Nothing Special   »   [go: up one dir, main page]

JPH0339964B2 - - Google Patents

Info

Publication number
JPH0339964B2
JPH0339964B2 JP60069966A JP6996685A JPH0339964B2 JP H0339964 B2 JPH0339964 B2 JP H0339964B2 JP 60069966 A JP60069966 A JP 60069966A JP 6996685 A JP6996685 A JP 6996685A JP H0339964 B2 JPH0339964 B2 JP H0339964B2
Authority
JP
Japan
Prior art keywords
group
atom
silica
halogen
contain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60069966A
Other languages
Japanese (ja)
Other versions
JPS61232214A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60069966A priority Critical patent/JPS61232214A/en
Publication of JPS61232214A publication Critical patent/JPS61232214A/en
Publication of JPH0339964B2 publication Critical patent/JPH0339964B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

発明の技術的分野 本発明はクロロ氎玠化シランの䞍均化および
又は再分配反応によるシラン類、特にモノシラン
および又はクロロシランの補造方法に関する。 埓来の技術 シラン、特にモノシランは半導䜓、アモルフア
ス倪陜電池、ICデバむスや感光䜓等に有甚な玠
原料である。クロロシランあるいはモノシラン
は、次匏の劂く、クロロシランを原料に䞍均化も
しくは再分配反応により埗られるこずが知られお
いる。そしおこれらの反応に有甚な觊媒の開発が
行われおいる。 2SiHCl3SiH2Cl2SiCl4 2SiH2Cl2SiHCl3SiH3Cl 2SiH3ClSiH4SiH2Cl2 䞊蚘の觊媒ずしおはアミノ基等を含む䞍溶性の
固䜓陰むオン亀換暹脂特開昭50−119798号公
報、トリメチルアミン又はゞメチル゚チルアミ
ン特開昭59−121110号公報、パラゞりム特
開昭54−59230号公報、無機固䜓塩基特開昭59
−174515号公報α−オキ゜アミン基を含む化合
物特開昭59−54617号公報、テトラアルキル尿
玠特公昭55−14046号公報炭化氎玠基で−
眮換したα−ピロリドン特公昭55−14045号公
報、スルホン酞基を有する陜むオン亀換䜓特
開昭59−164614号公報、アミノアルコヌルずシ
リカの反応生成物特開昭59−156907号公報、
などがある。たた特に反応生成物ず觊媒の分離が
容易な䞍均䞀系觊媒が泚目されおいる。 発明が解決しようずする問題点 クロロ氎玠化シランの䞍均化および又は再分
配反応に有甚な觊媒はいく぀か提案されおいる
が、特に埓来の固䜓陰むオン亀換暹脂系の觊媒は
耐熱性、機械的匷床に劣り、むオン亀換暹脂特有
の膚最などの問題があり、觊媒寿呜も満足するも
のではなか぀た。䞀方ルむス酞やアミン類等の均
䞀系觊媒は生成物ず觊媒の分離に倚倧の゚ネルギ
ヌを芁する。 問題を解決する為の手段 発明の芁旚 固䜓衚面ぞの化孊修食の技術自䜓はシランカツ
プリング剀による凊理方法などで既に公知であ
る。即ちシランカツプリング剀で無機質衚面を化
孊修食するこずにより、各皮耇合材料の有機質ず
無機質の接着性を向䞊させたり、匷床、電気的特
性を著しく改良するこずができるこずは圓業界に
おいおすでに公知であるが、本発明者らはクロロ
シランの䞍均化又は再分配反応に関する有甚な觊
媒を研究、開発する䞭で特に倚孔性無機固䜓をア
ミン系の有機珪玠化合物で化孊修食したものが䞊
蚘反応に察し、高掻性でか぀耐熱性の良奜な觊媒
ずなるこずを芋出し、本発明を完成させたもので
ある。 即ち、本発明は倚孔性の無機固䜓の衚面を炭玠
に結合した窒玠原子を含有する有機珪玠基で化孊
修食した觊媒の存圚䞋SiHnCl4-oただし≊
≊で衚わされるクロロシランを䞍均化およ
び又は再分配させるこずを特城ずするシラン、
特にモノシランおよび又はクロロシランの補造
方法に関するものである。 衚面修食甚詊剀による衚面修食 倚孔質無機固䜓の衚面を炭玠に結合する窒玠原
子を含有する有機珪玠基で修食するのに甚いるこ
ずのできる有機珪玠詊剀は以䞋の劂く、䞀般匏で
衚わされる。 −−lSiZ4-l 又は又は AmN−−SiZ33-n 又は又は AnN−−SiZ34-oX 、又は は、−NH2、−NHR1、−NR1R2で衚わされる
アミノ基、あるいは、−NH3・X、−N
H2R1・X、−NHR1R2・X、−N
R1R2R3・Xで衚わされるアンモニりム基、あ
るいは
TECHNICAL FIELD OF THE INVENTION The present invention relates to the disproportionation and/or
Or it relates to a method for producing silanes, particularly monosilane and/or chlorosilane, by a redistribution reaction. BACKGROUND OF THE INVENTION Silane, particularly monosilane, is a raw material useful for semiconductors, amorphous solar cells, IC devices, photoreceptors, and the like. It is known that chlorosilane or monosilane can be obtained by a disproportionation or redistribution reaction using chlorosilane as a raw material, as shown in the following formula. Catalysts useful for these reactions are being developed. 2SiHCl 3 SiH 2 Cl 2 +SiCl 4 2SiH 2 Cl 2 SiHCl 3 +SiH 3 Cl 2SiH 3 ClSiH 4 +SiH 2 Cl 2The above catalyst is an insoluble solid anion exchange resin containing amino groups etc. ), trimethylamine or dimethylethylamine (JP-A-59-121110), palladium (JP-A-54-59230), inorganic solid bases (JP-A-59-Sho 59)
-174515) Compounds containing an α-oxoamine group (Japanese Unexamined Patent Application Publication No. 59-54617), tetraalkylureas (Japanese Patent Publication No. 14046-1983) with a hydrocarbon group
Substituted α-pyrrolidone (Japanese Patent Publication No. 55-14045), cation exchanger having a sulfonic acid group (Japanese Patent Publication No. 59-164614), reaction product of amino alcohol and silica (Japanese Patent Publication No. 59-156907) Publication No.),
and so on. In particular, heterogeneous catalysts that allow easy separation of reaction products and catalysts are attracting attention. Problems to be Solved by the Invention Several catalysts useful for the disproportionation and/or redistribution reaction of chlorohydrogenated silanes have been proposed, but in particular, conventional solid anion exchange resin-based catalysts have poor heat resistance, It was inferior in mechanical strength, had problems such as swelling peculiar to ion exchange resins, and had an unsatisfactory catalyst life. On the other hand, homogeneous catalysts such as Lewis acids and amines require a large amount of energy to separate the product from the catalyst. Means for Solving the Problem Summary of the Invention The technique of chemically modifying a solid surface is already known as a treatment method using a silane coupling agent. That is, it is already known in the art that by chemically modifying the inorganic surface with a silane coupling agent, it is possible to improve the adhesion between organic and inorganic materials of various composite materials, and to significantly improve the strength and electrical properties. However, while researching and developing useful catalysts for the disproportionation or redistribution reaction of chlorosilane, the present inventors found that a porous inorganic solid chemically modified with an amine-based organosilicon compound was particularly useful for the above reaction. The present invention was completed based on the discovery that this catalyst has high activity and good heat resistance. That is, the present invention provides SiHnCl 4-o (where 1≩n
A silane characterized by disproportionation and/or redistribution of a chlorosilane represented by ≩3),
In particular, it relates to a method for producing monosilane and/or chlorosilane. Surface Modification with a Surface Modification Reagent The organosilicon reagent that can be used to modify the surface of a porous inorganic solid with an organosilicon group containing a nitrogen atom bonded to carbon is represented by the following general formula. (Y-R-) l SiZ 4-l (l = 2 or 3) or AmN (-R-SiZ 3 ) 3-n (m = 0 or 1) or AnN (-R-SiZ 3 ) 4-o X (n=0, 1 or 2) Y is an amino group represented by -NH2 , -NHR1 , -NR1R2 , or -NH3.X , -N
H 2 R 1・X, −NHR 1 R 2・X, −N
Ammonium group represented by R 1 R 2 R 3・X, or

