Nothing Special   »   [go: up one dir, main page]

JPH0345780B2 - - Google Patents

Info

Publication number
JPH0345780B2
JPH0345780B2 JP59113799A JP11379984A JPH0345780B2 JP H0345780 B2 JPH0345780 B2 JP H0345780B2 JP 59113799 A JP59113799 A JP 59113799A JP 11379984 A JP11379984 A JP 11379984A JP H0345780 B2 JPH0345780 B2 JP H0345780B2
Authority
JP
Japan
Prior art keywords
temperature
microcomputer
signal
circuit
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59113799A
Other languages
Japanese (ja)
Other versions
JPS60257332A (en
Inventor
Hirohiko Kazeto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59113799A priority Critical patent/JPS60257332A/en
Publication of JPS60257332A publication Critical patent/JPS60257332A/en
Publication of JPH0345780B2 publication Critical patent/JPH0345780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Temperature (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば直流電動機の電機子巻線温度
をマイクロコンピユータを用いて推定する温度推
定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a temperature estimating device for estimating the armature winding temperature of, for example, a DC motor using a microcomputer.

〔従来技術〕[Prior art]

はじめに、温度を推定しようとする電気機器と
して、直流電動機の場合を例にとり、その温度上
昇を推定する原理を説明する。
First, the principle of estimating the temperature rise will be explained using a DC motor as an example of an electrical device whose temperature is to be estimated.

直流電動機の温度上昇は式で与えられる。 The temperature rise of a DC motor is given by the formula:

ここで、各変数は次の様になる。 Here, each variable is as follows.

θ:上昇温度〔℃〕 Q:直流電動機電機子巻線の熱容量〔W〕 P: 〃 〃 のエネルギー消費率
〔W〕 α: 〃 〃 の1℃上昇ごとの 熱放散率〔W/℃〕 t:任意時刻〔sec〕 また直流電動機電機子巻線エネルギー消費率P
がほぼ銅損であるとすれば、 P=I2R〔W〕 … となる。ここで、 I:電機子電流 〔A〕 R:電機子巻線抵抗 〔Ω〕 となる。
θ: Temperature rise [℃] Q: Heat capacity of DC motor armature winding [W] P: Energy consumption rate of 〃 〃 [W] α: Heat dissipation rate per 1℃ increase of 〃 〃 [W/℃] t : Arbitrary time [sec] Also, DC motor armature winding energy consumption rate P
If it is almost copper loss, then P=I 2 R[W]... Here, I: armature current [A] R: armature winding resistance [Ω].

さらに、温度時定数Tを、 T=4.2Q/α … とすれば、式は、式、式より、次の様にな
る。
Furthermore, if the temperature time constant T is set as T=4.2Q/α..., the equation becomes as follows from the equation.

θ=R/αI2(1−e−t/T) … よつて、使用する直流電動機により電機子巻線
抵抗R,α,T(=4.2Q/α)は決定できるので、 電機子電流Iを検出して、式を計算すれば上昇
温度θが推定できる。
θ=R/αI 2 (1-e-t/T)... Therefore, the armature winding resistances R, α, and T (=4.2Q/α) can be determined depending on the DC motor used, so the armature current I By detecting and calculating the formula, the rising temperature θ can be estimated.

第4図は、従来の直流電動機の電機子巻線温度
の推定装置の構成ブロツク図である。この装置
は、直流電動機の電機子電流を検出する検出回路
1と、この検出回路1からの信号を入力するマイ
クロコンピユータ2とで構成されている。
FIG. 4 is a block diagram of a conventional apparatus for estimating armature winding temperature of a DC motor. This device is comprised of a detection circuit 1 that detects the armature current of a DC motor, and a microcomputer 2 that inputs signals from the detection circuit 1.

