Nothing Special   »   [go: up one dir, main page]

JPH0342355B2 - - Google Patents

Info

Publication number
JPH0342355B2
JPH0342355B2 JP58128381A JP12838183A JPH0342355B2 JP H0342355 B2 JPH0342355 B2 JP H0342355B2 JP 58128381 A JP58128381 A JP 58128381A JP 12838183 A JP12838183 A JP 12838183A JP H0342355 B2 JPH0342355 B2 JP H0342355B2
Authority
JP
Japan
Prior art keywords
fibers
shrinkable
pile
fiber
organopolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58128381A
Other languages
Japanese (ja)
Other versions
JPS6021978A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58128381A priority Critical patent/JPS6021978A/en
Publication of JPS6021978A publication Critical patent/JPS6021978A/en
Publication of JPH0342355B2 publication Critical patent/JPH0342355B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】 本発明は天然毛皮調の外観及び風合い(ドレー
プ性)を有するパイル用収縮性繊維に関し、更に
詳しくは収縮性繊維を使用したパイルの外観およ
びドレープ性に優れた特性を付与するため、収縮
後の繊維−繊維間の静摩擦係数を一定値以下に調
整してなるパイル用収縮性繊維に関するものであ
る。 従来、パイル物の中で人造毛皮と称されるもの
は天然毛皮の立毛状に近づけるため、パイル部の
繊維には紡績性を考慮して比較的きしみ或いはが
さつきの大きい収縮性繊維と非収縮性繊維を混綿
使用し、外観上ダウンヘアー部を収縮繊維、ガー
ドヘアー部を非収縮繊維で表現するのが普通であ
る。その際、これ迄の収縮性繊維を使用したパイ
ルは収縮加工時に収縮性繊維が非収縮繊維を巻き
込んで収縮し、後のポリツシヤー工程では繊維の
クリンプ伸ばしにおいて繊維の絡みが強いためパ
イルの表面に近い部分しかその作用が及ばず、パ
イル部の立毛の仕上り状態が天然毛皮と比較する
と著しく劣る。また、風合的にもきしみ或いはが
さつきが強く、しかもパイル生地のドレープ性に
大幅に欠けており、衣料に使用した場合身体に馴
染まず形態が不自然で、天然毛皮に対し甚々しく
見劣りする。 本発明者らはかかる実情に鑑み、これらの現象
の原因究明を行なつた結果、最も大きい理由と考
えられる収縮加工済みポリツシヤー前の繊維間の
絡み抵抗に着眼をおきその問題解決に成功したも
のである。具体的には収縮した繊維同志の静摩擦
係数が小さい場合、パイル編織後の収縮加工時に
繊維間の絡み抵抗が小さくなり、後のポリツシヤ
ー加工でクリンプ伸ばし(ポリツシヤー仕上げ)
が容易になるため、外観に優れ、また収縮後のパ
イルも繊維間の絡みが弱いためパイル生地を折り
曲げても柔らかさが感じられ、そのためにドレー
プ性に富んだパイルが得られることを見い出し、
本発明に至つたのである。 即ち、本発明はアミノ基を有するオルガノポリ
シロキサンを繊維表面に付着してなる収縮率15%
以上を有する収縮性繊維であつて、収縮後の繊維
−繊維間の静摩擦係数が0.230以下であるパイル
用収縮性繊維を内容とするものである。 本発明に用いるアミノ基を有するオルガノポリ
シロキサンとしては、例えば1分子のオルガノポ
リシロキサンの側鎖及び/又は末端に少なくとも
1個のアミノ基を有し、それからなる重合体の粘
度は25℃において好ましくは10〜500000cst.、更
に好ましくは50〜5000cst.であり、アミン当量と
しては好ましくは400〜10000、更に好ましくは
600〜5000であるが、これに限定されない。アミ
ノ基の種類は第1級アミン、第2級アミン、第3
級アミン、第4級アンモニウム等のいずれでもよ
いが、好ましくは第1級アミン及び/又は第2級
アミンを有するのがよい。また、前記のオルガノ
ポリシロキサンは単独使用のみならず他のオルガ
ノポリシロキサン、例えばジメチルポリシロキサ
ン、ジメチルハイドロジエンポリシロキサン、エ
ポキシ変性ポリシロキサン、ポリエーテル変性ポ
リシロキサン等との1種または2種以上の併用、
及び/又はアミノシラン、エポキシシラン、メル
カプトシラン等の1種または2種以上の併用、及
び/又はシランカツプリング剤を併用してもよ
い。 前記アミノ基を有するオルガノポリシロキサン
は、例えば該オルガノポリシロキサンに対して約
10〜50重量%のポリエーテル系ノニオン界面活性
剤、特にHLB12〜15を有するものを使用して乳
化分散させたエマルジヨン、又は重合当初よりエ
マルジヨン重合を行なつてその重合体乳化液を用
いてもよい。繊維に対する該オルガノポリシロキ
サンの付着量はケイ素原子換算量で0.008〜0.7重
量%、好ましくは0.03〜0.5重量%であるが適用
する収縮性繊維の収縮後の繊維−繊維間静摩擦係
数で適当に設定した方が良い。一般に付着量がケ
イ素原子換算で0.008重量%未満になると繊維−
繊維間の静摩擦係数が大きくなつて繊維同志の絡
みが大きくなる結果、ポリツシヤー仕上げが困難
になり、0.7重量%を越えるとパイルにした場合
繊維の集合性が顕著となり外観を損なうため好ま
しくない。これを換言すれば、収縮後の繊維−繊
維間の静摩擦係数が0.230以下であれば収縮後の
繊維同志の絡みが小さくなるため易ポリツシング
となつてパイルに仕上げた場合外観が良好になる
が、該オルガノポリシロキサンの付着量がケイ素