【匏】【formula】

【匏】【formula】

【匏】で衚わされるα−オキ゜アミノ 基の様な窒玠原子含有基であるか、眮換反応ある
いは付加反応により窒玠原子含有基に倉換可胜な
官胜基でもよい。該官胜基ずしおは塩玠、臭玠、
ペり玠の様なハロゲン原子、あるいは酢酞基
It may be a nitrogen atom-containing group such as an α-oxoamino group represented by the formula, or a functional group that can be converted into a nitrogen atom-containing group by a substitution reaction or an addition reaction. The functional groups include chlorine, bromine,
Halogen atoms such as iodine, or acetic acid groups

【匏】の劂きカルボン酞基そしお付 加反応に有甚な䞍飜和結合を有する炭化氎玠基が
ある。この堎合、ゞビニルゞ゚トキシシランの様
に−−がビニル基であ぀おも良い。 R1、R2、R3は氎玠原子あるいは炭玠数〜20
の炭化氎玠基であり、酞玠原子、あるいはハロゲ
ン原子等の炭玠、氎玠以倖の原子を含んでいおも
よく、飜和でも、䞍飜和でもよく、盎鎖でも偎鎖
を有しおいおも良く、環匏でも非環匏でも良い。
又、がアミノ基の堎合はR1、R2は互いに぀な
が぀おいおもよく、がアンモニりム基の堎合
R1、R2、R3のうちの又は党おが互いに぀なが
぀おいおもよく、がα−オキ゜アミノ基の堎合
には、R1、R2、R3のうちの又は党おが互いに
぀ながるか、あるいは、の䞀郚であ぀おも良
い。 は、炭玠数〜20の炭化氎玠基であり、酞玠
原子あるいはハロゲン原子等の炭玠、氎玠以倖の
原子を含んでいおもよく、飜和でも䞍飜和でも良
く、盎鎖でも偎鎖を有しおいおもよく、環匏でも
非環匏でも良い。 は、぀の珪玠原子に結合しおいるもののう
ち、少くずも぀が加氎分解基であり、倚孔性無
機固䜓衚面ず反応しお、脱離し該衚面ず結合する
機胜を有し、代衚的な加氎分解基はハロゲン、ア
ルコキシ基、アミノ基、アセトキシ基などであ
る。固䜓ずの結合機構に぀いおは䟋えば「工業材
料」第27巻第号34頁〜38頁に述べられおいる。
又のうち加氎分解基以倖のものは炭玠数〜20
の炭化氎玠基で、酞玠原子あるいはハロゲン原子
を含んでいお良く、互いに同じか、あるいは異぀
おいおも良い。 は、氎玠原子又は炭玠数〜20の炭化氎玠基
でハロゲン原子、酞玠原子等の炭玠、氎玠以倖の
原子を含有しおいおもよい。 Xはフツ玠、塩玠、臭玠、ペり玠、BF4、
ClO4、CN、カルボン酞基等のアニオンである。 䞊蚘䞀般匏を曎に具䜓的に瀺すず次の様にな
る。 匏䞭、Y′、Y″、は、前蚘ず、R′、R″、
、′′′′は前蚘ず、A′は前蚘ず、Z1〜Z12
は前蚘ず同じ定矩で衚わされる。 が炭玠に結合した窒玠原子を有しない堎合
は、該詊剀は倚孔性無機固䜓衚面を修食する前あ
るいはした埌にアミン、アミド、尿玠などの窒玠
化合物を甚いお付加あるいは眮換反応により、窒
玠原子含有基を有した本発明に係る觊媒ずするこ
ずができる。 䞊蚘衚面修食剀ずしおは、ビス〔−
−ゞメチルアミノプロピル〕ゞメトキシシラ
ン、トリス〔−−ゞ゚チルアミノプ
ロピル〕メトキシシラン、ビス〔−トリ゚ト
キシシリルプロピル〕アミン、ビス〔−ト
リ゚トキシシリルプロピル〕メチルアミン、ビ
ス〔−トリメトキシシリルプニルメチル〕
゚チルアミン、トリス〔−トリ゚トキシシリ
ルプロピル〕アミン、トリス〔−トリメト
キシシリルプニルメチル〕アミン、ビス〔
−トリ゚トキシシリルプロピル〕ゞメチルア
ンモニりムクロリド、ビス〔−トリメトキシ
シリルプニルメチル〕ゞメチルアンモニりム
ブロマむド、トリス〔−トリ゚トキシシリル
プロピル〕ベンゞルアンモニりムクロリド、トリ
ス〔−トリメトキシシリルプニルメチル〕
メチルアンモニりムクロリド、テトラキス〔−
トリ゚トキシシリルプロピル〕アンモニりム
クロリド、メチルトリスγ−トリメトキシシリ
ルプロピルアンモニりムクロリド、トリス〔
−トリメトキシシリルプロピル〕アンモニり
ムクロリド、などの窒玠原子含有修食詊剀の他、
窒玠原子非含有修食詊剀ずしお、ビス−クロ
ロプロピルゞクロロシラン、トリス−クロ
ロプロピルクロロシラン、ゞビニルゞ゚トキシ
シラン、トリビニルモノ゚トキシシラン、等を甚
いるこずができる。 倚孔性無機固䜓の衚面ぞの化孊修食方法シリ
ル化は、その䞡者を宀枩又は宀枩以䞊の枩床、
奜たしくは、30〜300℃で接觊させるだけでよく、
加氎分解基の加氎分解を促進するために氎を共存
させおも良いし、氎に察する溶解性の悪いものは
氎−アルコヌル系等の溶媒を䜿甚するこずもでき
る。 倚孔性無機固䜓 本発明に䜿甚できる倚孔性無機固䜓ずしおは石
英、ノバキナラむト、湿匏法シリカ、コロむダル
シリカ、シリカ゚アロゲル、珪砂、珪石、珪そう
土、トリゞマむト、クリストバラむト等のシリ
カ、カオリン、タルク、りオラストナむト、石
綿、珪酞カルシりム、珪酞アルミニりム、れオラ
むト、ベントナむト、掻性癜土、倚孔質ガラス、
珪酞マグネシりム、珪酞ゞルコニりム等の珪酞
塩、炭酞カルシりム、炭酞マグネシりム等の炭酞
塩、氎酞化マグネシりム、氎酞化アルミニりム、
氎酞化カルシりム、氎酞化チタニりム等の氎酞化
物、酞化亜鉛、酞化鉄、酞化マグネシりム、チタ
ニア、シリカ・アルミナ、ゞルコニア、酞化クロ
ム、酞化カルシりム、酞化バナゞりム、酞化ス
ズ、酞化ビスマス等の金属酞化物、炭化珪玠、炭
化チタニりム、炭化ゞルコニりム、炭化ほう玠、
等の炭化物、窒化珪玠、窒化ほう玠、窒化チタニ
りム、窒化ゞルコニりム等の窒化物、アルミニり
ム、銅、鉄、ニツケル、チタン、ゞルコニりム、
タングステン等の金属が䜿甚でき、特に奜たしい
のはシリカ、チタニアあるいは倚孔質ガラスであ
る。たたその衚面積はm2以䞊、通垞〜
1000m2のものが甚いられる。 䞍均化および又は再分配反応 クロロシランの䞍均化およびたたは再分配反
応は液盞でも気盞でも良く、又、流通匏でも回分
匏でもよいが気盞の方が䜎圧でおこなえ、か぀觊
媒ず生成物の分離が容易な気盞の方が奜たしく、
流通匏が奜たしい。反応枩床は〜300℃、奜た
しくは20〜200℃であり、圧力は垞圧〜50Kgcm2
ゲヌゞ圧、接觊時間0.1〜20秒の範囲で行うこ
ずができる。 たた、原料のクロロシランはSiHnCl4-oただ
し≊≊で衚わされるクロロ氎玠化シラン
である。即ちモノクロロシラン、ゞクロロシラン
たたはトリクロロシランの䞭の皮類あるいは
皮類以䞊の任意の組成の混合物を甚いるこずがで
き、窒玠ガス等の䞍掻性流䜓で垌釈しおもよい。 発明の効果 倚孔性無機固䜓衚面を炭玠に結合した窒玠原子
を有する有機珪玠塩で化孊修食した觊媒の存圚䞋