第5図は、マイクロコンピユータ2で行なう動
作の機能ブロツク図であり、第6図はその動作を
示すフローチヤートである。マイクロコンピユー
タ2は、所定のプログラムに従つて、電機子電流
値Iから式に従つて上昇温度θを演算するもの
である。すなわち、第5図において、21は検出
回路1から電流値Iを自乗する回路、22は、こ
れに電機子巻線抵抗Rを乗算するとともに、電機
子巻線の1℃上昇ごとの熱放散率αで除算する回
路、23は引算回路、24は引算回路23からの
信号を温度時定数Tで除算する回路、25はこの
除算回路24からの信号をラプラス演算子Sによ
り積分する回路で、ここから、上昇温度θを示す
信号を得る。この上昇温度を示す信号は、引算回
路23に負帰還されている。
FIG. 5 is a functional block diagram of the operation performed by the microcomputer 2, and FIG. 6 is a flowchart showing the operation. The microcomputer 2 calculates the temperature rise θ from the armature current value I according to a formula according to a predetermined program. That is, in FIG. 5, 21 is a circuit that squares the current value I from the detection circuit 1, and 22 is a circuit that multiplies this by the armature winding resistance R, and the heat dissipation rate of the armature winding per 1°C rise. 23 is a subtraction circuit; 24 is a circuit that divides the signal from the subtraction circuit 23 by the temperature time constant T; 25 is a circuit that integrates the signal from the division circuit 24 using the Laplace operator S. , from which a signal indicating the rising temperature θ is obtained. A signal indicating this increased temperature is negatively fed back to the subtraction circuit 23.

このような機能ブロツク図で示されるととも
に、第6図フローチヤートのような動作をなすマ
イクロコンピユータを用いた従来装置において
は、直流電動機を最初にオンにし、初期温度から
温度上昇する場合は正確に温度を推定することが
できるが、電動機を駆動後、例えばt1時間経過後
電源をオフとし、t2時間となつたら再び電源をオ
ンとして駆動させるような場合、t2時点での電機
子巻線の温度が不明で、その後の電機子巻線の温
度を正確に推定することができなかつた。
In a conventional device using a microcomputer that is shown in such a functional block diagram and operates as shown in the flowchart in Figure 6, the DC motor is first turned on, and when the temperature rises from the initial temperature, it is accurately controlled. Temperature can be estimated, but if the motor is powered off after t 1 hour, for example, and turned on again at t 2 hours, the armature winding at t 2 can be estimated. Since the temperature of the wire was unknown, it was not possible to accurately estimate the subsequent temperature of the armature winding.

第7図は、このことを示す線図で、電機子巻線
の実際の温度変化を示している。従来装置におい
ては、t2時点より後の推定温度は破線に示す通り
で、実際の温度(実線)より低い値となり、正確
でない。
FIG. 7 is a diagram illustrating this, showing actual temperature changes in the armature winding. In the conventional device, the estimated temperature after time t2 is as shown by the broken line, which is lower than the actual temperature (solid line) and is not accurate.