原子換算で0.7重量%を越えた場合ポリツシヤー
仕上げは良好であるもののパイル部が集合して房
状となつて外観を損なう傾向を示す。 前記アミノ基を有するオルガノポリシロキサン
を付着してなるパイル用収縮性繊維を得るには、
収縮性繊維の製造工程中で該オルガノポリシロキ
サンのエマルジヨンで処理することが好ましく、
また収縮性繊維のステープルを該オルガノポリシ
ロキサンのエマルジヨンで処理することも可能で
ある。例えば湿式紡糸法では乾燥工程に入る前の
膨潤繊維に該オルガノポリシロキサンのエマルジ
ヨン処理を施し、乾燥、熱処理後、延伸して収縮
性を付与させる方法、湿式紡糸後乾燥し、必要に
応じ延伸、熱処理を経た繊維に該オルガノポリシ
ロキサンのエマルジヨン処理を施し乾燥、熱処理
後延伸して収縮性を付与させる方法等があり、こ
の場合いずれも収縮加工前より繊維−繊維間の静
摩擦係数が低く0.230以下である方が好ましい。
また乾式紡糸法についても同様で、常法で乾式紡
糸した繊維からなる収縮性繊維においても該オル
ガノポリシロキサンのエマルジヨンを工程安定用
油剤と併用し、もしくは単独で処理を行なつて乾
燥、熱処理することが好ましい。一方、収縮性の
ステープルを使用する場合は該オルガノポリシロ
キサンのエマルジヨンで処理しても良いし、また
必要に応じてステープル表面に付着している油剤
を脱油した後、該オルガノポリシロキサンのエマ
ルジヨンで処理しても良い。この場合、処理した
収縮性繊維の繊維−繊維間の静摩擦係数は収縮加
工及び熱処理した該繊維と比較すると値は高くな
る。そのため、本発明では収縮後の収縮繊維にお
いて繊維−繊維間の静摩擦係数が重要となり、そ
の値が0.230以下であることが必要である。 本発明に使用する収縮性繊維はアクリル系繊維
であることが好ましく、その組成はアクリロニト
リル30重量%以上からなる共重合体で、アクリロ
ニトリルと1種または2種以上の重合し得るモノ
オレフイン性単量体との共重合によつて得られ
る。モノオレフイン性単量体として適当なもの
は、例えばアクリル酸エステル、メタクリル酸エ
ステル、アクリル酸アミド、メタクリル酸アミド
またはそれらのモノおよびジアルキル置換体、ア
クリル酸、メタクリル酸、イタコン酸、塩化ビニ
ル、塩化ビニリデン、酢酸ビニルのようなビニル
エステル、ビニルピロリドン、ビニルピリジンお
よびそのアルキル置換体、スチレンスルホン酸、
アリルスルホン酸、メタリルスルホン酸、パラメ
タクリロイルオキジベンゼンスルホン酸、メタク
リロイルオキシプロピルスルホン酸、またはこれ
らの金属塩類およびアミン塩類等が挙げられる。
本発明においては共重合し得る単量体に関しては
余り厳密さは要求せず、アクリロニトリルと共重
合し得る慣用のモノオレフイン性不飽和化合物は
いずれも使用することができる。 上記アクリル系共重合体は重合開始剤として既
知の化合物、例えばパーオキシド系化合物、アゾ
系化合物、または各種のレドツクス系化合物を用
い、通常のビニル重合方法により得ることができ
る。 このアクリル系共重合体を有機溶剤、例えばア
セトン、アセトニトリル、ジメチルホルムアミ
ド、ジメチルアセタミド、ジメチルスルホキシド
あるいは無機溶剤、例えば塩化亜鉛、硝酸、ロダ
ン塩に溶解させて紡糸原液とする。酸化チタンま
たは着色用顔料のような無機及び/又は有機の顔
料、防錆、着色防止、耐光性等に効果のある安定
剤等を紡糸に支障を来たさない限り使用すること
も可能である。 この紡糸原液を常法の湿式あるいは乾式の紡糸
法でノズルより紡出し、延伸、乾燥を行なう。ま
た必要に応じ更に延伸、熱処理を行なつてもよ
い。得られた糸条を70〜140℃で1.3〜4.0倍に延
伸して収縮率15%以上を有する収縮性繊維を得る
ことができる。 この収縮性繊維をパイルに使用する場合、ステ
ープルのカツト長にもよるが通常パイル部に使用
する繊維の10〜95重量%程度で、残りを非収縮性
繊維と混綿使用する。ここで収縮率が15%未満の
収縮性繊維を使用してパイルに仕上げると天然毛
皮の如きガードヘアとダウンヘアのような段パイ
ルが外観上得難いため、本発明では収縮率が15%
以上有することが重要である。 本発明方法で得られるパイル用収縮性繊維を使
用してパイルに仕上げた場合、従来の収縮性繊維
と異なつて高混率で使用しても外観およびドレー
プ性の両面において優れている。従来の収縮性繊
維を使用する場合、パイルの混率ではせいぜい30
重量%が限度でそれ以上の混率ではドレープ性に
欠け、しかも収縮パイル部のクリンプの伸びが悪
く外観上天然毛皮とは似ても似つかぬものしか得
られない。それゆえ本発明のパイル用収縮性繊維
を使用すれば商品企画に幅がでてくる。例えばこ
れ迄困難であつた収縮性繊維の高混率使用による
ミンク調のパイルに仕上げることができ、また高
混率の収縮性繊維を使用できることから2種以上
の収縮率の異なる収縮性繊維を使用して多段パイ
ルを作成することも可能である。 以下、実施例の記載に先立つて供試繊維の性能
評価方法等について詳述する。 (1) ケイ素の付着量 収縮性繊維試料を約0.5g絶乾量として精秤
し、これを白金ルツボ中に入れ炭酸ナトリウム
および炭酸カリウムからなるアルカリ剤で試料
を包埋し、電熱器上で加熱して徐々に炭化し
た。次いで電気炉中で350〜500℃で熱分解を行
ない、更にガスバーナーで強熱してアルカリ融
解を行なつた。冷却後、蒸留水を加え未溶解物
の濾過を行ない、更にフイルターに蒸留水を通
して100mlに濾液を調節した。濾液を原子吸光
分析法(日本ジヤーレルアツシユAA−780型)
にて測定を行なつた。 一方、オルガノポリシロキサンの数種の既知
付着量繊維はそれぞれ上記同様の手法でアルカ
リ融解処理した混合物を水に溶解、濾過して得
た濾液を原子吸光分析で検量線を求めた。得ら
れた検量線より収縮性繊維に付着しているオル
ガノポリシロキサン量を推定して定量した。 (2) 静摩擦係数 Ro¨der法繊維摩擦係数測定機(葵精機研究所
製)を使用して繊維−繊維間の静摩擦係数を測
定した。 (3) 湿熱収縮率 収縮前の10mg/d荷重下の試長(LW)を測
定し、常圧下のスチーム30分処理で収縮させた
後、10mg/d荷重下での試長(L′W)を測定し