にクロロシランの䞍均化および又は再分配反応
を行うに際し、埓来の陰むオン亀換暹脂系の觊媒
より高枩で行え、モノシランおよびたたは原料
ず異なるクロロシランを収率良く埗るこずができ
る。 実斜䟋 以䞋、実斜䟋により、曎に詳现に説明するが、
本発明を限定するものではない。 尚、実斜䟋においお反応生成物の分析は党お、
のOV−充填カラム、カラム枩床160℃の
TCDキダリダ−ガスはヘリりムによるガスク
ロマトグラフで行぀た。 実斜䟋  十分に窒玠眮換した100mlフラスコにγ−アミ
ノプロピルトリ゚トキシシラン11.06、γ−ク
ロロプロピルトリメトキシシラン19.86、およ
び溶媒ずしお25mlの−ゞメチルホルムアミ
ドを入れ165℃のオむルバス䞭24時間還流加熱し
た。次いで枛圧䞋mmで溶媒を留去し、
25.2のオむル状のトリス〔−トリアルコキ
シシリルプロピル〕アンモニりムクロリド、
HN〔CH2CH2CH2SiOR3〕3Cl䜆し、
CH3又はC2H5を埗た。このアンモニりム塩3.0
ずシリカフゞタビ゜ン瀟補IDゲル、30〜60
メツシナ、空気䞭120℃ 10時間也燥7.0、及
び50mlのクロロベンれンを100mlフラスコ䞭、窒
玠雰囲気䞋130℃ 時間加熱し、次いで、100ml
のメタノヌルで回掗浄し、颚也埌、空気䞭100
℃ 時間也燥し、トリス〔−トリアルコキ
シシリルプロピル〕アミン〔CH2CH2CH2Si
OR3〕3䜆し、CH3又はC2H5により、衚
面修食されたシリカ8.8を埗た。 該修食シリカ2.0c.c.0.72をガラス補気盞
流通反応装眮内埄10mmに充おんし、窒玠気流
äž­110℃で時間加熱した埌、反応局を所定枩床
に保ちながら、垞圧䞋原料ガスSiHCl3N2æ··
合ガス、モル比3070をフむヌドし、反応を行
わしめた。条件敎定埌時間の生成物を分析し、
結果を衚−に瀺した。
There are carboxylic acid groups and hydrocarbon groups having unsaturated bonds useful in addition reactions, such as the formula: In this case, Y-R- may be a vinyl group as in divinyldiethoxysilane. R 1 , R 2 , R 3 are hydrogen atoms or have 1 to 20 carbon atoms
It is a hydrocarbon group that may contain atoms other than carbon or hydrogen such as oxygen atoms or halogen atoms, and may be saturated or unsaturated, linear or have a side chain, and may contain a ring or a halogen atom. It can be a formula or an acyclic formula.
In addition, when Y is an amino group, R 1 and R 2 may be connected to each other, and when Y is an ammonium group, R 1 and R 2 may be connected to each other.
Two or all of R 1 , R 2 and R 3 may be connected to each other, and when Y is an α-oxoamino group, two or all of R 1 , R 2 and R 3 may be connected to each other. It may be connected or may be a part of R. R is a hydrocarbon group having 1 to 20 carbon atoms, which may contain atoms other than carbon and hydrogen such as oxygen atoms or halogen atoms, and may be saturated or unsaturated, and may be linear or have a side chain. It may be cyclic or acyclic. Z is a group in which at least one of the groups bonded to one silicon atom is a hydrolyzable group, which has the function of reacting with the surface of a porous inorganic solid, desorbing it, and bonding with the surface. Hydrolyzable groups include halogen, alkoxy groups, amino groups, and acetoxy groups. The bonding mechanism with solids is described, for example, in "Kogyo Zaizai", Vol. 27, No. 9, pp. 34-38.
Also, Z other than the hydrolyzable group has 1 to 20 carbon atoms.
is a hydrocarbon group which may contain an oxygen atom or a halogen atom, and may be the same or different from each other. A is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and may contain atoms other than carbon and hydrogen, such as a halogen atom and an oxygen atom. X is fluorine, chlorine, bromine, iodine, BF4 ,
Anions such as ClO 4 , CN, and carboxylic acid groups. The above general formula is shown in more detail as follows. In the formula, Y′, Y″, Y are the above Y, R′, R″,
R and R''''' are the above-mentioned R, A' is the above-mentioned A, and Z 1 to Z 12
