JPH0345892A - Separate type heat exchanger - Google Patents
Separate type heat exchangerInfo
- Publication number
- JPH0345892A JPH0345892A JP17959289A JP17959289A JPH0345892A JP H0345892 A JPH0345892 A JP H0345892A JP 17959289 A JP17959289 A JP 17959289A JP 17959289 A JP17959289 A JP 17959289A JP H0345892 A JPH0345892 A JP H0345892A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- tube
- refrigerant
- heat
- exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 38
- 238000004781 supercooling Methods 0.000 abstract description 8
- 238000011144 upstream manufacturing Methods 0.000 abstract 3
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は暖房に用いる空気と冷媒の熱交換器に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air/refrigerant heat exchanger used for space heating.
従来の技術
従来、この種の暖房用室内熱交換器は性能向上をはかる
ために、フィンのルーバー形状に工夫を加えて、空気側
の熱伝達率を向上させたりしているが、冷媒側としては
、冷媒通路である伝熱管を内面溝付き管とし熱伝達率を
向上させたり、冷媒の流れが空気の流れと対向流となる
ように伝熱管を接続溝威し熱交換効率を向上させたりす
るものがある。Conventional technology Conventionally, in order to improve the performance of this type of indoor heat exchanger for heating, the shape of the fins was modified to improve the heat transfer coefficient on the air side. In order to improve heat transfer efficiency, heat transfer tubes, which serve as refrigerant passages, are grooved on the inside to improve heat transfer efficiency, and heat exchange efficiency is improved by connecting grooves in heat transfer tubes so that the flow of refrigerant is in the opposite direction to the flow of air. There is something to do.
発明が解決しようとする課題
しかしながら暖房用室内熱交換器として、さらに性能向
上をはかるためには、凝縮器としての熱交換器から流出
する液冷媒の過冷却度を大きくとる必要があるが、冷媒
流入側の高温伝熱管からフィンを通しての流出側の伝熱
管への熱伝導により過冷却度が十分とれないという課題
がある。また、伝熱管の熱伝達率を向上させるために内
面溝付き管を採用することはコストを上昇させ、かつ冷
媒側の流路抵抗を増大させて熱搬送に要するエネルギー
費を上昇させるという課題がある。Problems to be Solved by the Invention However, in order to further improve the performance of an indoor heat exchanger for heating, it is necessary to increase the degree of supercooling of the liquid refrigerant flowing out from the heat exchanger as a condenser. There is a problem in that a sufficient degree of supercooling cannot be achieved due to heat conduction from the high temperature heat transfer tube on the inflow side to the heat transfer tube on the outflow side through the fins. In addition, adopting internally grooved tubes to improve the heat transfer coefficient of heat transfer tubes increases costs, and increases the flow resistance on the refrigerant side, which increases the energy cost required for heat transfer. be.
本発明はかかる従来の課題を解消するもので、aIl器
としての熱交換器の過冷却度を十分とり性能向上をはか
り、かつ材料コストやランニングコストの上昇をおさえ
ることを目的とする。The present invention solves such conventional problems, and aims to sufficiently improve the degree of subcooling of a heat exchanger as an AIL device, improve performance, and suppress increases in material costs and running costs.
課題を解決するための手段
上記課題を解決するために本発明の分離型熱交換器は、
フィンチューブ式熱交換器を風上側と風下側に分離して
並べ、a検器として作用する時の冷媒流れが風下側熱交
換器から風上側熱交換器へと流れる構成とし、風下側熱
交換器の伝熱管は内面溝付き管とし、風上側熱交換器の
伝熱管は内面平滑管とする構成としている。Means for Solving the Problems In order to solve the above problems, the separate heat exchanger of the present invention has the following features:
The fin-tube heat exchangers are arranged separately on the windward side and the leeward side, and the refrigerant flow when acting as an a-detector flows from the leeward side heat exchanger to the windward side heat exchanger. The heat exchanger tubes of the heat exchanger are grooved tubes on the inside, and the heat exchanger tubes of the windward side heat exchanger are smooth tubes on the inside.