た。収縮率は下記式より求めた。 収縮率〔%〕=LW−L′W/LW×100 (4) 乾熱収縮率 湿熱収縮率の測定に準じた方法で測定した
が、収縮は均熱オーブン中で行なつた。収縮前
の試長:LDおよび収縮後の試長:L′Dを測定し
て収縮率を求めた。 収縮率〔%〕=LD−L′D/LD×100 (5) ハイパイル作成 収縮性繊維および非収縮性繊維を混綿・調湿
した後オーブナー、カードを経てカードスライ
バーを作成した。次いでハイパイル編織機でス
ライバーニツテイングを行ない、シヤーリング
でパイル部をカツトしてパイル長を一定に揃え
た後、パイルの裏面をアクリル酸エステル系接
着剤でバツクコーテイング行なつた。その際パ
イルの裏面にスチームを吹き付けパイル部の収
縮性繊維を収縮させると共に接着剤の付着性を
高めた。次いで130℃、10分で乾燥させると共
に収縮加工を確固たるものにし、その後ポリツ
シヤー仕上げ及びシヤーリングを行なつてハイ
パイルに仕上げた。 (6) ハイパイルの外観、風合い評価 視覚的および触感的な観点から、上記(5)で作
成したパイル品を7名の有識判定者により外観
およびドレープ性に係わる風合いの評価を行な
つた。 以下、実施例を記すが、実施例中の部および%
は特記しない限り重量部および重量%を意味す
る。 実施例 1 アクリロニトリル48部、塩化ビニル51部とメタ
アリルスルホン酸ナトリウム1部よりなる共重合
体27部をアセトン73部に溶解して紡糸原液とし、
0.08mmφ、6000孔の口金を通して25℃、40%のア
セトン水溶液中に吐出し、この糸条を25℃、20%
アセトン水溶液中で1.5倍に延伸後60℃で水洗し
た。次いでアミノ基を有するオルガノポリシロキ
サン(アミン当量3000、25℃における粘度
1300cst.)をノニオン界面活性剤で乳化した液に
上記糸条を浸漬した後130℃で乾燥、更に100℃で
2.0倍に延伸して両性タイプの静電防止剤を付着
させた後クリンプを付与して最終繊度4.0dの収縮
性繊維を得、38mmにカツトした。得られた収縮性
繊維は湿熱収縮率40.7%、130℃×20分処理の乾
熱収縮率37.8%、静摩擦係数0.143、オルガノポ
リシロキサン付着量0.32%(ケイ素原子換算量で
0.12%)を示した。またこの収縮性繊維70%およ
び「ベレル」タイプ212ダル16d、51mm(イース
トマン・コダツク社製)染色綿を30%混綿してハ
イパイルを作成した。その際スライバーニツテイ
ング後のシヤーリングではパイル長を18mm、ポリ
ツシヤー仕上げ後のシヤーリングではパイル長を
20mmにカツトした。結果は第1表に示した如く、
ハイパイルの外観、風合い共に非常に良好であつ
た。 実施例 2 実施例1で使用した紡糸原液TiO2のアセトン
分散液をTiO2分で共重合体100部に対して0.2部
添加して均一に混合し0.08mmφ、6000孔の口金よ
り25℃、40%のアセトン水溶液へ吐出して紡糸し
た。更に25℃、20%のアセトン水溶液中で1.8倍
に延伸後60℃で水洗を行なつて130℃で乾燥させ、
次いで実施例1で使用したオルガノポリシロキサ
ン液及び両性タイプの静電防止剤を付着させ、ク
リンプを付与して120℃で乾燥させた。この糸条
を125℃の熱ロールに接触して通過させ1.47倍に
延伸した後クリンプを付与して最終繊度3.3dの収
縮性繊維を得、38mmにカツトした。得られた収縮
性繊維は湿熱収縮率32.5%、130℃×20分処理の
乾熱収縮率33.6%、静摩擦係数0.171、オルガノ
ポリシロキサン付着量0.25%(ケイ素原子換算量
で0.095%)を示した。またこの収縮性繊維80%
および「カネカロン」SL20d、51mm(鐘淵化学
製)の染色綿を20%混綿してハイパイル作成を行
なつた。その際スライバーニツテイング後のシヤ
ーリングではパイル長を20mm、ポリツシヤー仕上
げ後のシヤーリングではパイル長を23mmにカツト
した。外観、風合いの結果を第1表に示した。 実施例 3 実施例1で使用した紡糸原液の共重合体100部
に対してカーボンブラツク1部を添加して均一に
混合し、0.08mmφ、6000孔の口金を通して25℃、
40%のアセトン水溶液に吐出し、この糸条を20%
アセトン水溶液中で1.8倍に延伸後60℃で水洗し
た。更に130℃で乾燥を行なつた後100℃で1.6倍
に延伸した。次いで実施例1で使用したオルガノ
ポリシロキサン液及び両性タイプの静電防止剤を
付着させクリンプを付与して最終繊度4.1dの収縮
性繊維を得、38mmにカツトした。得られた収縮性
繊維は湿熱収縮率30.8%、130℃×10分の乾熱収
縮処理の静摩擦係数0.211、オルガノポリシロキ
サン付着量0.37%(ケイ素原子換算量で0.14%)
を示した。またこの吸縮性繊維60%および「カネ
カロン」RFM20d、51mm(鐘淵化学製)を40%混
綿してハイパイル作成を行なつた。その際スライ
バーニツテイング後のシヤーリングではパイル長
を16mm、ポリツシヤー仕上げ後のシヤーリングで
はパイル長を20mmにカツトした。外観、風合いの
結果は第1表の通りであつた。 実施例 4 市販のアクリル系収縮性繊維「Dralon」550
3.7dtex、100/130mm(バイエル社製)にノニオ
ンタイプの洗浄剤2g/水溶液を使用してオー
バーマイヤーで30〜35℃で15分脱油洗浄後水洗を
行なつて風乾した。この綿にアミノ基を有するオ
ルガノポリシロキサン(アミン当量1100、粘度
330cst.)をノニオン界面活性剤で乳化した液に
浸漬し遠心脱水を行なつて風乾した。その後両性
タイプの静電防止剤を綿に対して0.1%スプレー
で付着させ開繊後カードでスライバーを作成し、
更にギロチン式カツターで38mmにカツトした。得
られた収縮性繊維は湿熱収縮率36%、130℃×10
分の乾熱収縮処理の静摩擦係数0.218、オルガノ
ポリシロキサン付着量0.94%(ケイ素原子換算量
で0.36%)を示した。またこの収縮性繊維50%お
よび「カネカロン」RFM20d、51mm、50%を混綿
してハイパイル作成を行なつた。その際スライバ
ーニツテイング後のシヤーリングではパイル長を
18mm、ポリツシヤー仕上げ後のシヤーリングでは
パイル長を20mmにカツトした。外観、風合いの結