is expressed by the same definition as Z above. If Y does not have a nitrogen atom bonded to carbon, the reagent may be modified to contain a nitrogen atom by an addition or substitution reaction using a nitrogen compound such as an amine, amide, or urea before or after modifying the surface of the porous inorganic solid. The catalyst according to the present invention may have a group. As the surface modifier, bis[3-(N,N
-dimethylamino)propyl]dimethoxysilane, tris[3-(N,N-diethylamino)propyl]methoxysilane, bis[3-(triethoxysilyl)propyl]amine, bis[3-(triethoxysilyl)propyl]methyl Amine, bis[p-(trimethoxysilyl)phenylmethyl]
Ethylamine, Tris[3-(triethoxysilyl)propyl]amine, Tris[p-(trimethoxysilyl)phenylmethyl]amine, Bis[3
-(triethoxysilyl)propyl]dimethylammonium chloride, bis[p-(trimethoxysilyl)phenylmethyl]dimethylammonium bromide, tris[3-(triethoxysilyl)
Propyl]benzylammonium chloride, Tris[p-(trimethoxysilyl)phenylmethyl]
Methyl ammonium chloride, tetrakis [3-
(triethoxysilyl)propyl]ammonium chloride, methyltris(γ-trimethoxysilylpropyl)ammonium chloride, tris[3
In addition to nitrogen atom-containing modification reagents such as -(trimethoxysilyl)propyl]ammonium chloride,
As the nitrogen atom-free modification reagent, bis(3-chloropropyl)dichlorosilane, tris(3-chloropropyl)chlorosilane, divinyldiethoxysilane, trivinylmonoethoxysilane, etc. can be used. The chemical modification method (silylation) on the surface of porous inorganic solids involves heating both at room temperature or above room temperature.
Preferably, only contacting at 30-300°C is required;
Water may be present in order to promote hydrolysis of the hydrolyzable group, or a water-alcohol solvent or the like may be used if the solvent has poor solubility in water. Porous inorganic solid Porous inorganic solids that can be used in the present invention include silica such as quartz, novaquilite, wet process silica, colloidal silica, silica aerogel, silica sand, silica stone, diatomaceous earth, tridymite, cristobalite, kaolin, talc, and wolast. Night, asbestos, calcium silicate, aluminum silicate, zeolite, bentonite, activated clay, porous glass,
Silicates such as magnesium silicate and zirconium silicate, carbonates such as calcium carbonate and magnesium carbonate, magnesium hydroxide, aluminum hydroxide,
Hydroxides such as calcium hydroxide and titanium hydroxide; metal oxides such as zinc oxide, iron oxide, magnesium oxide, titania, silica/alumina, zirconia, chromium oxide, calcium oxide, vanadium oxide, tin oxide, and bismuth oxide; silicon carbide, titanium carbide, zirconium carbide, boron carbide,
carbides such as silicon nitride, boron nitride, titanium nitride, zirconium nitride and other nitrides, aluminum, copper, iron, nickel, titanium, zirconium,
Metals such as tungsten can be used, with silica, titania or porous glass being particularly preferred. In addition, its surface area is 1 m 2 /g or more, usually 2 ~