作用
本発明は上記した構成により、凝縮器として作用する時
の液冷媒部分は風上側にあるため、流入してくる昇温前
の空気と熱交換することと、風下側の高温冷媒が通る部
分とはフィンが分離し熱的に絶縁されることから過冷却
度が大きくとれ熱交換性能が大幅に向上する。また、風
下側熱交換器は伝熱管を内面溝付き管とし、特に冷媒の
2相域での熱伝達率向上に寄与させているが、風上側熱
交換器の伝熱管は、液相では内面溝付き管にしても熱伝
達率向上への効果は小さく、むしろ流路抵抗が大きくな
ることから、内面平滑管として材料コストの低減と、熱
搬送に要するエネルギーコストの低減をはかることがで
きる。Function The present invention has the above-described configuration, so that when it acts as a condenser, the liquid refrigerant part is located on the windward side, so it exchanges heat with the inflowing air before temperature rise, and the part on the leeward side through which the high temperature refrigerant passes. Since the fins are separated and thermally insulated, the degree of supercooling can be increased and heat exchange performance is greatly improved. In addition, the heat exchanger tubes in the leeward side heat exchanger are grooved tubes on the inside, which contributes to improving the heat transfer coefficient especially in the two-phase region of the refrigerant. Even if a grooved tube is used, the effect on improving the heat transfer coefficient is small, and the flow path resistance increases. Therefore, by using a tube with a smooth inner surface, it is possible to reduce the material cost and the energy cost required for heat transfer.
実施例
以下、本発明の実施例を添付図面にもとづいて説明する
。Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.
第1図、第2図において、■は凝1器として作用する熱
交換器の冷媒入口配管、2は冷媒出口配管、3は風上側
熱交換器、4は風下側熱交換器、5は凪上側熱換器の内
面平滑伝熱管、6は風下側熱換器の内面溝付き伝熱管で
あり、7は各々の伝熱管5,6と直交して一定間隔で平
行に並べられたフィンである。風上側熱交換器3と風下
側熱交換器4はフィン7が分離して並べられており、凝
縮器として作用する時の冷媒流れが風下側熱交換器4か
ら風上側熱交換器3へと流れるように伝熱管を接続構成
し、この伝熱管を風上側熱交換器3は内面平滑伝熱管5
とし、風下側熱交換器4は内面溝付き伝熱管としている
。In Figures 1 and 2, ■ is the refrigerant inlet pipe of the heat exchanger that acts as a condenser, 2 is the refrigerant outlet pipe, 3 is the windward heat exchanger, 4 is the leeward heat exchanger, and 5 is the calm. 6 is a heat exchanger tube with a smooth inner surface of the upper heat exchanger, 6 is a heat exchanger tube with an inner groove of the leeward heat exchanger, and 7 is a fin arranged in parallel at regular intervals perpendicular to each heat exchanger tube 5, 6. . The windward heat exchanger 3 and the leeward heat exchanger 4 are arranged with separate fins 7, so that the refrigerant flow when acting as a condenser is from the leeward heat exchanger 4 to the windward heat exchanger 3. The heat exchanger tubes are connected so as to flow, and the windward side heat exchanger 3 is connected to the heat exchanger tube 5 with a smooth inner surface.
The leeward heat exchanger 4 is a heat exchanger tube with internal grooves.
上記構成において、凝縮器として作用するとき、高温高
圧の冷媒ガスは冷媒入口配管1より、風下側熱交換器4
の内面溝付き伝熱管6に入り、フィン7を通じ放熱し凝
縮してゆき、風下側熱交換器4から風上側熱交換器3へ
移りつつ冷媒は液化が進み、風上側熱交換器3の内面平
滑伝熱管5では冷媒出口配管2に近づくにつれて過冷却
度が促進される。ここで、風下側熱交換器4と風上側熱
交換器3とのフィン7は分離しているために、相互にフ
ィン7を通じての熱伝導はほぼ熱的に絶縁されており、
風上側熱交換器3の冷媒出口配管2近傍の内面平滑伝熱
管5内の過冷却冷媒液は風下側熱交換器4の冷媒入口配
管1近傍の内面溝付き伝熱管6の高温冷媒の熱影響をほ
とんど受けることがなく、過冷却度が十分にとれること
になる。In the above configuration, when acting as a condenser, high temperature and high pressure refrigerant gas is passed from the refrigerant inlet pipe 1 to the leeward heat exchanger 4.