果を第1表に示した。 比較例 1 市販のモダクリル系収縮性繊維「カネカロン」
HHBd、38mm(鐘淵化学製)を測定したところ
湿熱収縮率39.8%、130℃×10分の乾熱収縮率
38.0%、130℃×10分の乾熱処理後の静摩擦係数
0.342を示した。この収縮性繊維35%および「カ
ネカロン」RFM20d、51mmを65%混綿してハイパ
イルを作成した。シヤーリング条件は実施例4と
同様とした。第1表に外観、風合いの結果を示し
た。 比較例 2 市販のアクリル系収縮性繊維「Dralon」550
3.7dtex、100/130mm(バイエル社製)を測定し
たところ湿熱収縮率36%、130℃×10分の乾熱収
縮率32%、130℃×10分の乾熱収縮処理の静摩擦
係数0.277を示した。この収縮性繊維50%および
「カネカロン」RFM20d、51mm、50%を混綿して
ハイパイルを作成した。シヤーリング条件は実施
例4と同様とした。外観、風合いの結果は第1表
の通りであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shrinkable fiber for piles that has a natural fur-like appearance and feel (drapeability), and more specifically, the present invention relates to a shrinkable fiber for piles that has a natural fur-like appearance and feel (drapeability), and more specifically, a method for producing piles using shrinkable fibers that have excellent appearance and drapeability. The present invention relates to shrinkable fibers for piles in which the coefficient of static friction between fibers after shrinkage is adjusted to a certain value or less in order to provide the fibers. Conventionally, among pile products, what is called artificial fur has a texture similar to that of natural fur, so the fibers in the pile are made of shrinkable fibers that are relatively squeaky or rough, and non-shrinkable fibers in consideration of spinnability. Usually, the down hair part is made of shrinkable fibers, and the guard hair part is made of non-shrinkable fibers. At that time, in piles that used shrinkable fibers up until now, the shrinkable fibers wrapped around the non-shrinkable fibers during the shrinking process and contracted, and in the subsequent polishing process, the fibers were crimped and stretched, and the fibers were strongly entangled, so the surface of the pile Its effect only affects nearby areas, and the quality of the raised hair in the pile area is significantly inferior to that of natural fur. In addition, it has a squeaky or rough texture, and the drapability of pile fabric is greatly lacking, so when used for clothing, it does not conform to the body and has an unnatural shape, and is extremely inferior to natural fur. do. In view of these circumstances, the present inventors investigated the causes of these phenomena, and as a result, focused on the entanglement resistance between the fibers before the shrink-treated polisher, which is thought to be the most important reason, and succeeded in solving the problem. It is. Specifically, if the coefficient of static friction between the shrunken fibers is small, the entanglement resistance between the fibers will be small during the shrinkage process after pile knitting, and the subsequent polisher process will crimp and stretch the fibers (polisher finish).