1000m 2 /g is used. Disproportionation and/or redistribution reaction The disproportionation and/or redistribution reaction of chlorosilane may be carried out in liquid phase or gas phase, and may be carried out in a flow type or batch type, but gas phase can be carried out at lower pressure, and catalyst A gas phase is preferable because it allows easy separation of the product and
A flow type is preferred. The reaction temperature is 0 to 300°C, preferably 20 to 200°C, and the pressure is normal pressure to 50Kg/cm 2
(gauge pressure) and contact time in the range of 0.1 to 20 seconds. The raw material chlorosilane is a chlorohydrogenated silane represented by SiHnCl 4-o (where 1≩n≩3). That is, one or two of monochlorosilane, dichlorosilane or trichlorosilane
A mixture of any composition of more than one type can be used, and may be diluted with an inert fluid such as nitrogen gas. Effects of the Invention When carrying out the disproportionation and/or redistribution reaction of chlorosilane in the presence of a catalyst in which the surface of a porous inorganic solid is chemically modified with an organic silicon salt having a nitrogen atom bonded to carbon, conventional anion exchange resins can be used. It can be carried out at a higher temperature than the catalyst in the system, and monosilane and/or chlorosilane different from the raw material can be obtained in good yield. Examples Hereinafter, it will be explained in more detail with reference to examples.
This is not intended to limit the invention. In addition, all the analyzes of reaction products in the examples were
2m OV-1 packed column, column temperature 160℃
The analysis was performed using a gas chromatograph using TCD (carrier gas is helium). Example 1 11.06 g of γ-aminopropyltriethoxysilane, 19.86 g of γ-chloropropyltrimethoxysilane, and 25 ml of N,N-dimethylformamide as a solvent were placed in a 100 ml flask that was sufficiently purged with nitrogen and placed in an oil bath at 165°C. Heated at reflux for 24 hours. Then, the solvent was distilled off under reduced pressure (3 mmHg),
25.2 g of tris[3-(trialkoxysilyl)propyl]ammonium chloride in the form of an oil;
HN [CH 2 CH 2 CH 2 Si(OR) 3 ] 3 Cl (where R=
CH3 or C2H5 ) was obtained. This ammonium salt 3.0
g and silica (Fuji Tabison ID gel, 30-60
7.0 g of mesh (dried in air at 120°C for 10 hours) and 50 ml of chlorobenzene were heated in a 100 ml flask at 130°C for 3 hours under a nitrogen atmosphere, and then 100 ml of
After washing with methanol 3 times and air drying,
℃ for 5 hours, tris[3-(trialkoxysilyl)propyl]amine N[CH 2 CH 2 CH 2 Si
8.8 g of silica surface-modified with (OR) 3 ] 3 (where R=CH 3 or C 2 H 5 ) was obtained. 2.0 cc (0.72 g) of the modified silica was filled in a glass gas phase flow reactor (inner diameter 10 mm) and heated at 110°C for 1 hour in a nitrogen stream.The raw material gas was then heated under normal pressure while keeping the reaction layer at a predetermined temperature. (SiHCl 3 /N 2 mixed gas, molar ratio 30/70) was fed to carry out the reaction. Analyze the product 1 hour after setting the conditions,
The results are shown in Table-1.