〔発明の概要〕 本発明は、電気機器に流れる電流を検出する検
出回路と、この検出回路からの信号を入力し所定
の演算を行なつて電気機器の温度を推定するマイ
クロコンピユータとで構成された装置において、
前記電気機器の電源オフ時に推定温度に関連した
信号を出力する手段と、この出力手段からの信号
を入力する前記電気機器の温度時定数とほゞ同じ
放電時定数を持つ放電回路と、前記電気機器の電
源オン時に放電回路の出力信号をマイクロコンピ
ユータに印加させる手段とを設け、前記マイクロ
コンピユータは電源を再びオンとした時前記放電
回路の出力信号と検出回路からの信号とを利用し
て電気機器の温度を推定することにより、電動機
を駆動後電源をオフし、その後再び電源をオンと
して駆動させる場合であつても、電機子巻線の温
度を正確に推定することのできる電機子の温度推
定装置を提供するものである。
[Summary of the Invention] The present invention comprises a detection circuit that detects the current flowing through an electrical device, and a microcomputer that inputs a signal from the detection circuit and performs a predetermined calculation to estimate the temperature of the electrical device. In the device,
means for outputting a signal related to the estimated temperature when the electrical equipment is powered off; a discharging circuit having a discharge time constant substantially the same as a temperature time constant of the electrical equipment to which the signal from the output means is input; means for applying the output signal of the discharge circuit to the microcomputer when the power of the device is turned on, and the microcomputer generates electricity by using the output signal of the discharge circuit and the signal from the detection circuit when the power is turned on again. By estimating the temperature of the equipment, it is possible to accurately estimate the temperature of the armature winding even when the motor is powered off and then turned on again. The present invention provides an estimation device.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明に係る装置の一例を示す構成
ブロツク図である。この図において、1は直流電
動機(図示せず)の電機子電流を検出する検出回
路、2はこの検出回路からの信号を入力するマイ
クロコンピユータである。このマイクロコンピユ
ータは、所定の演算プログラムを有しており、演
算を行なつて電機子巻線温度を推定する。3は3
はマイクロコンピユータ2で演算した推定温度に
関連したデイジタル信号をアナログ信号に変換す
るD/A変換器で、このD/A変換器は、直流電
動機の電源オフ時点における推定温度データをア
ナログ信号に変換し、出力する。4はD/A変換
器からの信号を入力する放電回路で、その放電時
定数は直流電動機の温度時定数と同じに選定さ
れ、ここではコンデンサと抵抗とによつて構成さ
れている。5は直流電動機の電源オン時に、放電
回路4の出力信号をデイジタル信号に変換し、マ
イクロコンピユータ2に印加させるA/D変換器
である。
FIG. 1 is a block diagram showing an example of a device according to the present invention. In this figure, 1 is a detection circuit that detects an armature current of a DC motor (not shown), and 2 is a microcomputer that inputs a signal from this detection circuit. This microcomputer has a predetermined calculation program and performs calculations to estimate the armature winding temperature. 3 is 3
is a D/A converter that converts a digital signal related to the estimated temperature calculated by the microcomputer 2 into an analog signal, and this D/A converter converts the estimated temperature data at the time when the power of the DC motor is turned off into an analog signal. and output. Reference numeral 4 denotes a discharge circuit which inputs the signal from the D/A converter, the discharge time constant of which is selected to be the same as the temperature time constant of the direct current motor, and here constituted by a capacitor and a resistor. Reference numeral 5 denotes an A/D converter that converts the output signal of the discharge circuit 4 into a digital signal and applies it to the microcomputer 2 when the DC motor is powered on.

このように構成した装置の動作を次に説明す
る。マイクロコンピユータ2は、直流電動機の電
源がオンとなると、はじめに放電回路4の出力信
号をA/D変換器5を介して読み込み、このデー
タを電機子巻線温度の初期値、すなわち、第5図
における推定温度θの初期値とし、従来装置と同
様の原理によつて、電機子巻線の温度を推定す
る。この装置において、いま、直流電動機を駆動
後、第2図に示すように、t1時間経過後電源をオ
フとすると、このt1時点における推定温度θ1に関
連した信号が、D/A変換器3を介して放電回路
4に印加される。この放電回路4の出力信号(第
2図破線で示す)は、その後CRの時定数で減衰
するが、このCRの放電時定数は、あらかじめ直
流電動機の温度時定数と同じに選定されているの
で、電機子巻線の温度(第2図実線で示す)と一
致して変化する。従つて、t2の時点で電源を再び
オンとすると、この時点における電機子巻線温度
θ2に対応した信号がA/D変換器5を介してマイ
クロコンピユータに印加され、マイクロコンピユ
ータ2は、t2時点における電機子巻線温度θ2に関
連するデータを初期値とし、検出回路1からの信
号を用いて所定の演算を行なうことにより、その
後の電機子巻線温度について、正確に推定するこ
とができる。第3図は電源オン時のマイクロコン
ピユータの動作を示すフローチヤートである。
The operation of the device configured in this way will be described next. When the DC motor is powered on, the microcomputer 2 first reads the output signal of the discharge circuit 4 via the A/D converter 5, and converts this data into the initial value of the armature winding temperature, that is, as shown in FIG. The temperature of the armature winding is estimated using the same principle as the conventional device. In this device, after driving the DC motor, if the power is turned off after 1 hour t as shown in Fig. 2, the signal related to the estimated temperature θ 1 at time t 1 will be converted into a D/A converter. The voltage is applied to the discharge circuit 4 through the device 3. The output signal of this discharge circuit 4 (shown by the broken line in Figure 2) is then attenuated by the time constant of the CR, but the discharge time constant of the CR is selected in advance to be the same as the temperature time constant of the DC motor. , changes in accordance with the temperature of the armature winding (shown by the solid line in Figure 2). Therefore, when the power is turned on again at time t2 , a signal corresponding to the armature winding temperature θ2 at this time is applied to the microcomputer via the A/D converter 5, and the microcomputer 2 By using the data related to the armature winding temperature θ 2 at time t 2 as an initial value and performing a predetermined calculation using the signal from the detection circuit 1, the subsequent armature winding temperature is accurately estimated. be able to. FIG. 3 is a flowchart showing the operation of the microcomputer when the power is turned on.