We discovered that the pile fabric has excellent appearance because it is easy to fold, and the pile after shrinkage has weak intertwining between the fibers, so even when the pile fabric is folded, it feels soft, and as a result, a pile with excellent drapability can be obtained.
This led to the present invention. That is, the present invention has a shrinkage rate of 15% obtained by attaching organopolysiloxane having amino groups to the fiber surface.
The shrinkable fiber having the above properties is a pile shrinkable fiber having a fiber-to-fiber static friction coefficient of 0.230 or less after shrinkage. As the organopolysiloxane having an amino group used in the present invention, for example, one molecule of the organopolysiloxane has at least one amino group in the side chain and/or the terminal, and the viscosity of the polymer made of the organopolysiloxane is preferably at 25°C. is 10 to 500,000 cst., more preferably 50 to 5,000 cst., and the amine equivalent is preferably 400 to 10,000, more preferably
600 to 5000, but not limited to this. The types of amino groups are primary amines, secondary amines, and tertiary amines.
It may be a primary amine or a quaternary ammonium, but it is preferably a primary amine and/or a secondary amine. The organopolysiloxane described above can be used not only alone but also in combination with other organopolysiloxanes such as dimethylpolysiloxane, dimethylhydrodiene polysiloxane, epoxy-modified polysiloxane, polyether-modified polysiloxane, etc. Combined use,
And/or one or more of aminosilane, epoxysilane, mercaptosilane, etc. may be used in combination, and/or a silane coupling agent may be used in combination. The amino group-containing organopolysiloxane has, for example, about
An emulsion made by emulsifying and dispersing 10 to 50% by weight of a polyether nonionic surfactant, especially one having an HLB of 12 to 15, or a polymer emulsion obtained by carrying out emulsion polymerization from the beginning of the polymerization. good. The amount of the organopolysiloxane attached to the fibers is 0.008 to 0.7% by weight in terms of silicon atoms, preferably 0.03 to 0.5% by weight, but it is appropriately set based on the coefficient of static friction between the fibers and the fibers after contraction of the applied shrinkable fibers. It's better to do so. In general, if the amount of adhesion is less than 0.008% by weight in terms of silicon atoms, the fiber
The coefficient of static friction between the fibers increases, which increases the entanglement of the fibers, making it difficult to finish with a polisher.If it exceeds 0.7% by weight, when it is made into a pile, the aggregation of the fibers becomes noticeable and the appearance is impaired, which is not preferable. In other words, if the coefficient of static friction between the fibers after shrinkage is 0.230 or less, the entanglement of the fibers after shrinkage will be small, making it easier to polish and giving a good appearance when finished into piles. If the amount of the organopolysiloxane deposited exceeds 0.7% by weight in terms of silicon atoms, the polisher finish will be good, but the pile portions will aggregate into tufts, which will impair the appearance. To obtain a pile shrinkable fiber to which the organopolysiloxane having an amino group is attached,
Preferably, the shrinkable fiber is treated with an emulsion of the organopolysiloxane during the manufacturing process,
It is also possible to treat shrinkable fiber staples with emulsions of the organopolysiloxanes. For example, in the wet spinning method, the swollen fibers are subjected to an emulsion treatment of the organopolysiloxane before entering the drying process, and after drying and heat treatment, stretching is performed to impart shrinkage properties; There are methods such as applying an emulsion treatment of the organopolysiloxane to the heat-treated fibers, drying them, and stretching them after the heat treatment to impart shrinkage properties.In both cases, the coefficient of static friction between the fibers is lower than before the shrinkage process, 0.230 or less. It is preferable that
The same applies to the dry spinning method, and even for shrinkable fibers made of fibers dry spun by a conventional method, the organopolysiloxane emulsion is used in combination with a process stabilizing oil agent, or is treated alone, and then dried and heat treated. It is preferable. On the other hand, when shrinkable staples are used, they may be treated with an emulsion of the organopolysiloxane, or if necessary, after removing the oil adhering to the staple surface, the emulsion of the organopolysiloxane may be treated. You can also process it with In this case, the fiber-to-fiber static friction coefficient of the treated shrinkable fibers is higher than that of the fibers that have been subjected to shrinkage processing and heat treatment. Therefore, in the present invention, the coefficient of static friction between fibers is important in the shrinkable fiber after shrinkage, and it is necessary that the value is 0.230 or less. The shrinkable fiber used in the present invention is preferably an acrylic fiber, and its composition is a copolymer consisting of 30% by weight or more of acrylonitrile, and one or more monoolefin monomers that can be polymerized with acrylonitrile. obtained by copolymerization with Suitable monoolefinic monomers include, for example, acrylic esters, methacrylic esters, acrylic amides, methacrylic amides or their mono- and dialkyl-substituted products, acrylic acid, methacrylic acid, itaconic acid, vinyl chloride, chloride. Vinylidene, vinyl esters such as vinyl acetate, vinylpyrrolidone, vinylpyridine and its alkyl substitutes, styrene sulfonic acid,
Examples include allylsulfonic acid, methallylsulfonic acid, p-methacryloyloxybenzenesulfonic acid, methacryloyloxypropylsulfonic acid, and metal salts and amine salts thereof.