【衚】 実斜䟋  実斜䟋で埗た〔CH2CH2CH2SiOR3〕3ä¿®
食シリカ4.1、10mlのメタノヌルず共にフラス
コに入れ、1.0mlのペり化メチルを加え、窒玠雰
囲気䞋、60℃で時間加熱した。次いでこれをろ
過し、修食シリカを回収し、50mlのメタノヌルで
回掗浄埌、炭酞氎玠ナトリりム氎溶液
100mlで回掗浄埌氎掗した。このシリカに6N
の垌塩酞100mlを加え、炭酞氎玠むオンを塩玠む
オンに眮換した。次いで氎掗を回行い、50mlメ
タノヌルで回掗浄し、颚也埌、空気䞭100℃
12時間也燥を行い、メチルトリスγ−トリアル
コキシシリルプロピルアンモニりムクロリド、 CH3−  〔CH2CH2CH2−SiOR3〕3Cl、 で修食したシリカ4.1を埗た。 この修食シリカ2.0c.c.0.74を觊媒ずし、
実斜䟋ず同じ芁領でトリクロロシランの䞍均化
反応を行぀た。結果を衚−に瀺した。
[Table] Example 2 4.1 g of N[CH 2 CH 2 CH 2 Si (OR) 3 ] 3 modified silica obtained in Example 1 was placed in a flask with 10 ml of methanol, 1.0 ml of methyl iodide was added, and nitrogen The mixture was heated at 60° C. for 1 hour in an atmosphere. Next, this was filtered to recover the modified silica, which was washed twice with 50 ml of methanol, and then washed with an aqueous sodium hydrogen carbonate solution (2 g/
100 ml) twice and then with water. 6N to this silica
100 ml of diluted hydrochloric acid was added to replace hydrogen carbonate ions with chlorine ions. Next, wash with water twice, wash with 50ml methanol three times, air dry, and store in air at 100℃.
Drying was performed for 12 hours to obtain 4.1 g of silica modified with methyltris(γ - trialkoxysilylpropyl)ammonium chloride, CH3 - N [ CH2CH2CH2CH2 - Si(OR) 3 ] 3Cl ,. Using 2.0cc (0.74g) of this modified silica as a catalyst,
The disproportionation reaction of trichlorosilane was carried out in the same manner as in Example 1. The results are shown in Table-2.

