容量%、特に30〜55容量%が
好ましい。
If the amount is less than 0.1% by volume, the resulting composite sheet will lack shape retention. In particular, in order to obtain a fiber-reinforced material with high strength and high elastic modulus with a void ratio of 5% or less, 20 to 95 volume % is preferable. is preferably 30 to 70% by volume, particularly 30 to 55% by volume.

TP織繊維断面径は、強化用繊維の断面径と比べて、極
端に太くなく、柔軟性があり自由に屈曲できる程度の太
さであれば良い。好ましくは、強化用繊維の断面径の1
0倍以下であり、さらに好ましくは5倍以下である。混
合性と形態保持性を調整するために太さの異なる2種以
上のTP織繊維使っても良い。
The cross-sectional diameter of the TP woven fibers may be not extremely thick compared to the cross-sectional diameter of the reinforcing fibers, but may be a thickness that is flexible and can be freely bent. Preferably, the cross-sectional diameter of the reinforcing fiber is 1
It is 0 times or less, more preferably 5 times or less. Two or more types of TP woven fibers with different thicknesses may be used to adjust mixability and shape retention.

本明細書においてrTP長繊維の自由度」とは、TP長
繊維が機械的作用を受けた時繊維が切断しないで強化用
長繊維の中に潜り込めるゆとりをいう、より具体的には
、シート状になっているある一本の連続単繊維のある一
点(A点とする)に着目する。この連続単繊維がA点を
中心とする半径5C1の円を横切る2つの点をB点とす
る。一方のB点から他のB点に至る連続単繊維の長さを
、繊維を直線状に伸ばした状態で測定し、その長さを1
0cmで除したときの値を自由度と定義する。
In this specification, the term "freedom of the rTP long fibers" refers to the degree of freedom of the rTP long fibers that allows the fibers to sneak into the reinforcing long fibers without being cut when the TP long fibers are subjected to mechanical action. Focus on one point (referred to as point A) of a single continuous filament that has a shape. The two points where this continuous single fiber crosses a circle with a radius of 5C1 centered on point A are designated as point B. The length of the continuous single fiber from one point B to the other point B is measured with the fiber stretched in a straight line, and the length is 1
The value when divided by 0 cm is defined as the degree of freedom.

本発明で用いるTP長繊維め自由度は、混合のし易さか
ら、好ましくは1.2以上、さらに好ましくは1.5以
上、より好ましくは3.0以上である。
The degree of freedom of the TP long fibers used in the present invention is preferably 1.2 or more, more preferably 1.5 or more, and even more preferably 3.0 or more, from the viewpoint of ease of mixing.

本発明でいう熱可塑性重合体短繊維とは、長さが100
cm以下でL/D (繊維の長さしを、繊維の径りで除
した値)が1ooo万以下の繊維をいう、好ましくは長
さが10cm以下で、L/Dが100万・以下である。
The short thermoplastic polymer fibers used in the present invention have a length of 100 mm.
cm or less and L/D (the value obtained by dividing the length of the fiber by the diameter of the fiber) is 100,000 or less. Preferably, the length is 10 cm or less and the L/D is 1,000,000 or less. be.

特に好ましくは、30mm以下の長さの繊維が自由度が
高く、混合交絡しやすいので特に好ましい、もちろん、
上記以上の長さの繊維でも形態的(例えばクリンプをつ
けるとか、スワール状に堆積させることによる。)に大
きな自由度を与えることにより、好適に用いることがで
きる。また、繊維長の下限としては、L/Dとして、5
以上、好ましくは50以上、さらに好ましくは、交絡と
形態保持のしやすさから100以上である。さらに、絶
対的長さとしては、強化繊維の径の10倍以上、好まし
くは、形態保持しやすさから、50倍以上である。
Particularly preferably, fibers with a length of 30 mm or less have a high degree of freedom and are easy to mix and entangle.
Fibers with lengths longer than the above can also be suitably used by providing a large degree of freedom in terms of morphology (for example, by crimping or depositing them in a swirl shape). In addition, the lower limit of the fiber length is 5 as L/D.
The number is preferably 50 or more, and more preferably 100 or more for ease of entanglement and shape retention. Further, the absolute length is 10 times or more the diameter of the reinforcing fiber, preferably 50 times or more for ease of shape retention.

本発明でいう「交絡」とは、TP織繊維9強化用長繊維
の束に入り込んで、両者が立体的に混合した状態を指し
、好ましくは、強化用長繊維束の中にTP織繊維一本一
本の単繊維の大部分が侵入する形で交絡している。また
、「一体化している」とは、TP織繊維単繊維が相互に
および強化用長繊維に絡んで、自重で脱離しないような
束ばく状態にあることを指す。一体化のためにはTP織
繊維少なくとも、強化用長繊維束と異なる方向に配置さ
れていることが好ましい、さらに具体的に説明すると、
シート全体を取り扱うに際し、シートから内径10cm
、外径11CIIのドーナツ状試料を切り出し、その−
カ所を指二本で挟んで持ち上げたとき、ドーナツ形状を
保持できていることを一体化しているという。
"Entanglement" as used in the present invention refers to a state in which the TP woven fibers 9 enter into a bundle of reinforcing long fibers and are mixed three-dimensionally. Most of the single fibers in each book are intertwined in an interstitial manner. Moreover, "integrated" refers to a state in which the TP woven fiber single fibers are entwined with each other and the reinforcing long fibers and are in a bundled state in which they do not come off under their own weight. For integration, it is preferable that at least the TP woven fibers are arranged in a direction different from that of the reinforcing long fiber bundles.More specifically,
When handling the entire sheet, use an inner diameter of 10 cm from the sheet.
, a donut-shaped sample with an outer diameter of 11 CII was cut out, and its -
One of the key features of the product is that it retains its donut shape when held between two fingers and lifted.

特に一方向強化用長繊維束でいう一体化とは、シート全
体を取り扱うに際し、シートの一部をつかんで、全体を
取り扱える程度以上の一体化ができていることであり、
さらに、具体的には、一方向強化用長繊維束シー) (
UDレシートの場合、強化用繊維方向に対して直角方向
の引張強度が8g/c−以上、好ましくは50g/c4
以上、さらに好ましくは200g/cd以上である。
In particular, in the case of unidirectional reinforcing long fiber bundles, integration means that when handling the entire sheet, it is possible to grasp a part of the sheet and handle it as a whole.
Furthermore, specifically, unidirectional reinforcement long fiber bundle sea) (
In the case of UD receipt, the tensile strength in the direction perpendicular to the reinforcing fiber direction is 8 g/c or more, preferably 50 g/c
Above, more preferably 200 g/cd or above.

この一体化がなされていると、細かくて複雑な形状に切
断しても、バラバラにならず、積層作業、金型などへの
セット作業などが容易にできる。
If this integration is achieved, even when cut into fine and complex shapes, they will not fall apart, making it easier to stack them, set them into molds, etc.

さらに、予想外の効果として、TP織繊維強化用繊維方
向に整列しておらず、溶融冷却固化させた時に、TP高
分子が三次元的にランダムになっていると推定され、そ
のため、強化用繊維方向に直交する方向の強度が高い、
特に、熱可塑性芳香族系ポリエステル樹脂のように、溶
融状態で液晶性を示し、冷却固化時に液晶の配向方向に
よって著しい異方性を示す液晶性熱可塑性重合体繊維を
用いると直角方向の強度が著しく高い強化材料が得られ
る。
Furthermore, as an unexpected effect, it is estimated that the TP polymers are not aligned in the direction of the reinforcing fibers and are three-dimensionally random when melted, cooled, and solidified. High strength in the direction perpendicular to the fiber direction,
In particular, when using liquid crystalline thermoplastic polymer fibers, such as thermoplastic aromatic polyester resins, which exhibit liquid crystallinity in the molten state and exhibit significant anisotropy depending on the orientation direction of the liquid crystal upon cooling and solidification, the strength in the perpendicular direction increases. A significantly higher reinforcement material is obtained.

さらに、剛直な強化用長繊維を密に揃えることによって
、嵩密度が上り、引き抜きダイスへの挿入が簡単になる
とか、プレス金型の充填が容易になるとか、オートクレ
ーブ成形時における加工前後の体積変化が小さくなるこ
とから、バギングフィルムの縮みによるシワが少な(な
るという効果がある。複合シートの嵩密度は好ましくは
0. l gZC−以上、特に好ましくは0.3 g 
/cd以上である。
Furthermore, by closely arranging the rigid reinforcing long fibers, the bulk density increases, making it easier to insert into a drawing die, making it easier to fill a press mold, and improving the volume before and after processing during autoclave molding. Since the change is small, wrinkles due to shrinkage of the bagging film are reduced.The bulk density of the composite sheet is preferably 0.1 gZC- or more, particularly preferably 0.3 g.
/cd or more.

本発明の複合シートにおいては、剛性、流動性、着色性
、耐酸化性、潤滑性、層間接着強度、その他の性能を向
上するために、無機、有機フィラーウィスカー、顔料、
可塑剤等を必要に応じて1種以上を含有させても良い、
特に強化用長繊維束と直交する方向の強度および弾性率
を向上するために、気相法炭素短繊維、チタン酸カリウ
ムウィスカー、炭化珪素ウィスカー等のウィスカーを複
合シートに基づき0.1〜20容量%含有させたものは
有用である。
In the composite sheet of the present invention, inorganic or organic filler whiskers, pigments,
One or more types of plasticizers etc. may be included as necessary.
In particular, in order to improve the strength and elastic modulus in the direction orthogonal to the reinforcing long fiber bundle, whiskers such as vapor-grown short carbon fibers, potassium titanate whiskers, and silicon carbide whiskers are added to the composite sheet at a capacity of 0.1 to 20%. % is useful.

次に、本発明の複合シートの製造方法について説明する
0本発明の複合シートを得る方法は、特に限定されるも
のではないが、好ましくは、強化用長繊維束を含んでな
るウェブに熱可塑性重合体の短繊維または長繊維を単繊
維状に堆積または含有させて、流体噴流を当てて上記ウ
ェブを構成する長繊維の間に該熱可塑性重合体繊維を入
り込ませ交絡一体化する方法が採られる。
Next, the method for producing the composite sheet of the present invention will be explained. The method for obtaining the composite sheet of the present invention is not particularly limited, but preferably, the web containing reinforcing long fiber bundles is coated with thermoplastic resin. A method is adopted in which short or long polymer fibers are deposited or contained in the form of single fibers, and a fluid jet is applied to intertwine the thermoplastic polymer fibers between the long fibers constituting the web to intertwine and integrate them. It will be done.

熱可塑性重合体は、湿式紡糸、乾式紡糸、溶融紡糸のい
ずれの方法によって繊維化してもよく、各々の樹脂に応
じて選ばれる。熱可塑性重合体の短繊維を使用する好ま
しい具体例においては、熱可塑性重合体の紡出繊維を切
断または牽引して短繊維化し、この短繊維を液中に分散
せしめ、分散体を抄紙して繊維がランダムに配向せるT
P短繊維ウェブを得る。一方、強化用長繊維束を一方向
に多数本引き揃えたウェブを用意し、このウェブとTP
短繊維ウェブとを積層する。また、熱可塑性重合体の長
繊維を使用する好ましい具体例においては、熱可塑性重
合体を加熱溶融して、強化用長繊維束を一方向に多数本
引き揃えたウェブの長繊維方向に対して直角方向に強制
的に揺動させている紡孔に注入して繊維化し、さらに、
気体流を紡孔に当て、糸を延伸しながら、強化用長繊維
束のウェブ上に振り落として、シート状となし、積層す
る。
The thermoplastic polymer may be made into fibers by any of wet spinning, dry spinning, and melt spinning, and is selected depending on each resin. In a preferred embodiment using short fibers of a thermoplastic polymer, the spun fibers of the thermoplastic polymer are cut or pulled into short fibers, the short fibers are dispersed in a liquid, and the dispersion is made into paper. T where the fibers are randomly oriented
A P short fiber web is obtained. On the other hand, a web in which many reinforcing long fiber bundles are aligned in one direction is prepared, and this web and TP
A short fiber web is laminated. Further, in a preferred specific example using long fibers of a thermoplastic polymer, the thermoplastic polymer is heated and melted, and a large number of reinforcing long fiber bundles are aligned in one direction. It is injected into a spindle that is forcibly oscillated in the right angle direction to form fibers, and
A gas stream is applied to the spinning holes, and while the yarn is stretched, it is shaken off onto the web of reinforcing long fiber bundles to form a sheet, which is then laminated.