In the present invention, there are no strict requirements regarding the copolymerizable monomer, and any conventional monoolefinically unsaturated compound that can be copolymerized with acrylonitrile can be used. The above-mentioned acrylic copolymer can be obtained by a conventional vinyl polymerization method using a known compound as a polymerization initiator, such as a peroxide compound, an azo compound, or various redox compounds. This acrylic copolymer is dissolved in an organic solvent such as acetone, acetonitrile, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, or an inorganic solvent such as zinc chloride, nitric acid, or rhodan salt to prepare a spinning stock solution. It is also possible to use inorganic and/or organic pigments such as titanium oxide or coloring pigments, stabilizers that are effective for rust prevention, color prevention, light resistance, etc. as long as they do not interfere with spinning. . This spinning dope is spun from a nozzle using a conventional wet or dry spinning method, and then stretched and dried. Furthermore, stretching and heat treatment may be performed as necessary. The obtained yarn is stretched 1.3 to 4.0 times at 70 to 140°C to obtain a shrinkable fiber having a shrinkage rate of 15% or more. When this shrinkable fiber is used for the pile, it usually accounts for about 10 to 95% by weight of the fiber used for the pile, depending on the cut length of the staple, and the rest is mixed with non-shrinkable fiber. If a pile is made using shrinkable fibers with a shrinkage rate of less than 15%, it is difficult to obtain a stepped pile like guard hair and down hair like natural fur, so in the present invention, the shrinkage rate is 15%.
It is important to have at least the following. When a pile is made using the shrinkable fibers for piles obtained by the method of the present invention, unlike conventional shrinkable fibers, the fibers are excellent in both appearance and drapability even when used at a high mixing ratio. When using conventional shrinkable fibers, the pile mix ratio is no more than 30
The weight percentage is the upper limit, and if the mixing ratio is higher than that, the drapability will be poor, and the crimp of the contracted pile will not stretch well, resulting in a product that does not resemble natural fur in appearance. Therefore, if the shrinkable pile fiber of the present invention is used, product planning becomes more flexible. For example, it is possible to create a mink-like pile by using a high blending ratio of shrinkable fibers, which has been difficult until now, and since it is possible to use shrinkable fibers with a high blending ratio, it is now possible to use two or more types of shrinkable fibers with different shrinkage ratios. It is also possible to create multi-stage piles. Hereinafter, prior to describing Examples, a method for evaluating the performance of the test fibers will be described in detail. (1) Amount of silicon deposited: Accurately weigh approximately 0.5g of a shrinkable fiber sample, place it in a platinum crucible, embed it in an alkaline agent consisting of sodium carbonate and potassium carbonate, and heat it on an electric heater. It was heated and gradually carbonized. Next, thermal decomposition was performed at 350 to 500°C in an electric furnace, and then ignited with a gas burner to perform alkali melting. After cooling, distilled water was added to filter undissolved substances, and distilled water was passed through a filter to adjust the volume of the filtrate to 100 ml. The filtrate was subjected to atomic absorption spectrometry (Japan Jarel Atsushi Model AA-780)
Measurements were carried out at On the other hand, several types of organopolysiloxane fibers with known adhesion amounts were treated with alkaline melting in the same manner as described above, and a mixture was dissolved in water and filtered. The resulting filtrate was subjected to atomic absorption spectrometry to determine a calibration curve. The amount of organopolysiloxane attached to the shrinkable fibers was estimated and quantified from the obtained calibration curve. (2) Static friction coefficient The static friction coefficient between fibers was measured using a Ro¨der method fiber friction coefficient measuring device (manufactured by Aoi Seiki Research Institute). (3) Moist heat shrinkage rate Before shrinkage, measure the sample length (L W ) under a 10 mg/d load, and after shrinking with steam treatment under normal pressure for 30 minutes, measure the sample length (L') under a 10 mg/d load. W ) was measured. The shrinkage rate was determined using the following formula. Shrinkage rate [%] = L W −L′ W /L W ×100 (4) Dry heat shrinkage rate Measured by a method similar to the measurement of wet heat shrinkage rate, but the shrinkage was performed in a soaking oven. The sample length before shrinkage: L D and the sample length after shrinkage: L′ D were measured to determine the shrinkage rate. Shrinkage rate [%] = L D −L′ D /L D ×100 (5) High pile creation Shrinkable fibers and non-shrinkable fibers were blended and humidity conditioned, and then passed through an oven and a card to create a card sliver. Next, sliver knitting was performed using a high pile knitting loom, and the pile portion was cut using shearing to make the pile length uniform. After that, the back side of the pile was back coated with an acrylic ester adhesive. At that time, steam was sprayed on the back side of the pile to shrink the shrinkable fibers in the pile and improve the adhesion of the adhesive. Next, it was dried at 130°C for 10 minutes to ensure the shrinkage process, and then polished and sheared to create a high pile finish. (6) Appearance and texture evaluation of high pile From a visual and tactile perspective, the pile product prepared in (5) above was evaluated by seven expert judges for appearance and texture in relation to drapability. Examples are described below, and the parts and percentages in the examples are
means parts and percentages by weight unless otherwise specified. Example 1 27 parts of a copolymer consisting of 48 parts of acrylonitrile, 51 parts of vinyl chloride, and 1 part of sodium metaallylsulfonate were dissolved in 73 parts of acetone to prepare a spinning stock solution.