【衚】 実斜䟋  窒玠眮換した100mlフラスコにビス−クロ
ロプロピルゞメトキシシラン4.9これはチ
ツ゜(æ ª)補ビス−クロロプロピルゞクロロシ
ランず過剰のメタノヌルより合成した。ず、ゞ
メチル−−ドデシルアミン東京化成(æ ª)補10
及び40mlの−ゞメチルホルムアミドを入
れ、垞圧䞋で12時間還流加熱を行぀た。枛圧䞋
mm120℃で溶媒及び未反応アミンを陀去
し、残぀た留分を100℃のトル゚ン150mlで掗
浄し、ろ別し、13.1のアンモニりム塩〔Cl・
−C12H25CH32NC3H6〕2SiOCH32を埗
た。該アンモニりム塩2.0ずシリカフゞダビ
゜ン瀟補、IDゲル、30〜60メツシナを空気䞭120
℃ 10時間也燥5.0及び60mlの−ゞメ
チルホルムアミドを100mlフラスコ䞭、窒玠雰囲
気化140℃、時間加熱の埌、シリカをろ別しこ
のシリカを100mlのメタノヌルで回掗浄し、颚
也埌、空気䞭100℃、12時間也燥し、衚面を
〔Cl・−C12H25CH32NC3H6〕2Si
OCH32なるアンモニりム塩により修食された
シリカを埗た。 該修食シリカ2.0c.c.0.73を甚いお、実斜
䟋ず同じ芁領でトリクロロシランの䞍均化反応
を行぀た。結果を衚−に瀺した。
[Table] Example 3 4.9 g of bis(3-chloropropyl)dimethoxysilane (this was synthesized from bis(3-chloropropyl)dichlorosilane manufactured by Chitsuso Co., Ltd. and excess methanol) was placed in a 100 ml flask purged with nitrogen. , dimethyl-n-dodecylamine (manufactured by Tokyo Kasei Co., Ltd.) 10
g and 40 ml of N,N-dimethylformamide were added thereto, and the mixture was heated under reflux for 12 hours under normal pressure. The solvent and unreacted amine were removed at 120°C under reduced pressure (1 mmHg), and the remaining fraction was washed with toluene (150 ml) at 100°C, filtered, and 13.1 g of ammonium salt [Cl.
(n - C12H25 )( CH3 ) 2NC3H6 ] 2Si ( OCH3 ) 2 was obtained. 2.0 g of the ammonium salt and silica (manufactured by Fuji Davison, ID gel, 30 to 60 mesh) were added in air at 120 g.
℃ 10 hours drying) 5.0 g and 60 ml of N,N-dimethylformamide were heated in a 100 ml flask at 140° C. in a nitrogen atmosphere for 8 hours, the silica was filtered off, and the silica was washed 5 times with 100 ml of methanol. After air-drying, dry in air at 100°C for 12 hours to coat the surface with [Cl・(n-C 12 H 25 ) (CH 3 ) 2 NC 3 H 6 ] 2 Si
Silica modified with an ammonium salt (OCH 3 ) 2 was obtained. A disproportionation reaction of trichlorosilane was carried out in the same manner as in Example 1 using 2.0 cc (0.73 g) of the modified silica. The results are shown in Table-3.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  倚孔性の無機固䜓衚面を炭玠に結合した窒玠
原子を含有する䞋匏で衚わされる有機珪玠詊剀で
化孊修食した觊媒の存圚䞋、SiHnCl4-oただし、
≊≊で衚わされるクロロシランを䞍均化
および又は再分配させるこずを特城ずするシラ
ンの補造方法、 −−lSiZ4-l 又は又は AmN−−SiZ33-n 又は又は AnN−−SiZ34-oX 、又は は第〜第玚のアミノ基か第玚〜第玚
のアンモニりム基、若しくは、α−オキ゜アミノ
基から遞ばれる窒玠原子含有基、はハロゲン原
子、酞玠原子等を含有しおいおもよいC1〜C20の
炭化氎玠基、は珪玠原子に結合し、うち少なく
ずも぀は加氎分解基であり、他はハロゲン原
子、酞玠原子等を含有しおもよいC1〜C20の炭化
氎玠基、は氎玠原子であるか、あるいは、ハロ
ゲン原子、酞玠原子を含有しおもよいC1〜C20の
炭化氎玠基、はハロゲン、BF4、OH、ClO4、
CN、カルボン酞基等のアニオンである。
[Claims] 1. SiHnCl 4-o (however,
1≩n≩3) A method for producing silane, characterized by disproportionation and/or redistribution of chlorosilane (Y-R-) l SiZ 4-l (l = 2 or 3) or AmN (-R-SiZ 3 ) 3-n (m = 0 or 1) or AnN (-R-SiZ 3 ) 4-o X (n = 0, 1 or 2) (Y is primary to tertiary amino R is a nitrogen atom-containing group selected from a primary to quaternary ammonium group or an α-oxoamino group, and R is a C 1 to C 20 hydrocarbon that may contain a halogen atom, an oxygen atom, etc. group, Z is bonded to a silicon atom, at least one of which is a hydrolyzable group, the others are C1 to C20 hydrocarbon groups that may contain halogen atoms, oxygen atoms, etc., A is a hydrogen atom; or a C 1 to C 20 hydrocarbon group which may contain a halogen atom or an oxygen atom, X is a halogen, BF 4 , OH, ClO 4 ,
Anions such as CN and carboxylic acid groups. )
JP60069966A 1985-04-04 1985-04-04 Production of silane Granted JPS61232214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60069966A JPS61232214A (en) 1985-04-04 1985-04-04 Production of silane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069966A JPS61232214A (en) 1985-04-04 1985-04-04 Production of silane