次いで、TP短繊維または長繊維のシートと強化用長繊
維束のウェブとの積層体に流体噴流による機械的作用力
をあたえる。すなわち、このTP繊維シートと強化用長
繊維束のウェブを二層、三層または四層以上(強化用繊
維の配置方向を変えたり、種類を変えたりして積層する
ゲースもある)に積層して、このシートの面に対して直
角方向から貫くように流体噴流の作用力を働かせて、T
P織繊維強化用長繊維束のウェブに埋め込まれ、個々の
強化用繊維に絡み合うようにして、一体化した複合シー
トを得る。流体噴流を作用させて絡ませる方法は、強化
用長繊維が切れにくいこと、剛直な強化長繊維同士が混
合せず得られた混合シートの嵩密度が高いので好ましい
Next, a mechanical force is applied by a fluid jet to the laminate of the sheet of TP short fibers or long fibers and the web of reinforcing long fiber bundles. That is, this TP fiber sheet and a web of reinforcing long fiber bundles are laminated in two, three, or four or more layers (there are also cases in which the reinforcing fibers are laminated by changing the direction or type of the reinforcing fibers). Then, the force of the fluid jet is applied so as to penetrate from the direction perpendicular to the surface of this sheet, and the T
The P-woven fibers are embedded in a web of reinforcing long fiber bundles and intertwined with individual reinforcing fibers to obtain an integrated composite sheet. The method of entangling the reinforcing fibers by applying a fluid jet is preferable because the reinforcing long fibers are difficult to break and the mixed sheet obtained without mixing the rigid reinforcing long fibers has a high bulk density.

ここで用いる流体噴流は、高圧にした流体を礼状もしく
はスリット状のオリフィスをもつノズルを介して大気圧
に放出することにより得られる。
The fluid jet used here is obtained by discharging high-pressure fluid to atmospheric pressure through a nozzle having a bow or slit-like orifice.

流体の圧力やノズルのオリフィスの大きさは、ノズルの
位置および方向等に依存して変るが、一般に、圧力とし
て3kg/C111〜400kg/c這のものが好適に
使用され、ノズルとしては孔径が0.05〜2 mmの
ものが好適に使用される。
The pressure of the fluid and the size of the orifice of the nozzle vary depending on the position and direction of the nozzle, but in general, a pressure of 3 kg/C to 400 kg/C is preferably used, and the pore diameter of the nozzle Those with a diameter of 0.05 to 2 mm are preferably used.

使用される流体は格別限定されるものではなく、液体、
気体、液体混合気体、固体混合液体、固体混合気体など
のいずれでもよいが、繊維に大きな機械的混合作用を与
える必要があるために、密度の高いものが好ましい。具
体的には、密度0.1 g/ cff1以上が好ましい
。入手し易さおよび安全性から、−船釣には、水が用い
られる。流体噴流で処理しているときは、運動エネルギ
ーを失った流体を真空吸引等の手段で速やかに取り去る
ことが好ましい。
The fluids used are not particularly limited, and include liquids,
It may be a gas, a liquid/gas mixture, a solid/liquid mixture, a solid/gas mixture, etc., but it is preferable to use one with a high density because it is necessary to impart a large mechanical mixing effect to the fibers. Specifically, the density is preferably 0.1 g/cff1 or more. Water is used for boat fishing because of availability and safety. When processing with a fluid jet, it is preferable to quickly remove the fluid that has lost kinetic energy by means such as vacuum suction.

勿論、一方向に引き揃えた強化用長繊維束のウェブの代
わりに、織物シートおよび編物シートを用いても本発明
の目的は達せられる。
Of course, the object of the present invention can also be achieved by using a woven sheet or a knitted sheet instead of a web of reinforcing long fiber bundles aligned in one direction.

さらに、熱可塑性重合体短繊維を用いる好ましい別法と
して、強化用長繊維束の中にTP短繊維をあらかじめ含
有させ、このウェブに上記と同様に流体噴流を当てて、
TP短繊維を交絡一体化することもできる。
In addition, a preferred alternative method using short thermoplastic polymer fibers is to pre-incorporate TP short fibers into the reinforcing long fiber bundles and apply a fluid jet to this web in the same manner as described above.
It is also possible to intertwine and integrate TP short fibers.

上記の複合シートに、熱可塑性重合体エマルジョンを含
浸後、最低造膜温度以下で乾燥させたり、重合体粒子を
吹き付けて含有させたりすることにより、複合シートの
柔軟性をうしなわずに混合性を向上させることができる
。また、流体噴流による機械的作用で混合させた後、T
P織繊維熱変形を起こす温度以上で、かつ融着しない温
度以下の条件で加熱し、TP織繊維変形させたり、強化
用長繊維が破断しない程度に押圧して、嵩密度を上げた
りして、一体化したシートを得ても良い。
After impregnating the above composite sheet with a thermoplastic polymer emulsion, it is dried at a temperature below the minimum film-forming temperature or sprayed with polymer particles to improve mixability without sacrificing the flexibility of the composite sheet. can be improved. In addition, after mixing by the mechanical action of a fluid jet, T
The TP woven fibers are heated at a temperature above the temperature that causes thermal deformation of the P woven fibers but below a temperature at which they do not fuse, and the TP woven fibers are deformed, and the reinforcing long fibers are pressed to the extent that they do not break to increase the bulk density. , an integrated sheet may be obtained.

以下、実施例により本発明をさらに詳細に説明する。但
し、本発明はこれら実施例によって何ら限定されるもの
ではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to these Examples in any way.

実施例1 ナイロン66重合体(旭化成工業製、レオナ重合体)を
溶融紡糸して、770デニール/770フイラメントの
長繊維束を得た。この長繊維束は開繊しやすいよう撚り
を生じないように巻取り、サイジング剤として水溶性の
PVA(ポリビニルアルコール)を付与した。この長繊
維束を多数本集めて、ギロチン式カッターにて、5 m
mの長さに切断して、TP短繊維を得た。
Example 1 A 770 denier/770 filament long fiber bundle was obtained by melt spinning a nylon 66 polymer (Leona Polymer, manufactured by Asahi Kasei Kogyo). This long fiber bundle was wound up so as not to be twisted so as to be easily opened, and water-soluble PVA (polyvinyl alcohol) was added as a sizing agent. Collect a large number of these long fiber bundles and use a guillotine cutter to cut them into 5 m long fibers.
The fibers were cut into lengths of m to obtain TP short fibers.

このTP短繊維は、顕微鏡で観察すると直径が11−の
円柱であり、L/Dは455であった。
When observed under a microscope, this TP short fiber was a cylinder with a diameter of 11 mm and an L/D of 455.

次いで、この短繊維を水に投入し、ポリアクリルアマイ
ドを加え、100cpの粘度を有するスラリー液とし、
幅50C111、長さ100cmの矩形をして、底に2
00メツシユの金網を張った水槽の底に均一になるよう
にスラリー液を注入して目付64 g / 1yfの抄
造シートを得た。
Next, the short fibers were put into water and polyacrylamide was added to make a slurry liquid having a viscosity of 100 cp.
A rectangle with a width of 50C111 and a length of 100cm, with 2
The slurry liquid was uniformly injected into the bottom of a water tank covered with a wire mesh of 0.00 mesh to obtain a paper-made sheet having a basis weight of 64 g/1yf.

上記抄造シートの中の熱可塑性重合体短繊維の方向を観
察してみると、はぼ完全なランダムであることが判った
When observing the direction of the short thermoplastic polymer fibers in the paper sheet, it was found that the direction was completely random.

次に、PAN系炭素繊維(新旭化成カーボンファイバー
製、ハイカーボロン6Kf糸、単繊維数6000本、3
600デニール、引張強度400kg/W1m” 。
Next, PAN-based carbon fiber (manufactured by Shin-Asahi Kasei Carbon Fiber, Hi-Carboron 6Kf yarn, 6000 single fibers, 3
600 denier, tensile strength 400kg/W1m".

引張弾性率23ton/am” 、直径7Jna)の強
化用長繊維束を375本引き揃えて、目付300 g 
/ nfになるように、5010幅にすきまなく並べた
シートを上記のTP短繊維抄造シートの上に置いた。つ
いで、TP短繊維抄造シートと同様な手法によって、こ
のシートの上に、目付64g/nfを有するTP短繊維
のシートを作成してサンドインチ状にした。ついでこの
サンドインチシートを、200メツシユの金網に乗せた
まま、l mn+間隔で等間隔に直線状に配置した径0
.2 mのノズル500個を用い、ノズルとシート間の
距離を30mmにしてシート全面に隅なく lokg/
dの圧力の水をシート面の上から垂直にあてることを表
裏−回ずつ行った。さらに40)cg/cdの圧力の水
を表裏3回ずつ当てて処理し乾燥して複合シートを得た
。この複合シートは、TP織繊維強化用長繊維束の個々
の長繊維間に埋め込まれ、TP繊維同志およびTP織繊
維強化用長繊維とが交絡して一体となった構造になって
いた。シートの端部を人差し指と親指でつまんで持ち上
げても、50cmX 100cmのシートがバラバラに
ならずに交絡しており、かつ柔軟性に冨んでいた。
375 reinforcing long fiber bundles with a tensile modulus of elasticity of 23 ton/am" and a diameter of 7 Jna) were arranged to have a fabric weight of 300 g.
/ nf, sheets arranged in a width of 5010 without gaps were placed on the above-mentioned TP short fiber paper sheet. Next, a sheet of TP short fibers having a basis weight of 64 g/nf was created on top of this sheet by the same method as for the TP short fiber paper sheet, and formed into a sandwich shape. Next, this sand inch sheet was placed on a 200-mesh wire mesh and was placed in a straight line at equal intervals of l mn+.
.. Using 500 2 m nozzles, the distance between the nozzle and the sheet was 30 mm, and the entire surface of the sheet was free of corners.
Water at a pressure of d was applied perpendicularly from above the sheet surface several times on the front and back sides. Furthermore, water at a pressure of 40) cg/cd was applied three times to the front and back sides, and the composite sheet was dried to obtain a composite sheet. This composite sheet was embedded between the individual long fibers of the TP woven fiber reinforcing long fiber bundle, and had a structure in which the TP fibers and the TP woven fiber reinforcing long fibers were intertwined and integrated. Even when the edge of the sheet was pinched between the index finger and thumb and lifted, the 50 cm x 100 cm sheet remained intertwined without falling apart, and was highly flexible.