Discharge the yarn into a 40% acetone aqueous solution at 25°C through a 0.08mmφ, 6000-hole nozzle.
It was stretched 1.5 times in an acetone aqueous solution and washed with water at 60°C. Next, an organopolysiloxane having an amino group (amine equivalent: 3000, viscosity at 25°C)
1300 cst.) with a nonionic surfactant, and then dried at 130℃, and then dried at 100℃.
After stretching the fiber by 2.0 times and attaching an amphoteric antistatic agent, it was crimped to obtain a shrinkable fiber with a final fineness of 4.0 d, which was cut to 38 mm. The obtained shrinkable fiber had a wet heat shrinkage rate of 40.7%, a dry heat shrinkage rate of 37.8% when treated at 130°C for 20 minutes, a static friction coefficient of 0.143, and an organopolysiloxane adhesion amount of 0.32% (in terms of silicon atoms).
0.12%). In addition, a high pile was made by blending 70% of this shrinkable fiber with 30% of "Berel" type 212 dull 16d, 51mm (manufactured by Eastman Kodatsu Co.) dyed cotton. At that time, the pile length should be 18 mm for shearing after sliver knitting, and the pile length should be 18 mm for shearing after polishing.
I cut it to 20mm. The results are shown in Table 1.
The appearance and texture of the high pile were very good. Example 2 0.2 parts of the acetone dispersion of the spinning stock TiO 2 used in Example 1 was added to 100 parts of the copolymer in 2 minutes, mixed uniformly, and heated at 25°C through a 0.08 mmφ, 6000-hole nozzle. It was spun by discharging it into a 40% acetone aqueous solution. Further, it was stretched 1.8 times in a 20% acetone aqueous solution at 25°C, washed with water at 60°C, and dried at 130°C.
Next, the organopolysiloxane liquid and the amphoteric antistatic agent used in Example 1 were applied, crimped, and dried at 120°C. This yarn was passed through a heated roll at 125° C., stretched 1.47 times, and then crimped to obtain a shrinkable fiber with a final fineness of 3.3 d, which was cut to 38 mm. The obtained shrinkable fiber showed a wet heat shrinkage rate of 32.5%, a dry heat shrinkage rate of 33.6% when treated at 130°C for 20 minutes, a static friction coefficient of 0.171, and an organopolysiloxane adhesion amount of 0.25% (0.095% in terms of silicon atoms). . Also, this shrinkable fiber is 80%
A high pile was created by blending 20% of ``Kanekalon'' SL20d, 51 mm (manufactured by Kanekabuchi Chemical Co., Ltd.) dyed cotton. At that time, the pile length was cut to 20 mm for shearing after sliver knitting, and 23 mm for shearing after polishing. The results of appearance and texture are shown in Table 1. Example 3 1 part of carbon black was added to 100 parts of the copolymer in the spinning dope used in Example 1, mixed uniformly, and passed through a 0.08 mmφ, 6000 hole nozzle at 25°C.
Discharge into a 40% acetone aqueous solution, and reduce this yarn to 20%
It was stretched 1.8 times in an acetone aqueous solution and washed with water at 60°C. After further drying at 130°C, the film was stretched 1.6 times at 100°C. Next, the organopolysiloxane liquid and the amphoteric antistatic agent used in Example 1 were applied and crimped to obtain a shrinkable fiber with a final fineness of 4.1 d, which was cut into 38 mm. The obtained shrinkable fiber had a wet heat shrinkage rate of 30.8%, a static friction coefficient of 0.211 after dry heat shrinkage treatment at 130°C for 10 minutes, and an organopolysiloxane adhesion amount of 0.37% (0.14% in terms of silicon atoms).
showed that. A high pile was also created by blending 60% of this absorbable fiber with 40% of "Kanekalon" RFM20d, 51mm (manufactured by Kanekabuchi Kagaku). At that time, the pile length was cut to 16 mm for shearing after sliver knitting, and 20 mm for shearing after polishing. The results for appearance and texture were as shown in Table 1. Example 4 Commercially available acrylic shrinkable fiber “Dralon” 550
A 3.7 dtex, 100/130 mm (manufactured by Bayer AG) was deoiled and washed with water at 30 to 35° C. for 15 minutes using an Obermeyer using 2 g of a nonionic detergent/aqueous solution, then washed with water and air-dried. Organopolysiloxane with amino groups (amine equivalent: 1100, viscosity:
330cst.) was immersed in a liquid emulsified with a nonionic surfactant, centrifugally dehydrated, and air-dried. After that, spray an amphoteric antistatic agent onto the cotton at 0.1%, spread it out, and create a sliver using a card.
It was then cut to 38mm using a guillotine cutter. The obtained shrinkable fiber has a wet heat shrinkage rate of 36%, 130℃ x 10
The coefficient of static friction after dry heat shrinkage treatment was 0.218, and the amount of organopolysiloxane deposited was 0.94% (0.36% in terms of silicon atoms). A high pile was also created by blending 50% of this shrinkable fiber with 50% of "Kanekalon" RFM20d, 51mm. At that time, the pile length should be adjusted during shearing after sliver knitting.