Publications (2)

Publication Number Publication Date
JPS61232214A JPS61232214A (en) 1986-10-16
JPH0339964B2 true JPH0339964B2 (en) 1991-06-17

Family

ID=13417904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069966A Granted JPS61232214A (en) 1985-04-04 1985-04-04 Production of silane

Country Status (1)

Country Link
JP (1) JPS61232214A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711444A1 (en) * 1987-04-04 1988-10-13 Huels Troisdorf METHOD AND DEVICE FOR PRODUCING DICHLORSILANE
JP4938994B2 (en) 2005-04-22 2012-05-23 ペンタックスリコヌむメヌゞング株匏䌚瀟 Silica airgel membrane and manufacturing method thereof

Also Published As

Publication number Publication date
JPS61232214A (en) 1986-10-16

Similar Documents

Publication Publication Date Title
JP4418803B2 (en) Method for producing organylhydrogensilane
JP2011505246A (en) Catalyst and method for disproportionating hydrogen-containing halogen silanes
US20120114544A1 (en) Organic chlorohydrosilane and method for preparing them
US5654459A (en) Process for preparing alkylhydrogenchlorosilanes
US4613491A (en) Redistribution catalyst and methods for its preparation and use to convert chlorosilicon hydrides to silane
CA2025864C (en) Removal of hydrogen-containing silanes from organosilane mixtures
CA2017908A1 (en) Integrated process for alkylation and redistribution of halosilanes
JPH05194548A (en) Process for producing 3-chloropropylsilane
US6392077B1 (en) Process for preparing organochlorosilanes by dehydrohalogenative coupling reaction of alkyl halides with chlorosilanes
JPH0339964B2 (en)
US4701430A (en) Hydrogenation catalyst and methods for its preparation and use to convert silicon tetrachloride to chlorosilane and silane
US7265235B2 (en) Method for producing halosilanes by impinging microwave energy
JPH0339963B2 (en)
JPH0341406B2 (en)
CN112638921B (en) Method for the dehydrogenation of dichlorosilane
JPH0413291B2 (en)
JP4118434B2 (en) Catalyst for disproportionation of silane compounds
KR860000661B1 (en) Process for preparing catalysts for disproportionating chlorosilane
JP2000178019A (en) Production of silane compound disproportionation reaction product
US6740766B2 (en) Preparation of organochlorosilanes by the silylation of conjugated dienes with trichlorosilane
KR900004714B1 (en) Process for the preparation of silicon catalyst
JP2000169131A (en) Production of disproportionation reaction product from silane compound
JPH09169775A (en) Production of dialkylchlorosilane
JPH0339965B2 (en)
JP2000026475A (en) Production of organic silicon compound