この複合シートから外径11CTII、内径10cm、
幅5 mmのドーナツを裁断したところ、ドーナツの1
カ所を指でつまんで持ち上げてもバラバラにならず、し
かも端部から糸が解けることもなく、−枚の紙のように
扱える作業性の優れたシートであることが判った。
From this composite sheet, the outer diameter is 11CTII, the inner diameter is 10cm,
When I cut out a donut with a width of 5 mm, it turned out that 1 of the donut was
It was found that the sheet did not fall apart even when picked up with fingers, and the threads did not come undone from the ends, making it a sheet with excellent workability that could be handled like a sheet of paper.

上記複合シートから、強化用長繊維に直交する方向に幅
2.5C11、長さ15cmのテープを切り出して、引
張強度を測定したところ、3310 g /aaであっ
た。
A tape with a width of 2.5C11 and a length of 15 cm was cut out from the composite sheet in the direction perpendicular to the reinforcing long fibers, and its tensile strength was measured to be 3310 g/aa.

次に、上記複合シートを10cm角に切出し平な面に置
き、厚み3aaの鉄板を上に載せて厚みを測定し、また
シートの重量を測定することにより、嵩密度を求めたと
ころ0.36 g / cdであった。
Next, the above composite sheet was cut into 10 cm square pieces, placed on a flat surface, a 3 aa thick iron plate was placed on top, the thickness was measured, and the weight of the sheet was measured to determine the bulk density, which was 0.36. g/cd.

上記複合シートを濃硫酸で処理して、ナイロン重合体だ
けを静かに溶解させて抽出し、炭素繊維だけのシートに
して、炭素繊維に直交する方向の強度を測定しようとし
たが、テープに切り出して持ち上げようとしただけでバ
ラバラになった。
I tried to treat the above composite sheet with concentrated sulfuric acid to gently dissolve and extract only the nylon polymer, make a sheet made of only carbon fibers, and measure the strength in the direction perpendicular to the carbon fibers, but I tried to measure the strength in the direction perpendicular to the carbon fibers. When I tried to lift it up, it fell apart.

引張強度は、Ig/aa以下であった。The tensile strength was below Ig/aa.

上記複合シートからl0C11角のシートを切り出して
、0度方向に一層、90度方向に二層、さらに、0度方
向に一層重ね、直径7C1mの半円筒に巻き付け、テフ
ロンフィルムで覆った後、周囲をテフロンゴムでシール
し、フィルム内を真空にしながら、オートクレーブにセ
ットして300℃X20kg/cdx30分の処理をし
て、冷却固化後取り出して、フィルムを取ったところ、
半円筒形に成形された。この一部を切り出して、密度を
測定したところ、理論密度と同じで、ボイド率は0.1
%以下であった。
A 10C11 square sheet was cut out from the above composite sheet, one layer in the 0 degree direction, two layers in the 90 degree direction, and one layer in the 0 degree direction, wrapped around a semi-cylindrical cylinder with a diameter of 7C1 m, and covered with a Teflon film. was sealed with Teflon rubber, and while creating a vacuum inside the film, it was placed in an autoclave and treated at 300°C x 20kg/cdx for 30 minutes, and after cooling and solidifying, it was taken out and the film was removed.
Molded into a semi-cylindrical shape. When I cut out a part of this and measured the density, it was the same as the theoretical density, and the void ratio was 0.1
% or less.

さらに、断面を200倍の光学顕微鏡で観察したところ
ボイドは認められなかった。
Further, when the cross section was observed with an optical microscope at a magnification of 200 times, no voids were observed.

実施例2 実施例1で得られたナイロン66長繊維束をY字型のパ
イプの上部の一方の口から挿入し、もう片方の口から水
を注ぎ込み水流にフィラメントが引き込まれて下に流れ
るようにし、下部からフィラメントを吐出させた。パイ
プは振幅が2cmになるように毎分30回振動して移動
させながら、幅50cm、長さ100cmの矩形をして
、底に200メツシユの金網を張った水槽の底に均一に
なるように長繊維束を振り落として、目付64kg/r
rfのシートを作成した。
Example 2 The nylon 66 long fiber bundle obtained in Example 1 was inserted into one opening at the top of a Y-shaped pipe, and water was poured through the other opening so that the filament was drawn into the water flow and flowed downward. The filament was discharged from the bottom. The pipe was moved by vibrating 30 times per minute so that the amplitude was 2 cm, and the pipe was made into a rectangle with a width of 50 cm and a length of 100 cm, and was placed evenly on the bottom of a water tank with a 200 mesh wire mesh on the bottom. After shaking off the long fiber bundle, the basis weight is 64 kg/r.
I created an rf sheet.

作成したシートのなかから一本の単繊維を切れないよう
注意深く選び出し、この単繊維の自由度を測定したとこ
ろ4.7であった。
One single fiber was carefully selected from the prepared sheet so as not to break, and the degree of freedom of this single fiber was measured and found to be 4.7.

次に、このシートの上に実施例1で得られたPAN系炭
素炭素繊維シートいた。ついで、ナイロン66長繊維東
シートを同じ様にしてこのシートの上に作成してサンド
イッチ状にした。ついで、このサンドインチシートを実
施例1と同様にして処理し乾燥して複合シートを得た。
Next, the PAN-based carbon fiber sheet obtained in Example 1 was placed on top of this sheet. Next, a nylon 66 long fiber east sheet was prepared on top of this sheet in the same manner to form a sandwich. This sandwich sheet was then treated and dried in the same manner as in Example 1 to obtain a composite sheet.

この複合シートは、TP織繊維強化用長繊維束の個々の
長繊維間に入り込んで、TP繊維同志およびTP織繊維
強化長繊維とが交絡して一体となった構造になっていた
。シートの端部を人差し指と親指でつまんで持ち上げて
も、50cm X 100cmのシートがバラバラにな
らずに一体性を保持し、且つ柔軟性に富んでいた。
This composite sheet had a structure in which the TP fibers and the TP woven fiber-reinforcing long fibers were intertwined and integrated by entering between the individual long fibers of the TP woven fiber-reinforcing long fiber bundle. Even when the edge of the sheet was pinched between the index finger and thumb and lifted, the 50 cm x 100 cm sheet did not fall apart, maintained its integrity, and was highly flexible.

実施例1と同様にして上記複合シートの引張強度を測定
したところ、1930g/c+flであった。さらに、
この複合シートを10cm角に切りだし平な面に置き、
厚み3mの鉄板を上に載せて厚みを測定し、またシート
の重量を測定することにより、嵩密度を求めたところ0
.38 g / ctAであった。
The tensile strength of the composite sheet was measured in the same manner as in Example 1, and was found to be 1930 g/c+fl. moreover,
Cut this composite sheet into 10cm squares and place it on a flat surface.
The bulk density was determined by placing a 3m thick iron plate on top and measuring the thickness, and also by measuring the weight of the sheet, and found that it was 0.
.. It was 38 g/ctA.

比較例1 実施例2において、パイプを毎分30回振動させるとこ
ろを、全く振動させないで、しかも、振り落とす方向を
強化用長繊維の方向に対してほぼ90度になるように調
整しながら長繊維束をラングム方向に振り落としてシー
トを得た。
Comparative Example 1 In Example 2, the pipe was vibrated 30 times per minute, but instead of being vibrated at all, the pipe was lengthened while adjusting the shaking direction so that it was approximately 90 degrees to the direction of the reinforcing long fibers. The fiber bundle was shaken off in the direction of the lungs to obtain a sheet.

実施例2と同様にして、このシートの中の単繊維の自由
度を測定したところ1.1であった。
The degree of freedom of the single fibers in this sheet was measured in the same manner as in Example 2 and found to be 1.1.

上記シートから実施例1と同じようにして複合シートを
得た。しかし、この複合シートは、熱可塑性重合体長繊
維が交絡しておらず、シートの端部をつまんで持ち上げ
るとバラバラになり、極めて取扱性に劣っていた。
A composite sheet was obtained from the above sheet in the same manner as in Example 1. However, in this composite sheet, the long thermoplastic polymer fibers were not intertwined, and when the edges of the sheet were pinched and lifted, it fell apart, resulting in extremely poor handling properties.

実施例3 実施例1において、TP短繊維の目付を42.5g/ボ
に変更し、且つ、一方向の炭素繊維シートをハイカーボ
ロン3Kf糸(単繊維数3000本)で、織り密度が経
、緯ともに5本/ cmの手織シート(目付198g/
rrr)に変更した以外は、まったく同様にして複合シ
ートを得た。この複合シートがら外径11印、内径10
cm、幅51T[II+のドーナツ状試料を裁断したと
ころ、ドーナツの1カ所を指でつまんで持ち上げてもバ
ラバラにならず、しかも、端部から糸が解けることもな
く、−枚の紙のように扱える作業性の優れたシートであ
ることが判った。嵩密度を測定した結果、0.33g/
cdであった。
Example 3 In Example 1, the basis weight of the TP short fibers was changed to 42.5 g/bo, and the unidirectional carbon fiber sheet was made of Hicarboron 3Kf yarn (number of single fibers: 3000), and the weaving density was changed to warp. Hand-woven sheet with 5 pieces/cm in both weft and weft (weighing 198g/
A composite sheet was obtained in exactly the same manner except that the material was changed to (rrr). This composite sheet has an outer diameter of 11 marks and an inner diameter of 10 marks.
cm, width 51T [II+] When I cut a donut-shaped sample, it did not fall apart even if I pinched one part of the donut with my fingers and lifted it, and the thread did not come undone from the end, making it look like a sheet of paper. It was found that the sheet has excellent workability and can be handled easily. As a result of measuring the bulk density, it was 0.33g/
It was a CD.

比較のために、上記と同様にして、この実施例に使用し
た炭素繊維平織シートからドーナツ状試料を裁断したと
ころ、端面から糸が解けて、非常に扱いに(いシートで
あり、指でつまんで持ち上げたら、バラバラになり、非
常に注意しないと取り扱えなかった。
For comparison, when a donut-shaped sample was cut from the carbon fiber plain weave sheet used in this example in the same manner as above, the threads came undone from the end surface, making it very difficult to handle (the sheet was difficult to pick up with fingers). When I picked it up, it fell apart and I had to be very careful to handle it.

実施例4 実施例1で用いたナイロン66繊維の代わりに、780
デニール/390フイラメントのポリエーテルエーテル
ケトン重合体(インペリアル・ケミカル・インダストリ
ー社製、商品名ピクトレックス)の連続繊維から実施例
1と同様にして長さ10mmと5胴の2種の短繊維を得
た。次に、これらの長さの違う短繊維を別々の容器にい
れ、スラリー状とした。5mm長の短繊維のスラリー液
に連続的に実施例1で用いた炭素繊維を開繊しながら投
入し、液中で4mm間隔で針を植え込んだ針布を炭素繊
維束に突き刺しては離す操作を繰り返して液中でも充分
開繊するようにして、静かに引き上げたところ、炭素繊
維100 gに対し、36gの短繊維が炭素繊維束に分
散している短繊維混合強化長繊維束を得た。
Example 4 Instead of the nylon 66 fiber used in Example 1, 780
Two types of short fibers with a length of 10 mm and a length of 5 strands were obtained in the same manner as in Example 1 from continuous fibers of polyether ether ketone polymer (manufactured by Imperial Chemical Industries, trade name: Pictrex) of denier/390 filament. Ta. Next, these short fibers of different lengths were placed in separate containers to form a slurry. The carbon fibers used in Example 1 were continuously introduced into a slurry of 5 mm long short fibers while being opened, and a clothing cloth with needles implanted at 4 mm intervals was stabbed into the carbon fiber bundle and released. The process was repeated to fully open the fibers in the liquid, and the fibers were gently pulled up to obtain a short fiber mixed reinforced long fiber bundle in which 36 g of short fibers were dispersed in the carbon fiber bundle per 100 g of carbon fibers.