なお、上記の説明では、直流電動機の電機子巻
線温度を推定するようにしたものであるが、電機
子巻線に限らず、電流が流れることによつて温度
が上昇するような特性を有する各種の電気機器の
温度の推定に適用することができる。
Note that in the above explanation, the temperature of the armature winding of a DC motor is estimated, but it is not limited to armature windings, which have characteristics such that their temperature increases when current flows. It can be applied to estimate the temperature of various electrical devices.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば電源オフ
時にも、放電回路の出力端より機器の温度変化に
対応した信号が得られるようにしたもので、電源
を再びオンとした後であつても正確に電気機器の
温度を推定することができる。
As explained above, according to the present invention, a signal corresponding to the temperature change of the device can be obtained from the output terminal of the discharge circuit even when the power is turned off, and even after the power is turned on again. It is possible to accurately estimate the temperature of electrical equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の一例を示す構成ブ
ロツク図、第2図はその動作を説明するための波
形図、第3図はマイクロコンピユータの動作の一
例を示すフローチヤート図、第4図は従来装置の
構成ブロツク図、第5図は第4図におけるマイク
ロコンピユータが行なう動作の機能ブロツク図、
第6図はその動作を示すフローチヤート図、第7
図は動作波形図である。 1…電流検出回路、2…マイクロコンピユー
タ、3…D/A変換器、4…放電回路、5…A/
D変換器、なお、図中同一符号は同一又は相当部
分を示すものとする。
FIG. 1 is a configuration block diagram showing an example of the device according to the present invention, FIG. 2 is a waveform diagram for explaining its operation, FIG. 3 is a flowchart showing an example of the operation of a microcomputer, and FIG. 4 5 is a block diagram of the configuration of the conventional device, and FIG. 5 is a functional block diagram of the operation performed by the microcomputer in FIG. 4.
Figure 6 is a flowchart showing the operation, Figure 7
The figure is an operation waveform diagram. 1... Current detection circuit, 2... Microcomputer, 3... D/A converter, 4... Discharge circuit, 5... A/
In the D converter, the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 温度を推定しようとする電気機器に流れる電
流を検出する電流検出回路と、この電流検出回路
からの信号を入力し所定の演算を行なつて前記電
気機器の温度を推定するマイクロコンピユータを
備えた装置において、 前記電気機器の電源オフ時に推定温度に関連し
た信号を前記マイクロコンピユータより出力する
手段と、この出力手段からの信号を入力する前記
電気機器の温度時定数とほゞ同じ放電時定数を持
つ放電回路と、前記電気機器の電源オン時に前記
放電回路の出力信号を前記マイクロコンピユータ
に印加させる手段とを設け、前記マイクロコンピ
ユータは前記放電回路の出力信号と前記電流検出
回路の出力信号とから電気機器の温度を推定する
演算を行なうことを特徴とする温度推定装置。
[Claims] 1. A current detection circuit that detects a current flowing through an electrical device whose temperature is to be estimated, and a signal from this current detection circuit is inputted and a predetermined calculation is performed to estimate the temperature of the electrical device. A device comprising a microcomputer that outputs a signal related to the estimated temperature when the electric device is powered off, and a temperature time constant of the electric device to which the signal from the output device is input. A discharge circuit having the same discharge time constant and a means for applying an output signal of the discharge circuit to the microcomputer when the electric device is powered on are provided, and the microcomputer applies the output signal of the discharge circuit and the current detection A temperature estimation device characterized by performing calculations to estimate the temperature of an electrical device from an output signal of a circuit.
JP59113799A 1984-06-05 1984-06-05 Temperature estimating device Granted JPS60257332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59113799A JPS60257332A (en) 1984-06-05 1984-06-05 Temperature estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59113799A JPS60257332A (en) 1984-06-05 1984-06-05 Temperature estimating device