18mm, and the pile length was cut to 20mm during shearing after polishing. The results of appearance and texture are shown in Table 1. Comparative Example 1 Commercially available modacrylic shrinkable fiber “Kanekalon”
HHBd, 38mm (manufactured by Kanebuchi Chemical) was measured and had a wet heat shrinkage rate of 39.8%, a dry heat shrinkage rate of 130℃ x 10 minutes.
38.0%, static friction coefficient after dry heat treatment at 130℃ x 10 minutes
It showed 0.342. A high pile was created by blending 35% of this shrinkable fiber with 65% of "Kanekalon" RFM20d, 51mm. The shearing conditions were the same as in Example 4. Table 1 shows the results of appearance and texture. Comparative Example 2 Commercially available acrylic shrinkable fiber “Dralon” 550
Measurements of 3.7dtex, 100/130mm (manufactured by Bayer) showed a wet heat shrinkage rate of 36%, a dry heat shrinkage rate of 32% for 130℃ x 10 minutes, and a static friction coefficient of 0.277 for dry heat shrinkage treatment at 130℃ x 10 minutes. Ta. A high pile was created by blending 50% of this shrinkable fiber with 50% of "Kanekalon" RFM20d, 51mm. The shearing conditions were the same as in Example 4. The results for appearance and texture were as shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 アミノ基を有するオルガノポリシロキサンを
繊維表面に付着してなる収縮率15%以上を有する
収縮性繊維であつて、収縮後の繊維−繊維間の静
摩擦係数が0.230以下であるパイル用収縮性繊維。 2 収縮性繊維がアクリロニトリル30重量%以上
共重合してなるアクリル系合成繊維である特許請
求の範囲第1項記載のパイル用収縮性繊維。
[Scope of Claims] 1. A shrinkable fiber having a shrinkage rate of 15% or more, which is obtained by attaching an organopolysiloxane having an amino group to the fiber surface, and the coefficient of static friction between the fibers after shrinkage is 0.230 or less. Some shrinkable fibers for piles. 2. The shrinkable fiber for pile according to claim 1, wherein the shrinkable fiber is an acrylic synthetic fiber copolymerized with 30% by weight or more of acrylonitrile.
JP58128381A 1983-07-13 1983-07-13 Shrinkable fiber for pile Granted JPS6021978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58128381A JPS6021978A (en) 1983-07-13 1983-07-13 Shrinkable fiber for pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128381A JPS6021978A (en) 1983-07-13 1983-07-13 Shrinkable fiber for pile

Publications (2)

Publication Number Publication Date
JPS6021978A JPS6021978A (en) 1985-02-04
JPH0342355B2 true JPH0342355B2 (en) 1991-06-26

Family

ID=14983407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128381A Granted JPS6021978A (en) 1983-07-13 1983-07-13 Shrinkable fiber for pile

Country Status (1)

Country Link
JP (1) JPS6021978A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105189A (en) * 1986-10-17 1988-05-10 鐘淵化学工業株式会社 Fiber for cosmetic brush
JPS63105190A (en) * 1986-10-17 1988-05-10 鐘淵化学工業株式会社 Cosmetic brush
EP3619078B1 (en) 2017-05-02 2021-02-17 INVISTA Textiles (U.K.) Limited Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214585A (en) * 1982-05-31 1983-12-13 竹本油脂株式会社 Softening and smoothing finish agent for synthetic fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214585A (en) * 1982-05-31 1983-12-13 竹本油脂株式会社 Softening and smoothing finish agent for synthetic fiber

Also Published As

Publication number Publication date
JPS6021978A (en) 1985-02-04

Similar Documents

Publication Publication Date Title
DE936029C (en) Process for the finishing of textiles made of cellulose
DE112016001540B4 (en) FIBROUS PRODUCT AND PROCESSING AGENT
JP4603486B2 (en) Acrylic shrinkable fiber and method for producing the same
JPH0663158B2 (en) Pile composition
JPH0342355B2 (en)
WO2005064057A1 (en) Step pile fabric and process for producing the same
JPH1121769A (en) Acrylic synthetic fiber having animal hair-like touch
US20030163907A1 (en) Pile product
DE3021889C2 (en) Porous flame retardant synthetic acrylic fibers and processes for their manufacture
JPH11302913A (en) Acrylic fiber for artificial hair
JPS63105189A (en) Fiber for cosmetic brush
JP4562326B2 (en) Napped product and manufacturing method thereof
JP2008013877A (en) Acrylic synthetic fiber excellent in dyeability
JPH07238423A (en) Method for producing animal hair-like acrylic synthetic fiber
JP3533827B2 (en) Pile product, method for producing the same, and shrinkable fiber for pile and fiber composition for pile used therefor
JPWO2003072618A1 (en) Synthetic resin for acrylic synthetic fiber, acrylic synthetic fiber comprising the same, and method for producing acrylic synthetic fiber
JP2001181926A (en) Acrylic synthetic fiber which has excellent crimp- removing property and is useful for plush fabric and method for producing the same
JP3765927B2 (en) Standing fabric
JP2601775B2 (en) Flame retardant acrylic composite fiber
JP3888718B2 (en) Method for producing permanent flexible acrylic fiber
JP2001181927A (en) Acrylic synthetic fiber which has excellent crimp- removing property and is useful for plush fabric and method for producing the same, and plush fabric comprising the fiber
JPH10158958A (en) Pile product, its production, and shrinkable fiber and fiber composition for pile processing
JP2002227021A (en) Composite fiber bundle for hair
WO2023224001A1 (en) Modified regenerated collagen fibers, production method therefor, and headdress product including same
JP2002266230A (en) Method for producing raised product