この繊維束を実施例1と同様にして引き揃え、目付40
8g/rrfのシートとした。このシートは短繊維が絡
んでおらず、手で持ち上げるとバラバラになるものであ
った。
This fiber bundle was aligned in the same manner as in Example 1, and the fabric weight was 40.
It was made into a sheet of 8 g/rrf. This sheet did not have short fibers entangled with it, and would fall apart when lifted by hand.

上記シートを注意深く、4 mm間隔で平行に張ったピ
アノ線の上に置いて持ち運び、別に10mm長の短繊維
を使って目付Log/n(の抄造シートを2枚作成し、
上記のシートを挟む形で積層した。この積層操作はピア
ノ線を介して行い、積層後ピアノ線を一本一本静かに抜
いて行った。次に、高圧水流による処理を実施例1と全
く同様にして行ったところ、手で端部を持ってもバラバ
ラにならない交絡一体化した複合ソートが得られた。こ
の断面を切断して観察してみると、実施例1のものより
更に強化用長繊維と短繊維が均一に混合していることが
判った。この複合シートの強化用長繊維と直交する方向
の引張強度は3510 g /cdであり、嵩密度は0
.38g/dであった。
Carefully place the above sheet on piano wire stretched parallel to each other at 4 mm intervals and carry it. Separately, use 10 mm long short fibers to make two sheets with a fabric weight of Log/n.
The above sheets were laminated with the sheets sandwiched between them. This lamination operation was performed through the piano wire, and after lamination, the piano wire was gently pulled out one by one. Next, treatment with a high-pressure water stream was carried out in exactly the same manner as in Example 1, and an intertwined and integrated composite sort was obtained that did not fall apart even if the edges were held by hand. When this cross section was cut and observed, it was found that the reinforcing long fibers and short fibers were more uniformly mixed than in Example 1. The tensile strength of this composite sheet in the direction perpendicular to the reinforcing long fibers is 3510 g/cd, and the bulk density is 0.
.. It was 38g/d.

実施例5 実施例4で用いた短繊維混合強化用長繊維束を一方向に
引き揃えたシートを、短繊維が強化用長繊維に対して、
直角方向にも並ぶようにするために、先が鋭利な径が1
ms+の針を511II1間隔で植え込んだ串を、強化
用長繊維束の方向に対し直角になるようにシートに垂直
に突き刺し、突き刺した状態で強化用長繊維束の方向に
平行に3111aI移動させ、引き抜いた。このように
して、短繊維だけを直角方向に並ばせる操作を、シート
全面に隅なく行った。このシートを、実施例1と同様に
して、高圧水流処理し乾燥した。このシートを、乾燥後
取り出してみたら、短繊維が均一に混合され、絡んで一
体となっており、両手で持ち上げてもバラバラにならず
作業性にすぐれていた。強化用長繊維と直交方向の強度
は1850g/cdlであり、嵩密度は0、34 g 
/ claであった。
Example 5 A sheet in which the short fiber mixed reinforcing long fiber bundles used in Example 4 were aligned in one direction was prepared so that the short fibers were aligned with the reinforcing long fibers,
In order to line up in the right angle direction, the diameter of the sharp tip is 1
A skewer with ms+ needles implanted at 511II1 intervals is pierced perpendicularly to the sheet so as to be perpendicular to the direction of the reinforcing long fiber bundle, and in the pierced state is moved 3111aI parallel to the direction of the reinforcing long fiber bundle, I pulled it out. In this way, the operation of arranging only the short fibers in the right angle direction was performed over the entire surface of the sheet without corners. This sheet was subjected to high-pressure water jet treatment and dried in the same manner as in Example 1. When I took this sheet out after drying, I found that the short fibers were evenly mixed and intertwined into a single piece, and it did not fall apart even when I lifted it with both hands, making it easy to work with. The strength in the direction perpendicular to the reinforcing long fibers is 1850 g/cdl, and the bulk density is 0.34 g
/ It was cla.

比較例2 実施例1で用いたナイロン66の811I11カツト短
繊維と、同様カットした8[1I11カツト炭素繊維を
、重量比で炭素繊維が7、ナイロン66繊維が3の割合
で混合して、抄造シートを得た。このシートを乾燥して
、実施例1と同様に嵩密度を測定したところ0.037
 g /c+Jと非常に嵩高であった。しかも乾燥させ
てから手でつかむと、すぐにバラバラになり、手に炭素
繊維が付着して刺さるなど非常に扱い難いシートであっ
た。
Comparative Example 2 The 811I11-cut short fibers of nylon 66 used in Example 1 and the 8[1I11-cut carbon fibers cut in the same way were mixed in a weight ratio of 7 parts carbon fiber and 3 parts nylon 66 fiber to form a paper. Got a sheet. This sheet was dried and the bulk density was measured in the same manner as in Example 1 and was found to be 0.037.
It was extremely bulky at g/c+J. What's more, when you held it in your hands after drying it, it immediately fell apart, and the carbon fibers stuck to your hands, making them extremely difficult to handle.

実施例6 実施例1において、TP短繊維の投入量を調節して、短
繊維抄造シートの目付を調整し、炭素繊維の配合比が表
1に示すように異なる複合シートを作成した。各複合シ
ートを30cm X 30cmの正方形に切出し、同じ
大きさのマツチドダイを使い、300℃×30分X20
kg/cdの条件で試料板を作り、曲げ強度を測定した
Example 6 In Example 1, the amount of TP short fibers added was adjusted to adjust the basis weight of the short fiber paper sheets, and composite sheets with different blending ratios of carbon fibers as shown in Table 1 were created. Cut each composite sheet into a 30cm x 30cm square, and using a matte die of the same size, heat at 300℃ x 30 minutes x 20 minutes.
A sample plate was prepared under the condition of kg/cd, and the bending strength was measured.

比較のために、比較例2におけるTP短繊維の量を調整
し、炭素繊維の長さを25mにし、炭素繊維の配合比を
調整して、全く同様の条件で板を作り曲げ強度を測定し
た結果を表1に示す。なお、嵩密度の低い比較例の複合
シートは、3amの厚みを得るためには、厚みがlQc
mを越えてしまって金型に収まらなかったため、2回以
上に分割して板を得た。
For comparison, a plate was prepared under exactly the same conditions as in Comparative Example 2 by adjusting the amount of TP short fibers, making the length of carbon fiber 25 m, and adjusting the blending ratio of carbon fiber, and measuring the bending strength. The results are shown in Table 1. Note that the composite sheet of the comparative example with a low bulk density has a thickness of 1Qc in order to obtain a thickness of 3am.
Since it exceeded m and could not fit into the mold, it was divided into two or more parts to obtain a plate.

表1から判るように、強化用繊維の配合比が5容量対未
満では、比較例2の従来のものと比較して大きな差はな
いが、5%以上では物性の差が大きい。特に、強化用繊
維の配合比が30容量%を越えると、比較例のものはボ
イド率が高くなって強度その他の物性が落ちるため両者
の差は一層拡大する。しかしながら、強化用繊維の配合
比が80容量%を越えると、ボイド率が高くなって、強
度その他の物性が落ちてくることが判る。
As can be seen from Table 1, when the blending ratio of reinforcing fibers is less than 5 volume pairs, there is no big difference compared to the conventional one of Comparative Example 2, but when it is 5% or more, there is a large difference in physical properties. In particular, when the blending ratio of reinforcing fibers exceeds 30% by volume, the void ratio of the comparison example increases and strength and other physical properties deteriorate, so that the difference between the two becomes even larger. However, it can be seen that when the blending ratio of reinforcing fibers exceeds 80% by volume, the void ratio increases and the strength and other physical properties deteriorate.

実施例7 実施例1のチンロン66繊維の代わりに、900デニー
ル/300フイラメントのポリエーテルエーテルケトン
(以下、r PEEK Jと略する。)長繊維を用い、
実施例1と同様にして長さ15聯と2.5 mmの短繊
維を得た。2種の短繊維を重量比1:1で水に投入し、
ポリアクリルアマイドを加え、100cpの粘度を有す
るスラリー液とし、次いで幅が50cm、80メツシユ
の金網を有する傾斜型抄造機で抄造し、目付73g/イ
のPERK短繊維シートを得た。
Example 7 Instead of the Chinlon 66 fiber of Example 1, 900 denier/300 filament polyetheretherketone (hereinafter abbreviated as rPEEK J) long fibers were used,
Short fibers having a length of 15 strands and 2.5 mm were obtained in the same manner as in Example 1. Two types of short fibers were added to water at a weight ratio of 1:1,
Polyacrylamide was added to form a slurry liquid having a viscosity of 100 cp, and then paper was made using an inclined paper making machine having a width of 50 cm and a wire mesh of 80 meshes to obtain a PERK staple fiber sheet with a basis weight of 73 g/I.

次に、実施例1と同じ長繊維状炭素繊維のシートを、そ
の幅広がりを防止するために、幅50cm、長さ60C
I11の枠に固定し緊張状態にした。その上に上記PE
EK短繊維抄造シートを重ねた。そして、この積層シー
トを80メツシユの金網の上に置き、5鵬間隔で直線に
配置された0、 2111111の径のノズル100個
を用い、シート全面に隅なく20kg/aflの圧力で
連続的に噴出する高圧水流をシート面の上から垂直に2
回当て、次に50 kg / cTaの圧力で4回当て
た。さらに、シートを裏返しにし、枠に固定して炭素繊
維に緊張を付与し、PEEK短繊維シートを重ねて、上
記と同じ様に高圧水流処理し、長繊維状炭素繊維のシー
トの両面にPEEK短繊維シートを交絡一体化した複合
シートを得た。
Next, a sheet of the same long-fiber carbon fiber as in Example 1 was made into a sheet with a width of 50 cm and a length of 60 cm in order to prevent the sheet from widening.
It was fixed in the frame of I11 and kept under tension. On top of that, the above PE
EK staple fiber sheets were layered. Then, this laminated sheet was placed on an 80-mesh wire mesh, and using 100 nozzles with diameters of 0 and 2111111 arranged in a straight line at 5-mesh intervals, the entire surface of the sheet was continuously sprayed without corners at a pressure of 20 kg/afl. A high-pressure water stream is ejected vertically from above the seat surface.
one application, then four applications at a pressure of 50 kg/cTa. Furthermore, the sheet is turned over and fixed to a frame to give tension to the carbon fibers, and the PEEK short fiber sheets are stacked and treated with high-pressure water jet in the same manner as above. A composite sheet in which the fiber sheets were entangled and integrated was obtained.

複合シートの強化用長繊維と直交する方向の引張強度は
3120 g /cnであり、嵩密度は0.34g/c
111であり、実施例1と同じ様に細かく切断しても、
紙のように扱える作業性の優れたシートであった。
The tensile strength of the composite sheet in the direction perpendicular to the reinforcing long fibers is 3120 g/cn, and the bulk density is 0.34 g/c
111, and even if cut finely as in Example 1,
It was a sheet with excellent workability that could be handled like paper.