The refrigerant enters the inner grooved heat exchanger tube 6, radiates heat through the fins 7, and condenses.The refrigerant progresses to liquefy as it moves from the leeward heat exchanger 4 to the windward heat exchanger 3, and the refrigerant liquefies the inner surface of the windward heat exchanger 3. In the smooth heat exchanger tube 5, the degree of supercooling is accelerated as it approaches the refrigerant outlet pipe 2. Here, since the fins 7 of the leeward side heat exchanger 4 and the windward side heat exchanger 3 are separated, heat conduction through the fins 7 is almost thermally insulated from each other.
The supercooled refrigerant liquid in the smooth inner surface heat transfer tube 5 near the refrigerant outlet pipe 2 of the windward heat exchanger 3 is affected by the heat of the high temperature refrigerant in the inner grooved heat transfer tube 6 near the refrigerant inlet pipe 1 of the leeward heat exchanger 4. This results in a sufficient degree of supercooling.
また、風下側熱交換器4は伝熱管を内面溝付き伝熱管6
とし、特に冷媒の2相域での凝縮液化の過程での熱伝達
率向上の効果を増大させているが、風上側熱交換器3の
伝熱管は、液相では内面溝付き管にしても熱伝達率向上
への効果は小さく、むしろ流路抵抗を大きくすることか
ら、内面平滑伝熱管5として材料コストの低減と熱搬送
に要するエネルギーコストの低減をはかることができる
。In addition, the leeward side heat exchanger 4 has a heat exchanger tube with an inner grooved heat exchanger tube 6.
This increases the effect of improving the heat transfer coefficient, especially in the process of condensation and liquefaction in the two-phase region of the refrigerant. Since the effect on improving the heat transfer coefficient is small and the flow path resistance is increased, the heat exchanger tube 5 with a smooth inner surface can reduce the material cost and the energy cost required for heat transfer.
発明の効果
以上のように本発明の分離型熱交換器によれば、次の効
果が得られる。Effects of the Invention As described above, the separate heat exchanger of the present invention provides the following effects.
フィンチューブ式熱交換器を風上側と風下側に分離して
並べ、凝縮器として作用する時の冷媒流れが風下側熱交
換器から風上側熱交換器へと流れる構成とし、風下側熱
交換器の伝熱管は内面溝付き管とし、風上側熱交換器の
伝熱管は内面平滑管とする構成としているので、凝縮器
として作用する時の液冷媒部分は風上側にあるため、流
入してくる昇温前の空気と熱交換することと、風下側の
高温冷媒が通る部分とは熱的に絶縁され熱伝導の影響を
受けることがないこととから過冷却度が大きくとれ、熱
交換性能が大幅に向上する。また、風上側熱交換器の伝
熱管は内面平滑なため材料コストが低減でき、かつ、流
路抵抗が小さくなることから、熱搬送に要するエネルギ
ーコストも低減できる。The fin-tube heat exchangers are arranged separately on the windward side and the leeward side, and the refrigerant flow when acting as a condenser flows from the leeward side heat exchanger to the windward side heat exchanger. The heat exchanger tubes in the heat exchanger are grooved tubes on the inside, and the heat exchanger tubes in the upwind side heat exchanger are smooth tubes on the inside, so the liquid refrigerant part when acting as a condenser is on the windward side, so it flows in. Because it exchanges heat with the air before temperature rise, and because it is thermally insulated from the part on the leeward side through which high-temperature refrigerant passes and is not affected by heat conduction, a large degree of supercooling can be obtained, and heat exchange performance is improved. Significantly improved. Furthermore, since the heat exchanger tubes of the windward side heat exchanger have smooth inner surfaces, the material cost can be reduced, and since the flow path resistance is reduced, the energy cost required for heat transfer can also be reduced.
第1図は本発明の一実施例における分離型熱交換器の冷
媒流路構t2.図、第2図は同分離型熱交換器の断面構
成図である。
1・・・・・・冷媒人口配管、2・・・・・・冷媒出口
配管、3・・・・・・風上側熱交換器、4・・・・・・
風下側熱交換器、5・・・・・・内面平滑伝熱管、6・
・・・・・内面溝付き伝熱管、7・・・・・・フィン。FIG. 1 shows a refrigerant flow path structure t2. of a separate heat exchanger in an embodiment of the present invention. 2 are cross-sectional configuration diagrams of the separation type heat exchanger. 1... Refrigerant artificial piping, 2... Refrigerant outlet piping, 3... Windward side heat exchanger, 4...