Publications (2)

Publication Number Publication Date
JPS60257332A JPS60257332A (en) 1985-12-19
JPH0345780B2 true JPH0345780B2 (en) 1991-07-12

Family

ID=14621366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59113799A Granted JPS60257332A (en) 1984-06-05 1984-06-05 Temperature estimating device

Country Status (1)

Country Link
JP (1) JPS60257332A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167131U (en) * 1986-04-14 1987-10-23
FR2733830B1 (en) * 1995-05-05 1997-06-06 Gec Alsthom Transport Sa DEVICE AND METHOD FOR EVALUATING THE INSTANTANEOUS TEMPERATURE AND / OR CONTROLLING THE HEATING AND / OR EXTRAPOLATING THE BALANCE TEMPERATURE OF MOBILE MEANS
DE19880790D2 (en) 1997-06-22 2000-03-30 Rupprecht Gabriel Signaling the cooking status of lumpy food

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959248A (en) * 1972-08-22 1974-06-08
JPS58123318A (en) * 1982-01-18 1983-07-22 株式会社東芝 Motor temperature detecting and protecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959248A (en) * 1972-08-22 1974-06-08
JPS58123318A (en) * 1982-01-18 1983-07-22 株式会社東芝 Motor temperature detecting and protecting device

Also Published As

Publication number Publication date
JPS60257332A (en) 1985-12-19

Similar Documents

Publication Publication Date Title
US6984953B2 (en) Method and apparatus for reconstructing motor current from DC bus current
US4672288A (en) Torque controller for an AC motor drive and AC motor drive embodying the same
JP3711299B2 (en) Method and apparatus for monitoring temperature of AC / DC motor
JPH0763829A (en) Load measuring apparatus
WO1988006363A1 (en) Overcurrent detector
KR20180129148A (en) System and method for controlling motor and
JPH09232005A (en) Judging method and device for deterioration of sealed lead-acid battery
US6504358B1 (en) Method for detecting the operating temperature of a motor
SU1435164A3 (en) Device for regulating rotational speed and torque of induction electric motor
JPH0345780B2 (en)
Williams et al. Steady-state control of an induction motor by estimation of stator flux magnitude
JP3410043B2 (en) Current detection system
CN113820600B (en) Alternating current resistance testing system, method and device and computer readable storage medium
JPH0670660B2 (en) Inverter device
JPH0578790B2 (en)
JPH0787771A (en) Estimation apparatus of speed and position of motor
KR100294891B1 (en) Method of estimating leakage inductance of induction motor
JP3638030B2 (en) Control method of inverter with constant measurement setting function
JP2850096B2 (en) Inverter control method with constant measurement setting function
SU943613A1 (en) Device for measuring eddy current time constant
JPH09121463A (en) Charging device
JPH08149880A (en) Torque control device for dc machine and torque measuring device for dc machine
CN111052592B (en) Current estimation
SU544918A1 (en) Device for measuring the speed of the crew
JPH06311774A (en) Motor characteristics measuring and controlling methods and equipment