強化用繊維の方向を揃えて上記複合シートを7枚重ね実
施例6で用いた金型を使い、360°CXl0kg/c
nlX5分の条件で溶融含浸冷却固化させて、板状コン
ボジッ)(CI)を得た。濃硫酸を使って機中の炭素繊
維の含有量を測定したところ6o容量%であった。この
板は、均一な黒色状のコンポジットであった。板の断面
を顕微鏡で拡大観察してみると、炭素繊維は均一に分散
していた(第1図参照)。板の0度方向の強度は168
.5kg/閣2弾性率は10.7ton/mm”であり
、90度方向ノソれらはそれぞれ、8.2 kg/ m
a” 、0.9 ton/nm”であった。
Using the mold used in Example 6, stack seven of the above composite sheets with the reinforcing fibers aligned in the same direction, and heat at 360°CXl0kg/c.
The mixture was melted, impregnated, cooled, and solidified under the conditions of nl×5 minutes to obtain a plate-like composite (CI). The content of carbon fiber in the machine was measured using concentrated sulfuric acid and found to be 60% by volume. This board was a uniform black composite. When the cross section of the plate was observed under a microscope, the carbon fibers were found to be uniformly dispersed (see Figure 1). The strength of the plate in the 0 degree direction is 168
.. 5kg/kaku2 The elastic modulus is 10.7 ton/mm", and the 90 degree directions are 8.2 kg/m, respectively.
a", 0.9 ton/nm".

別のコンポジットを製造するために、強化用繊維の方向
を揃えて上記複合シートを11枚重ね実施例6で用いた
金型を使い、空気が侵入しないようにして、420°C
X 100kg/cdX 10分の条件で溶融含浸冷却
固化させて板状コンボジッ) (C2)を得た。機中の
炭素繊維の含有量は、6ov!量%であった。この板は
均一な黒色状のコンポジットであり、板の断面を顕微鏡
で拡大観察してみると、炭素繊維が均一に分散しており
、上記のコンポジット(CI)(第1図に示す)と見掛
上同じであった。
In order to manufacture another composite, 11 of the above composite sheets were stacked with the reinforcing fibers aligned in the same direction, using the mold used in Example 6, and heated at 420°C to prevent air from entering.
The mixture was melted, impregnated, cooled and solidified under the conditions of x 100 kg/cd x 10 minutes to obtain a plate-like composite (C2). The carbon fiber content in the machine is 6ov! The amount was %. This plate is a uniform black composite, and when the cross section of the plate is observed under a microscope, the carbon fibers are uniformly dispersed, and it appears to be the composite (CI) described above (shown in Figure 1). Kakegami was the same.

板の0度方向の強度は192kg/IIIIlt、弾性
率は11.2ton 7mm”であり、90度方向のそ
れらはツレぞれ、12.1kg/mm”および0.9 
ton/an”であった。
The strength of the board in the 0 degree direction is 192 kg/IIIlt, the elastic modulus is 11.2 ton 7 mm", and those in the 90 degree direction are 12.1 kg/mm" and 0.9
ton/an”.

比較例3 実施例1で用いた炭素繊維束と、実施例7で用いたPI
EEK繊維束を合糸し計4500デニールのヤーンとし
た。この合糸ヤーンを経糸にして、4本/cmの織密度
で、また緯糸にPEEK繊維束のみを使い、3.8本/
 cmの織り密度で平織シートとした。
Comparative Example 3 Carbon fiber bundle used in Example 1 and PI used in Example 7
The EEK fiber bundles were combined into a yarn with a total weight of 4500 denier. This doubling yarn is used as the warp yarn, with a weaving density of 4 threads/cm, and only PEEK fiber bundles are used as the weft thread, with a weaving density of 3.8 threads/cm.
A plain weave sheet was prepared with a weave density of cm.

上記シートにおいては、強化用長繊維が一方向に引き揃
えられたシート状になっている。しかしながら、このシ
ートは、端面から糸が解けて取扱いに注意しないと形状
が変わり、取扱いが困難であった。外径11cm、内径
10cmのドーナツ状試料を切り出して、指でつまんで
持ち上げようとしたら、バラバラになり、細断して扱う
ことは、非常に困難であった。
In the above-mentioned sheet, the reinforcing long fibers are aligned in one direction to form a sheet. However, this sheet was difficult to handle because the threads came undone from the end surface and changed shape unless handled with care. When I cut out a donut-shaped sample with an outer diameter of 11 cm and an inner diameter of 10 cm, and tried to pick it up with my fingers, it fell apart, making it very difficult to handle it by cutting it into pieces.

強化用繊維の方向を揃えて上記シートを13枚重ね実施
例6で用いた金型を使い、360″cxlOkg/dX
5分の条件で溶融含浸冷却固化させて板を得た。濃硫酸
を使って機中の炭素繊維の含有量を測定したところ、実
施例7のものと同様に60容量%であったが、外観は明
らかに違っており、実施例7の板(C1)は均一な黒色
状のコンポジットであるのに対し、本比較例の板は重合
体が不均一になっており、所々に白い縞模様が観察され
た。板の断面を顕微鏡で拡大観察してみると、炭素繊維
が固まって存在していることが判った(第2図参照)、
板の0度方向の強度は102kg/a++a” 、弾性
率は8.7 ton/ffl1”であり、90度方向の
それらはそれぞれ4.1 kg/mm”および0.4 
ton/l11m”であり、物性的に非常に劣っていた
Layer 13 of the above sheets with the reinforcing fibers aligned in the same direction and use the mold used in Example 6 to form a 360"cxlOkg/dX
A plate was obtained by melting, impregnating, cooling and solidifying under conditions of 5 minutes. When the content of carbon fiber in the machine was measured using concentrated sulfuric acid, it was found to be 60% by volume, the same as in Example 7, but the appearance was clearly different, and the plate of Example 7 (C1) was a uniform black composite, whereas the plate of this comparative example had a non-uniform polymer, and white striped patterns were observed here and there. When we looked at the cross section of the plate under a microscope, we found that the carbon fibers were solidified (see Figure 2).
The strength of the board in the 0 degree direction is 102 kg/a++a", the elastic modulus is 8.7 ton/ffl1", and those in the 90 degree direction are 4.1 kg/mm" and 0.4, respectively.
ton/l11m'', and the physical properties were very poor.

比較例4 実施例1で用いた炭素繊維束(3600デニ一ル/60
00本)と、実施例7で用いたPEEK重合体の150
0デニール1500フイラメントの連続繊維束とを水中
に同じ速度で漬は込み、対抗するノズルを使って撹拌し
、繊維同士を混ぜて引き上げ、乾燥し、混繊ヤーンとし
た。このヤーンを引き揃えて、−方向のシートにしよう
としたが、手で持ち上げるとバラバラになり、普通の方
法では扱えなかった。
Comparative Example 4 Carbon fiber bundle used in Example 1 (3600 denier/60
00) and 150 of the PEEK polymer used in Example 7.
A continuous fiber bundle of 0 denier 1500 filaments was immersed in water at the same speed, stirred using opposing nozzles, mixed the fibers, pulled up and dried to form a mixed fiber yarn. I tried to pull this yarn together to make a sheet in the - direction, but when I picked it up by hand, it fell apart and I couldn't handle it using normal methods.

そこで、日付20g/rrrの薄いPt!EK繊維で織
った布でサンドインチ状に挟み、Pt!EKの糸で縫っ
て、シート化した。しかしながら、ドーナツ状に細断し
て持ち上げたら、バラバラになってしまった。
So, a thin Pt with a date of 20g/rrr! Sandwiched with cloth woven from EK fiber, Pt! I sewed it with EK thread and made it into a sheet. However, when I cut it into donuts and lifted it, it fell apart.

強化用繊維の方向を揃えて上記複合シートを16枚重ね
実施例6で用いた金型を使い、空気が侵入しないように
して、420°c x、 100kg/cXaxlO分
の条件で溶融含浸冷却固化させて、板状コンポジットを
得た。機中の炭素繊維の含有量は、60容量%であった
。この板は均一な黒色状のコンポジットであり、板の断
面を顕微鏡で拡大観察してみると、炭素繊維が均一に分
散しており、実施例7のコンポジット(C1,C2)と
、見掛上同じであった。
Using the mold used in Example 6, stack 16 of the above composite sheets with the reinforcing fibers aligned in the same direction, and melt, impregnate, cool and solidify under the conditions of 420°C x and 100kg/cXaxlO, using the mold used in Example 6. A plate-like composite was obtained. The content of carbon fiber in the machine was 60% by volume. This plate is a uniform black composite, and when the cross section of the plate was observed under a microscope, the carbon fibers were uniformly dispersed, and the appearance was similar to that of the composite of Example 7 (C1, C2). It was the same.

板の0度方向の強度は、193kg/m+++” 、弾
性率は11.7ton/am”であり、実施例7のコン
ポジット(C2)と大差ないものであったが、90度方
向の強度は9.2 kg/cm” 、弾性率は0.8 
ton/w”であり、90度方向の物性は劣っていた。
The strength of the plate in the 0 degree direction was 193 kg/m+++", and the elastic modulus was 11.7 ton/am", which was not much different from the composite (C2) of Example 7, but the strength in the 90 degree direction was 9. .2 kg/cm”, elastic modulus is 0.8
ton/w'', and the physical properties in the 90 degree direction were poor.

実施例8 実施例7のPI!II!に繊維の代わりに、200デニ
ール/72フィラメントのポリフェニレンサルファイド
重合体長繊維を用いる以外は、全く同様にして高圧水流
処理し、長繊維状炭素繊維のシートの両面にPPS短繊
維シートを交絡一体化した取扱い容易な複合シートを得
た。炭素繊維を直交する方向の引張強度は3350 g
 / ctAであり、嵩密度は0.34g/ cJであ
った。
Example 8 PI of Example 7! II! High-pressure water jet treatment was carried out in exactly the same manner except that polyphenylene sulfide polymer long fibers of 200 denier/72 filaments were used instead of the fibers, and PPS short fiber sheets were entangled and integrated on both sides of the long fibrous carbon fiber sheet. A composite sheet that is easy to handle was obtained. Tensile strength in the direction perpendicular to carbon fiber is 3350 g
/ctA, and the bulk density was 0.34 g/cJ.

実施例9 特開昭54−77691の実施例に準じてP−アセトキ
シ安息香酸と6−アセトキシ−2−ナフトエ酸(モル比
が75 : 25)を脱酢酸溶融重合により、熱溶融状
態において光学的に異方性を示す高重合体を得た。
Example 9 P-acetoxybenzoic acid and 6-acetoxy-2-naphthoic acid (molar ratio 75:25) were optically fused in a hot molten state by deacetic acid melt polymerization according to the example of JP-A-54-77691. A high polymer exhibiting anisotropy was obtained.

この重合体を320°Cで0.1mmの孔を56個備え
た紡糸口金より押出し、空冷した後巻取り、単糸3デニ
ールの長繊維束を得た。この長繊維束を実施例1と同様
にして20mn+と5In[I+の長さに切って短繊維
とし、両者を重量比が1:1になるように、水中で分散
混合した後、抄造シートを得た。次いで、一方向に引き
揃えた炭素長繊維束と重ね、高圧水流処理することによ
って取扱いの容易な複合シートを得た。炭素繊維と直交
する方向の引張強度は3250 g /dであり、嵩密
度は0.34 g / cJであった。
This polymer was extruded at 320° C. through a spinneret equipped with 56 holes of 0.1 mm, air-cooled, and then wound to obtain a single filament 3-denier long fiber bundle. This long fiber bundle was cut into short fibers in the same manner as in Example 1 to lengths of 20 m+ and 5 In[I+, and after dispersing and mixing them in water at a weight ratio of 1:1, a paper sheet was prepared. Obtained. Next, it was stacked with a carbon long fiber bundle aligned in one direction and subjected to high-pressure water jet treatment to obtain an easy-to-handle composite sheet. The tensile strength in the direction perpendicular to the carbon fibers was 3250 g/d, and the bulk density was 0.34 g/cJ.