Downward side heat exchanger, 5...Smooth inner surface heat exchanger tube, 6.
... Heat exchanger tube with internal groove, 7 ... Fin.
Claims (1)
に直交し内部を冷媒が流動する伝熱管群とからなる熱交
換器を熱交換する気流に対して風上側と風下側とに並べ
、凝縮器として作用する時の冷媒流れが風下側熱交換器
から風上側熱交換器へと流れる構成とし、風下側熱交換
器の伝熱管群は内面溝付き管とし、風上側熱交換器の伝
熱管群は内面平滑管とした分離型熱交換器。A heat exchanger consisting of a group of fins arranged in parallel at regular intervals and a group of heat transfer tubes that are perpendicular to the fin groups and through which a refrigerant flows are arranged on the windward side and the leeward side with respect to the airflow to exchange heat, The refrigerant flow when acting as a condenser is configured to flow from the leeward heat exchanger to the windward heat exchanger, and the heat exchanger tube group of the leeward heat exchanger is a tube with internal grooves. The heat tube group is a separate heat exchanger with smooth inner surfaces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17959289A JPH0345892A (en) | 1989-07-11 | 1989-07-11 | Separate type heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17959289A JPH0345892A (en) | 1989-07-11 | 1989-07-11 | Separate type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0345892A true JPH0345892A (en) | 1991-02-27 |
Family
ID=16068424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17959289A Pending JPH0345892A (en) | 1989-07-11 | 1989-07-11 | Separate type heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0345892A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009168383A (en) * | 2008-01-18 | 2009-07-30 | Hitachi Appliances Inc | Heat exchanger and heat pump type water heater using the same |
JP2012247180A (en) * | 2012-08-10 | 2012-12-13 | Hitachi Appliances Inc | Heat exchanger |
-
1989
- 1989-07-11 JP JP17959289A patent/JPH0345892A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009168383A (en) * | 2008-01-18 | 2009-07-30 | Hitachi Appliances Inc | Heat exchanger and heat pump type water heater using the same |
JP2012247180A (en) * | 2012-08-10 | 2012-12-13 | Hitachi Appliances Inc | Heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN208655616U (en) | A kind of phase transformation chip radiator | |
CN101031754B (en) | Air conditioner and method of producing air conditioner | |
TW448278B (en) | Combined evaporator/accumulator/suction line heat exchanger | |
CN203785329U (en) | Heat pump heat exchanger with low pressure drop distribution pipe | |
WO2015063853A1 (en) | Refrigeration cycle and air conditioner | |
JP4845987B2 (en) | Air conditioning system | |
CN205373120U (en) | Air conditioning system | |
CN101464077A (en) | Finned tube heat exchanger of air conditioner | |
JP3256634B2 (en) | Heat exchanger | |
CN106885395A (en) | A kind of Thermal Performance of Micro Channels device assembly and air-conditioning refrigeration system | |
JPH0345892A (en) | Separate type heat exchanger | |
JPS621520B2 (en) | ||
JPH0829012A (en) | Heat pump device | |
JP5404571B2 (en) | Heat exchanger and equipment | |
JPH10160266A (en) | Heat exchanger for air conditioner | |
CN209165620U (en) | A kind of hot pipe cooling dehumidification device of cross arrangement formula | |
JPH10196984A (en) | Air conditioner | |
CN100470171C (en) | Tiny channel aluminum strip tubular mode heat pump type heat exchanger of air conditioner / air conditioning machinery | |
CN205690757U (en) | Condensing system and outdoor unit and air conditioner using same | |
CN111189220B (en) | Waste heat recovery system of circulating heat pump hot water unit | |
JPH04222363A (en) | Room heat exchanger for heat pump air conditioner | |
JPS5612997A (en) | Heat exchanger | |
JPS57127732A (en) | Air conditioner | |
JP3461857B2 (en) | High-temperature regenerator integrated with high-temperature regenerator Low-temperature regenerator using exhaust gas | |
JPS63161360A (en) | Refrigeration cycle |