実施例10 内容積500dのガラス製フラスコに4,4−ジフルオ
ロベンゾフェノン50g (0,23モル)、微粉砕し
た炭酸カリウム69g(0,5モル)および溶媒として
ベンゾフェノン50gを入れ、フラスコ内を窒素置換し
た後、撹拌しながら1時間かけて300°Cに昇温し、
この状態を保って12時間反応させた。
Example 10 50 g (0.23 mol) of 4,4-difluorobenzophenone, 69 g (0.5 mol) of finely ground potassium carbonate, and 50 g of benzophenone as a solvent were placed in a glass flask with an internal volume of 500 d, and the inside of the flask was replaced with nitrogen. After that, the temperature was raised to 300°C over 1 hour while stirring.
This state was maintained and the reaction was allowed to proceed for 12 hours.

得られた反応生成物を粉砕し、温アセトンおよび熱水で
洗浄し43gの白色粉末としてη3P/CC濃硫酸、o
、 i重量%、25°Cにて測定)が、0.56d1/
gのポリエーテルケトン を得た。
The resulting reaction product was ground and washed with warm acetone and hot water to give 43 g of white powder, η3P/CC concentrated sulfuric acid, o
, i% by weight, measured at 25°C) is 0.56d1/
g of polyetherketone was obtained.

このようにして得られるポリエーテルケトンを用いて、
紡糸ヘッド温度を420°Cとして紡孔径0、3 mm
φ、孔数8個の紡孔を通して押し出し、単糸3.0デニ
ールのポリエーテルケトン繊維を得た。
Using the polyetherketone obtained in this way,
The spinning head temperature was 420°C, and the spinning hole diameter was 0.3 mm.
It was extruded through a spinning hole with φ and 8 holes to obtain a single 3.0 denier polyetherketone fiber.

この繊維を集めて実施例1と同様にギロチン式カッター
・にて10mmの長さに切断し、TP短繊維とした。
The fibers were collected and cut into a length of 10 mm using a guillotine cutter in the same manner as in Example 1 to obtain TP short fibers.

上記ポリエーテルケトン短繊維を、実施例1と全く同じ
方法で抄造し、目付64g/バrの短繊維抄造シートと
し、次いで、一方向に引き揃えた炭素長繊維束と重ね、
高圧水流処理することによって取扱いの容易な複合シー
トを得た。炭素繊維と直交する方向の引張強度は344
0g/crlであり、嵩密度は0.36g/cnであっ
た。
The above-mentioned polyetherketone short fibers were formed into a short fiber sheet with a basis weight of 64 g/bar in exactly the same manner as in Example 1, and then stacked with a carbon long fiber bundle aligned in one direction,
An easy-to-handle composite sheet was obtained by high-pressure water treatment. The tensile strength in the direction perpendicular to the carbon fiber is 344
0 g/crl, and the bulk density was 0.36 g/cn.

この複合シートを96sφの円形に打ち抜き、内径が1
00mmφの金型内に、炭素繊維の長繊維方向が同一と
なるように6層に重ね、440°C×10分×100k
g/cdの条件で加熱加圧成形した。冷却固化後取り出
した円形成形板は、ポリエーテルケトン短繊維が溶融含
浸固化した極めて強靭な成形板であった。
This composite sheet was punched into a circular shape of 96sφ, and the inner diameter was 1
In a mold of 00 mmφ, stack carbon fibers in 6 layers so that the long fiber direction is the same, and heat at 440°C x 10 minutes x 100k.
The molding was carried out under heating and pressure under the conditions of g/cd. The circular molded plate taken out after cooling and solidification was an extremely strong molded plate in which polyetherketone short fibers were melted and impregnated and solidified.

実施例11 内容積ioo戚のフラスコに43.9 g (0,20
1モル)の4,4−ジフルオロベンゾフェノン、64.
9g(0,201モル)の4.4−ジフルオロテレフタ
ロフェノン、72.5 g (0,684モル)の炭酸
ナトリウム、20gのシリカ(アエロジル300:日本
アエロジル社製)および40gのジフェニルスルフォン
を取り、窒素置換した後、撹拌しながら30分かけて2
80″Cに昇温し、この温度で1.5時間反応を行い、
ついで30分かけて325℃に昇温したのち更に4.5
時間反応を行った。得られたポリマーは、η3./Cが
0.85dl/g (濃硫酸、0.1重量%、25°C
)のポリエーテルケトン m=nであった。
Example 11 43.9 g (0,20
1 mol) of 4,4-difluorobenzophenone, 64.
9 g (0,201 mol) of 4,4-difluoroterephthalophenone, 72.5 g (0,684 mol) of sodium carbonate, 20 g of silica (Aerosil 300, manufactured by Nippon Aerosil Co., Ltd.) and 40 g of diphenyl sulfone were taken. , After replacing with nitrogen, the mixture was heated for 30 minutes with stirring.
The temperature was raised to 80″C and the reaction was carried out for 1.5 hours at this temperature.
Next, the temperature was raised to 325℃ over 30 minutes, and then further heated to 4.5℃.
A time reaction was performed. The obtained polymer had η3. /C is 0.85 dl/g (concentrated sulfuric acid, 0.1% by weight, 25°C
) polyetherketone m=n.

実施例10のポリエーテルケトンを上記のポリエーテル
ケトンに代えた以外は全て実施例10と同じ方法条件で
、TP短繊維を得て、炭素繊維とからなる複合シートを
得た。このシートは、TP短繊維がバラけることもなく
、よく混合一体化されたシートであり、極めて賦形性に
冨むものであった。
TP short fibers were obtained under the same method conditions as in Example 10, except that the polyetherketone in Example 10 was replaced with the polyetherketone described above, and a composite sheet consisting of carbon fibers was obtained. This sheet was a sheet in which the TP short fibers did not fall apart, were well mixed and integrated, and had extremely high formability.

炭素繊維と直交する方向の引張強度は3050 g /
cIaであり、嵩密度は0.34gZc−であった。
The tensile strength in the direction perpendicular to the carbon fiber is 3050 g/
cIa, and the bulk density was 0.34 gZc-.

実施例12 実施例1で用いた炭素繊維の代わりに、アラミド繊維(
デュポン社製ケプラー49 T−965、引張強度37
0Icg/llll112、引張弾性率13ton/m
m” 、直径12趨)を用いて、アラミド繊維の配合比
が60容量%になるようにして、他は全く同様にして複
合シートを作った。この複合シートは柔軟性がありて、
しかも手で持ち上げてもバラバラにならず、アラミド繊
維に直交する方向の引張強度は3110 g /CTa
であった。このシートを用いて、実施例6と同様にして
、板を作ったところ、曲げ強度62.8kg/閤2、曲
げ弾性率7.6ton/ml11”の板が得られた。
Example 12 Instead of the carbon fiber used in Example 1, aramid fiber (
DuPont Kepler 49 T-965, tensile strength 37
0Icg/llll112, tensile modulus 13ton/m
A composite sheet was made using the same method except that the blending ratio of aramid fibers was 60% by volume.This composite sheet was flexible.
Furthermore, it does not fall apart even when lifted by hand, and its tensile strength in the direction perpendicular to the aramid fibers is 3110 g/CTa.
Met. When a plate was made using this sheet in the same manner as in Example 6, a plate having a bending strength of 62.8 kg/2 and a bending modulus of elasticity of 7.6 tons/ml11'' was obtained.

実施例13 実施例1で用いた炭素繊維の代わりに、ガラス繊維(引
張強度300kg / mm ” 、引張弾性率?、4
ton/ ff[Ill 2、直径;13=+)を用い
て、ガラス繊維の配合比が60容量%になるようにして
、他は全く同様にして複合シートを作った。この複合シ
ートは柔軟性があって、しかも手で持ち上げてもバラバ
ラにならず、ガラス繊維に直交する方向の引張強度は3
410g/cdであった。このシートを用いて、実施例
6と同様にして、板を作ったところ、曲げ強度81 k
g / rrts ” 、曲げ弾性率4.1 ton/
am”の板が得られた。
Example 13 Instead of the carbon fiber used in Example 1, glass fiber (tensile strength 300 kg/mm'', tensile modulus ?, 4
A composite sheet was made in the same manner except that the blending ratio of glass fiber was 60% by volume using ton/ff [Ill 2, diameter; 13=+]. This composite sheet is flexible, does not fall apart when lifted by hand, and has a tensile strength of 3 in the direction perpendicular to the glass fibers.
It was 410g/cd. When a plate was made using this sheet in the same manner as in Example 6, the bending strength was 81 k.
g/rrts”, flexural modulus 4.1 ton/
am'' plate was obtained.

実施例14 繊維長32mmのチンロン66重合体繊維のスフをエア
ーレイ法でウェブにした0次に炭素繊維含有量が60容
量%にして、高圧水流処理をして複合シートを得た。炭
素繊維に直交する方向の引張強度は、2550 g /
 C11lであり、嵩密度は0.38g/cjであった
Example 14 A web made of Chinlon 66 polymer fibers with a fiber length of 32 mm was made into a web by an air-laying method, the carbon fiber content was adjusted to 60% by volume, and a composite sheet was obtained by high-pressure water jet treatment. The tensile strength in the direction perpendicular to the carbon fiber is 2550 g/
C11l, and the bulk density was 0.38 g/cj.

実施例6と同様にして、曲げ強度および弾性率を測定し
たら、それぞれ151kg/閣8および12.8ton
/閤3の値を示した。
When the bending strength and elastic modulus were measured in the same manner as in Example 6, they were 151 kg/kaku8 and 12.8 ton, respectively.
/ 閤3 value is shown.

実施例15 実施例2において、チンロン66重合体の代わりに実施
例1Oで用いたPPS重合体(フィリイプス・ペトロリ
ウム社製、ライドン重合体)を使い、350℃に過熱さ
れた水蒸気を紡孔に吹き付けてメルトブロー法によって
紡糸し、紡出された連続繊維を200メツシユの金網の
上にオーバーフィードし堆積させて、シートを作成した
Example 15 In Example 2, the PPS polymer used in Example 1O (manufactured by Philips Petroleum Co., Ltd., Rydon Polymer) was used instead of the Chinlon 66 polymer, and steam superheated to 350°C was blown into the spinneret. The continuous fibers were spun using a melt blow method, and the spun continuous fibers were overfed and deposited on a 200-mesh wire mesh to create a sheet.

このシート中のPPS繊維は、非常に細くて、顕微鏡で
観察すると、直径が2趨であった。自由度を測定しよう
としたが、細くて、直径10cmの円の中から特定の単
繊維を選ぶのが困難だったので、直径1mmの円の中の
特定の繊維を顕微鏡写真で撮り、屈曲している長さを測
定して自由度を求めたところ2.5であった。
The PPS fibers in this sheet were very thin and had two diameters when observed under a microscope. I tried to measure the degree of freedom, but it was difficult to select a specific single fiber from a 10cm diameter circle because it was so thin, so I took a microscopic photo of a specific fiber inside a 1mm diameter circle and bent it. The degree of freedom was found to be 2.5 by measuring the length.

上記PPS繊維シートを使って、実施例2と同様にして
、炭素繊維との複合シートを得た。この複合シートの炭
素繊維直交する方向の引張強度は1850g/cdであ
り、嵩密度は0.39 g /cdであり、外径11C
II、内径10CIのドーナツ状に細断しても、指で摘
んでもちあげたときバラバラにならず、作業性に優れて
いた。
Using the above PPS fiber sheet, a composite sheet with carbon fiber was obtained in the same manner as in Example 2. The tensile strength of this composite sheet in the direction perpendicular to the carbon fibers is 1850 g/cd, the bulk density is 0.39 g/cd, and the outer diameter is 11C.
II. Even when cut into donut shapes with an inner diameter of 10 CI, they did not fall apart when picked up with fingers and had excellent workability.

実施例16 比較例4で得られた混繊ヤーンにおいて、PEEK繊維
を1740デニール1580フイラメントに変更した以
外は、全く同様にして混繊ヤーンを得た。この混繊ヤー
ンを実施例1と同様にして引き揃え、一方向シートを作
成した。シート中のPEEK繊維の自由度は1.05で
あった。このPEF、に繊維を実施例1と同様にして1
0ffi1の短繊維にし、薄いスラリーを作成した。こ
のスラリーを用い、目付が0.4g/イになるように、
上記シートの上に抄造シートを作成した。ついで、実施
例1と同様にして高圧水流処理をして、更に、このシー
トを裏返しにして、その上に同様に0.4g/nlの抄
造シート(表裏の抄造シートの合計は、複合シート全体
に対し0.2容量%)を作成し、同様にして高圧水流処
理を行ったところ、 得られた複合シートは、柔軟性に富み、手で持ち上げて
もバラバラにならず、強化用繊維と直交する方向の引張
強度は21g/dであり、嵩密度は0.45g/dであ
った。
Example 16 A mixed yarn was obtained in exactly the same manner as in Comparative Example 4, except that the PEEK fiber was changed to a 1740 denier 1580 filament. This mixed fiber yarn was drawn in the same manner as in Example 1 to create a unidirectional sheet. The degree of freedom of the PEEK fibers in the sheet was 1.05. Fibers were added to this PEF in the same manner as in Example 1.
It was made into short fibers of 0ffi1 and a thin slurry was prepared. Using this slurry, so that the basis weight is 0.4 g/I,
A paper sheet was created on top of the above sheet. Next, high-pressure water jet treatment was carried out in the same manner as in Example 1, and this sheet was further turned over and a 0.4 g/nl paper sheet was placed on top of it (the total of the front and back paper sheets is the entire composite sheet). 0.2% by volume) and subjected to high-pressure water treatment in the same manner. The resulting composite sheet was highly flexible, did not fall apart even when lifted by hand, and did not cross at right angles to the reinforcing fibers. The tensile strength in this direction was 21 g/d, and the bulk density was 0.45 g/d.

実施例17 実施例9で用いた熱可塑性重合体の代わりに、ポリエー
テルイミド(ジェネラル・エレクトリッり社製ウルテム
 1000)を用いて、単糸5デニルのマルチフィラメ
ントを得た。抄造シートの目付を1.2g/rdにする
こと、混繊ヤーンを実施例1と同じ炭素繊維にすること
以外は実施例16と全く同様にしてシートが得られた。
Example 17 Instead of the thermoplastic polymer used in Example 9, polyetherimide (Ultem 1000, manufactured by General Electric) was used to obtain a single 5-denier multifilament. A sheet was obtained in exactly the same manner as in Example 16, except that the basis weight of the paper sheet was 1.2 g/rd, and the same carbon fiber as in Example 1 was used as the mixed fiber yarn.

同じポリエーテルイミドを使い、特開平1−09227
1号公報の実施例1にしたがいポリエーテルイミドエマ
ルジョンを得た。このエマルジョンを上記で得られたシ
ートに注いでシートに含浸させ、室温で乾燥させたとこ
ろ、炭素繊維の含有量が60容量%、ポリエーテルイミ
ド繊維含有量が1容量%、エマルジョン固形分含有量3
9容量%の組成を持つ複合シートが得られた。このシー
トにおいては、強化用繊維間にほぼ均一な状態でエマル
ジョン粒子が分散していた。この複合シートは他の実施
例の複合シートより若干硬いものの、直径1cIIlの
円柱に巻いても強化繊維が切断されない程度の柔軟性が
あって、手で持ち上げてもバラバラにならず、強化用繊
維に直交する方向の引張強度は74g/dで、嵩密度は
0.51g/C−dであった。
Using the same polyetherimide, JP-A-1-09227
A polyetherimide emulsion was obtained according to Example 1 of Publication No. 1. When this emulsion was poured onto the sheet obtained above to impregnate the sheet and dried at room temperature, the carbon fiber content was 60% by volume, the polyetherimide fiber content was 1% by volume, and the emulsion solid content was 3
A composite sheet with a composition of 9% by volume was obtained. In this sheet, the emulsion particles were almost uniformly dispersed between the reinforcing fibers. Although this composite sheet is slightly harder than the composite sheets of other examples, it is flexible enough that the reinforcing fibers will not be cut even when rolled into a cylinder with a diameter of 1 cIIl, and will not fall apart even when lifted by hand. The tensile strength in the direction perpendicular to was 74 g/d, and the bulk density was 0.51 g/C-d.

比較のために、抄造シートを使わないこと以外は、上記
と全く同様にシートを作成したところ、強化用繊維に平
行方向に少し曲げるとすぐに目割れをおこしたので、変
形させないようにしてテープを作り、強化用繊維と直交
する方向の引張強度を測定したところ、4g/c4であ
った。
For comparison, I made a sheet in exactly the same way as above, except that I did not use a paper-made sheet, but when I bent it a little parallel to the reinforcing fibers, it immediately cracked, so I tried to avoid deforming it by using tape. When the tensile strength in the direction perpendicular to the reinforcing fibers was measured, it was 4 g/c4.

本発明の上記複合シートを用いて、実施例7と同様に板
を作ったところ、曲げ強度171kg/mm”曲げ弾性
率11.1ton/mm”でボイドレスの板が得られた
When a plate was made using the composite sheet of the present invention in the same manner as in Example 7, a void-free plate with a bending strength of 171 kg/mm and a bending modulus of 11.1 ton/mm was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の複合シートは、従来の同種のシートに比べ、成
形品への加工に際し、作業性に優れ、しかも同じ成形条
件で、高強度な成形品が得られる。
The composite sheet of the present invention has excellent workability when processed into molded products compared to conventional sheets of the same type, and moreover, high-strength molded products can be obtained under the same molding conditions.

換言すれば、より広い成形条件で高強度な板が得られ成
形品とすることができ、この成形品は広い用途で用いる
ことができる。代表的な用途としては、コンポジットと
して、航空機や人工衛星の躯体や部品、ポート、サーフ
ボード等が挙げられる。
In other words, a high-strength plate can be obtained under a wider range of molding conditions and can be made into a molded product, and this molded product can be used in a wide range of applications. Typical applications include the bodies and parts of aircraft and artificial satellites, ports, surfboards, etc. as composites.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の複合シートから得られるコンポジット
の断面図であり、第2図は従来の複合シートから得られ
るコンポジットの断面図である。
FIG. 1 is a sectional view of a composite obtained from the composite sheet of the present invention, and FIG. 2 is a sectional view of a composite obtained from a conventional composite sheet.

Claims (1)

【特許請求の範囲】 1、強化用長繊維束を含んでなるウェブと単繊維状の熱
可塑性重合体繊維とからなる複合シートであって、該強
化用長繊維束の量が複合シートに基づき5〜80容量%
であり、該熱可塑性重合体繊維が上記ウェブを構成する
長繊維の間に入り込んで交絡一体化していることを特徴
とする繊維強化材料用複合シート。 2.強化用長繊維束を含んでなるウェブが、実質的に強
化用長繊維束のみからなる請求の範囲第1項に記載の複
合シート。 3、ウェブが、強化用長繊維束を一方向に引き揃えたウ
ェブである請求の範囲第1項または第2項に記載の複合
シート。 4、ウェブが、強化用長繊維束の織物である請求の範囲
第1または第2項に記載の複合シート。 5.熱可塑性重合体繊維が短繊維である請求の範囲第1
項から第4項までのいずれかに記載の複合シート。 6、熱可塑性重合体繊維が、自由度1.2以上の長繊維
である請求の範囲第1項から第4項までのいずれかに記
載の複合シート。 7、強化用長繊維束を含んでなるウェブに熱可塑性重合
体繊維を単繊維状に堆積させて、流体噴流を当てて、上
記ウェブを構成する長繊維の間に該熱可塑性重合体繊維
を入り込ませ交絡一体化することを特徴とする繊維強化
材料用複合シートの製造方法。 8、強化用長繊維束を含んでなるウェブに熱可塑性重合
体短繊維を単繊維状に含有させて、得られたウェブに流
体噴流を当てて、該ウェブを構成する長繊維の間に熱可
塑性重合体短繊維を入り込ませ交絡一体化することを特
徴とする繊維強化材料用複合シートの製造方法。 9、強化用長繊維束を含んでなるウェブとして、実質的
に強化用長繊維束のみからなるウェブを用いる請求の範
囲第7項または第8項記載の複合シートの製造方法。 10、強化用長繊維束を含んでなるウェブとして、強化
用長繊維束を一方向に引き揃えたウェブを用いる請求の
範囲第7項から第9項までのいずれかに記載の複合シー
トの製造方法。 11、強化用長繊維束を含んでなるウェブとして、強化
用長繊維束の織物を用いる請求の範囲第7項から第9項
までのいずれかに記載の複合シートの製造方法。 12、熱可塑性重合体繊維が短繊維である請求の範囲第
7項に記載の複合シートの製造方法。 13、熱可塑性重合体繊維が、自由度1.2以上の長繊
維である特許請求の範囲第7項に記載の複合シートの製
造方法。 14、強化用長繊維束を含んでなるウェブとして、実質
的に強化用長繊維のみからなるウェブを用いる請求の範
囲第12項または第13項に記載の複合シートの製造方
法。
[Scope of Claims] 1. A composite sheet comprising a web containing reinforcing long fiber bundles and monofilamentous thermoplastic polymer fibers, wherein the amount of the reinforcing long fiber bundles is based on the composite sheet. 5-80% by volume
A composite sheet for a fiber-reinforced material, characterized in that the thermoplastic polymer fibers are intertwined and integrated between the long fibers constituting the web. 2. 2. The composite sheet according to claim 1, wherein the web comprising reinforcing long fiber bundles consists essentially of only reinforcing long fiber bundles. 3. The composite sheet according to claim 1 or 2, wherein the web is a web made of reinforcing long fiber bundles aligned in one direction. 4. The composite sheet according to claim 1 or 2, wherein the web is a woven fabric of reinforcing long fiber bundles. 5. Claim 1, wherein the thermoplastic polymer fibers are short fibers.
The composite sheet according to any one of Items 1 to 4. 6. The composite sheet according to any one of claims 1 to 4, wherein the thermoplastic polymer fibers are long fibers with a degree of freedom of 1.2 or more. 7. Thermoplastic polymer fibers are deposited in the form of single fibers on a web containing a reinforcing long fiber bundle, and a fluid jet is applied to distribute the thermoplastic polymer fibers between the long fibers constituting the web. A method for producing a composite sheet for fiber-reinforced material, characterized by interlacing and interlacing and integrating. 8. A web containing a reinforcing long fiber bundle is made to contain thermoplastic polymer short fibers in the form of single fibers, and a fluid jet is applied to the resulting web to create heat between the long fibers constituting the web. A method for producing a composite sheet for fiber-reinforced material, characterized by incorporating short plastic polymer fibers and intertwining and integrating them. 9. The method for producing a composite sheet according to claim 7 or 8, wherein the web containing the reinforcing long fiber bundles is a web consisting essentially only of the reinforcing long fiber bundles. 10. Manufacture of a composite sheet according to any one of claims 7 to 9, using a web in which the reinforcing long fiber bundles are aligned in one direction as the web containing the reinforcing long fiber bundles. Method. 11. The method for producing a composite sheet according to any one of claims 7 to 9, in which a woven fabric of reinforcing long fiber bundles is used as the web containing the reinforcing long fiber bundles. 12. The method for producing a composite sheet according to claim 7, wherein the thermoplastic polymer fibers are short fibers. 13. The method for producing a composite sheet according to claim 7, wherein the thermoplastic polymer fibers are long fibers with a degree of freedom of 1.2 or more. 14. The method for producing a composite sheet according to claim 12 or 13, in which the web containing the reinforcing long fiber bundle is a web consisting essentially only of reinforcing long fibers.
JP1324078A 1988-12-15 1989-12-15 Composite sheet for fiber reinforced material and method for producing the same Expired - Lifetime JPH089164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1324078A JPH089164B2 (en) 1988-12-15 1989-12-15 Composite sheet for fiber reinforced material and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP31509188 1988-12-15
JP1-85756 1989-04-06
JP63-315091 1989-04-06
JP8575689 1989-04-06
JP1324078A JPH089164B2 (en) 1988-12-15 1989-12-15 Composite sheet for fiber reinforced material and method for producing the same
CA002010559A CA2010559C (en) 1988-12-15 1990-02-21 Composite sheet for fibrous reinforcing material

Publications (2)

Publication Number Publication Date
JPH0347713A true JPH0347713A (en) 1991-02-28
JPH089164B2 JPH089164B2 (en) 1996-01-31

Family

ID=27426803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1324078A Expired - Lifetime JPH089164B2 (en) 1988-12-15 1989-12-15 Composite sheet for fiber reinforced material and method for producing the same

Country Status (1)

Country Link
JP (1) JPH089164B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126902A (en) * 1992-10-19 1994-05-10 Toyobo Co Ltd Fiber reinforced composite material
JPH08224412A (en) * 1995-02-20 1996-09-03 Toray Ind Inc Nonwoven fabric, filter medium made from the same and these production
JP2002046695A (en) * 2000-08-02 2002-02-12 Taiyo Kogyo Corp Resin finished fiber sheet for airship, manufacturing method therefor, and bonding method thereof
JP2003165851A (en) * 2001-11-28 2003-06-10 Fukui Prefecture Fiber-reinforced thermoplastic resin sheet, structural material using the same and method for producing fiber- reinforced thermoplastic resin sheet
WO2003091015A1 (en) * 2002-04-23 2003-11-06 Toray Industries, Inc. Prepreg, process for producing the same, and molded article
KR100402207B1 (en) * 1996-08-20 2004-03-26 도레이 가부시끼가이샤 Nonwoven fabrics and filter media consisting of them and methods for their preparation
JP2010526708A (en) * 2007-05-15 2010-08-05 ヘイデン・コックス・ピーティーワイ・リミテッド Surfboard and surfboard manufacturing method
WO2010144134A1 (en) 2009-06-11 2010-12-16 Spunfab, Ltd Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
WO2011059884A3 (en) * 2009-11-16 2011-09-22 Invista Technologies S.A R.L. Elastic fabric with adhesive
JP2013533137A (en) * 2010-06-11 2013-08-22 ティコナ・エルエルシー Structural members formed from solid and linear profiles
JP2015044318A (en) * 2013-08-27 2015-03-12 王子ホールディングス株式会社 Thermoplastic prepreg and method of manufacturing the thermoplastic prepreg
JP2015227019A (en) * 2014-06-02 2015-12-17 株式会社Aikiリオテック Apparatus for manufacturing prepreg containing thermoplastic resin
WO2017094633A1 (en) 2015-12-01 2017-06-08 新日鉄住金マテリアルズ株式会社 In situ polymerization type thermoplastic prepreg, thermoplastic composite and method for producing same
JP2017132220A (en) * 2016-01-29 2017-08-03 岡本株式会社 Method for manufacturing carbon fiber-reinforced plastic and carbon fiber-reinforced plastic
WO2018021336A1 (en) * 2016-07-28 2018-02-01 住友ベークライト株式会社 Composite molded article, intermediate for composite molded article, method of manufacturing composite molded article, and interior material for transport device
WO2018043360A1 (en) 2016-08-31 2018-03-08 帝人株式会社 Laminate and method for producing fiber-reinforced resin composite
JP2019108543A (en) * 2017-12-19 2019-07-04 上野製薬株式会社 Thermoplastic resin prepreg and composite material
JP2020056148A (en) * 2014-09-30 2020-04-09 ザ・ボーイング・カンパニーThe Boeing Company Filament network for composite structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6654497B2 (en) * 2016-04-05 2020-02-26 三菱日立パワーシステムズ株式会社 Steam turbine plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845678A (en) * 1971-10-14 1973-06-29
JPS52135670U (en) * 1976-03-31 1977-10-15
JPS56112575A (en) * 1980-02-07 1981-09-04 Dynic Corp Production of composite sheet like structure
JPS6485756A (en) * 1987-09-29 1989-03-30 Asahi Glass Co Ltd Manufacture of safety glass
JPH01111053A (en) * 1987-10-20 1989-04-27 Mitsubishi Uka Badische Co Ltd Production of fibrous laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845678A (en) * 1971-10-14 1973-06-29
JPS52135670U (en) * 1976-03-31 1977-10-15
JPS56112575A (en) * 1980-02-07 1981-09-04 Dynic Corp Production of composite sheet like structure
JPS6485756A (en) * 1987-09-29 1989-03-30 Asahi Glass Co Ltd Manufacture of safety glass
JPH01111053A (en) * 1987-10-20 1989-04-27 Mitsubishi Uka Badische Co Ltd Production of fibrous laminate

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126902A (en) * 1992-10-19 1994-05-10 Toyobo Co Ltd Fiber reinforced composite material
JPH08224412A (en) * 1995-02-20 1996-09-03 Toray Ind Inc Nonwoven fabric, filter medium made from the same and these production
KR100402207B1 (en) * 1996-08-20 2004-03-26 도레이 가부시끼가이샤 Nonwoven fabrics and filter media consisting of them and methods for their preparation
JP2002046695A (en) * 2000-08-02 2002-02-12 Taiyo Kogyo Corp Resin finished fiber sheet for airship, manufacturing method therefor, and bonding method thereof
JP2003165851A (en) * 2001-11-28 2003-06-10 Fukui Prefecture Fiber-reinforced thermoplastic resin sheet, structural material using the same and method for producing fiber- reinforced thermoplastic resin sheet
WO2003091015A1 (en) * 2002-04-23 2003-11-06 Toray Industries, Inc. Prepreg, process for producing the same, and molded article
JPWO2003091015A1 (en) * 2002-04-23 2005-09-02 東レ株式会社 Prepreg, manufacturing method thereof and molded product
CN100344443C (en) * 2002-04-23 2007-10-24 东丽株式会社 Prepreg, process for producing the same, and molded article
US7344667B2 (en) 2002-04-23 2008-03-18 Toray Industries, Inc. Prepreg, production process thereof, and molded article
KR100971686B1 (en) * 2002-04-23 2010-07-22 도레이 카부시키가이샤 Prepreg, process for producing the same, and molded article
JP2010526708A (en) * 2007-05-15 2010-08-05 ヘイデン・コックス・ピーティーワイ・リミテッド Surfboard and surfboard manufacturing method
WO2010144134A1 (en) 2009-06-11 2010-12-16 Spunfab, Ltd Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
WO2011059884A3 (en) * 2009-11-16 2011-09-22 Invista Technologies S.A R.L. Elastic fabric with adhesive
JP2013533137A (en) * 2010-06-11 2013-08-22 ティコナ・エルエルシー Structural members formed from solid and linear profiles
JP2015044318A (en) * 2013-08-27 2015-03-12 王子ホールディングス株式会社 Thermoplastic prepreg and method of manufacturing the thermoplastic prepreg
JP2015227019A (en) * 2014-06-02 2015-12-17 株式会社Aikiリオテック Apparatus for manufacturing prepreg containing thermoplastic resin
US11220068B2 (en) 2014-09-30 2022-01-11 The Boeing Company Method for forming a composite structure and a fiber layer for a composite structure
JP2020056148A (en) * 2014-09-30 2020-04-09 ザ・ボーイング・カンパニーThe Boeing Company Filament network for composite structure
WO2017094633A1 (en) 2015-12-01 2017-06-08 新日鉄住金マテリアルズ株式会社 In situ polymerization type thermoplastic prepreg, thermoplastic composite and method for producing same
KR20180089413A (en) 2015-12-01 2018-08-08 신닛테츠스미킹 마테리알즈 가부시키가이샤 Field-polymerizable thermoplastic prepregs, thermoplastic composites and methods for their preparation
EP4108714A1 (en) 2015-12-01 2022-12-28 NIPPON STEEL Chemical & Material Co., Ltd. Methods for producing an in situ polymerized type thermoplastic prepreg
JP2017132220A (en) * 2016-01-29 2017-08-03 岡本株式会社 Method for manufacturing carbon fiber-reinforced plastic and carbon fiber-reinforced plastic
WO2018021336A1 (en) * 2016-07-28 2018-02-01 住友ベークライト株式会社 Composite molded article, intermediate for composite molded article, method of manufacturing composite molded article, and interior material for transport device
JPWO2018021336A1 (en) * 2016-07-28 2018-08-02 住友ベークライト株式会社 COMPOSITE MOLDED ARTICLE, INTERMEDIATE FOR COMPOSITE MOLDED ARTICLE, METHOD FOR PRODUCING COMPOSITE MOLDED ARTICLE, AND INTERIOR MATERIAL FOR TRANSPORTATION EQUIPMENT
WO2018043360A1 (en) 2016-08-31 2018-03-08 帝人株式会社 Laminate and method for producing fiber-reinforced resin composite
JP2019108543A (en) * 2017-12-19 2019-07-04 上野製薬株式会社 Thermoplastic resin prepreg and composite material

Also Published As

Publication number Publication date
JPH089164B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JPH0347713A (en) Composite sheet for fiber-reinforced material
US5286553A (en) Composite sheet for fibrous reinforcing material
AU768434B2 (en) Multiaxially stitched base material for reinforcing and fiber reinforced plastic, and method for preparing them
JPH11107105A (en) Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic
JPH08260276A (en) Composite yarn,permanently deformable and shrinkable or shrunk fabric material prepared of this yarn and its preparation and use
JP5919755B2 (en) Manufacturing method of fiber material
WO2013175581A1 (en) Fiber-reinforced plastic and method for producing same
JP2001226850A (en) Reinforcing fiber fabric, method for producing the same and prepreg using the reinforcing fiber fabric
CA2010559C (en) Composite sheet for fibrous reinforcing material
KR20150120340A (en) Stampable sheet
JPH0797750A (en) Production of fabric and fiber reinforced laminate for use in producing fiber reinforced composite material and laminate
JPH02255735A (en) Fiber reinforced composite sheet
JPH03234851A (en) Reinforcing stable fiber sheet
JP5877431B2 (en) Method for producing carbon fiber reinforced composite material
JP2002317371A (en) Stitch fabric of carbon fiber
JPH02308824A (en) Material for thermoplastic composite
JP3018413B2 (en) Method for producing mixed fiber yarn for composite
JP2013049750A (en) Organic fiber random mat and fiber composite material using the same
JPH04183729A (en) Molding material for thermoplastic composite
KR930011632B1 (en) Composite sheet for fiber-rein forced material and manufacturing process therefor
JPH06228837A (en) Thermoplastic yarn for composite
JPH06155460A (en) Yarn for thermoplastic composite
JP3337089B2 (en) Composite fiber cloth
JPH02139438A (en) Continuous filament bundle reinforced by mixing stable fibers
JPH0457933A (en) Woven fabric for molding composite material reinforced in one direction