Nothing Special   »   [go: up one dir, main page]

JPH0337455B2 - - Google Patents

Info

Publication number
JPH0337455B2
JPH0337455B2 JP57081755A JP8175582A JPH0337455B2 JP H0337455 B2 JPH0337455 B2 JP H0337455B2 JP 57081755 A JP57081755 A JP 57081755A JP 8175582 A JP8175582 A JP 8175582A JP H0337455 B2 JPH0337455 B2 JP H0337455B2
Authority
JP
Japan
Prior art keywords
vibration
mold
slab
amplitude
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57081755A
Other languages
Japanese (ja)
Other versions
JPS58199645A (en
Inventor
Shinji Kojima
Kazuo Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8175582A priority Critical patent/JPS58199645A/en
Publication of JPS58199645A publication Critical patent/JPS58199645A/en
Publication of JPH0337455B2 publication Critical patent/JPH0337455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 この発明は連続鋳造においてその鋳型を振動さ
せる振動方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vibration method for vibrating a mold in continuous casting.

周知のように溶鋼等の溶融金属を鋳型内に連続
的に注湯して鋳片を得る連続鋳造法においては、
鋳型と鋳片との間の摩耗を軽減し、焼付きを防止
して安定した鋳込みを行うため、パウダ等の潤滑
剤を使用するとともに、鋳型を鋳片引抜方向へ振
動(オツシレーシヨン)させるのが通常である。
第1図に従来の連続鋳造機の代表的な一例を示
す。第1図においてタンデイツシユ1内の溶融金
属2は浸漬ノズル3を介して鋳型4内に注湯さ
れ、その溶融金属2は鋳型4の内面側から凝固し
て鋳片5が得られる。そして鋳型4内の溶融金属
2の表面には潤滑剤や保温剤、清浄剤等として機
能するパウダ6が散布される。また鋳型4は図示
しない周知の振動装置によつて矢印7に示すよう
に鋳片5の引抜方向に振動し、鋳型4と鋳片5と
が相対的に振動変位する。
As is well known, in the continuous casting method to obtain slabs by continuously pouring molten metal such as molten steel into a mold,
In order to reduce wear between the mold and slab, prevent seizure, and perform stable casting, it is recommended to use a lubricant such as powder and vibrate the mold in the direction of pulling out the slab. Normal.
Figure 1 shows a typical example of a conventional continuous casting machine. In FIG. 1, molten metal 2 in a tundish 1 is poured into a mold 4 through a submerged nozzle 3, and the molten metal 2 solidifies from the inner surface of the mold 4 to obtain a slab 5. Powder 6, which functions as a lubricant, a heat insulator, a cleaning agent, etc., is sprinkled onto the surface of the molten metal 2 in the mold 4. Furthermore, the mold 4 is vibrated in the direction in which the slab 5 is pulled out as shown by an arrow 7 by a well-known vibration device (not shown), and the mold 4 and the slab 5 are vibrated relative to each other.

ところで上述のような連続鋳造、特にパウダを
使用した連続鋳造においては、鋳型と鋳片との相
対振動によつて鋳片表面にオツシレーシヨンマー
クと称される窪みが形成される。このようなオツ
シレーシヨンマークは単に鋳片の外観(鋳肌)を
損うだけではなく、オツシレーシヨンマークの窪
みが深くなればその窪みがノツチの作用を果して
鋳片表面の割れを招き、またスラグの巻込みによ
る欠陥(いわゆるノロかみ)を引起す等の問題が
ある。したがつてオツシレーシヨンマークの発生
が可及的に回避もしくは軽減することが好まし
い。上述のようなオツシレーシヨンマークは、鋳
型の上昇時に鋳型内壁面に前記パウダの溶融物か
らなるスラグのたまりが生じて、次の鋳型の下降
過程でスラグが凝固して鋳片の凝固シエルに凹み
を生じさせることに起因することが知られてい
る。したがつて鋳型の上昇量もしくは上昇時間が
オツシレーシヨンマークの大きさ(深さ)に強く
影響を与えていると考えられるから、鋳型−鋳片
間の相対的変位量を軽減することがオツシレーシ
ヨンマークの軽減に有効であることが知られてい
る。しかしながら鋳型の振幅のみを小さくした場
合には鋳型表面と鋳片との焼付きを生じ、オツシ
レーシヨンさせる本来の目的が達成できなくな
る。すなわち、従来一般に鋳型振動は主として焼
付防止の観点から、振動ストローク5〜20mm、振
動周波数70〜150サイクル/分程度に設定されて
おり、これ以上高サイクル、小振幅とした場合に
は焼付きが発生しやすくなるが、一方この程度の
範囲内で小振幅としてもオツシレーシヨンマーク
の軽減には有効ではない。したがつて従来は焼付
きを防止するためには、オツシレーシヨンマーク
の軽減についてはある程度あきらめざるを得ない
のが実情であつた。
By the way, in continuous casting as described above, particularly in continuous casting using powder, depressions called oscillation marks are formed on the surface of the slab due to relative vibration between the mold and the slab. Such oscillation marks not only impair the appearance of the slab (casting surface), but also when the depressions of the oscillation marks become deep, the depressions act as notches and cause cracks on the surface of the slab. There are also problems such as defects caused by slag entrainment (so-called slag). Therefore, it is preferable to avoid or reduce the occurrence of oxidation marks as much as possible. The above-mentioned oscillation marks are caused by the accumulation of slag made of the melted powder on the inner wall surface of the mold when the mold is raised, and when the mold is lowered, the slag solidifies and becomes a solidified shell of the slab. It is known that this is caused by creating a dent. Therefore, since the amount or time of rise of the mold is considered to have a strong influence on the size (depth) of the oscillation mark, it is recommended to reduce the amount of relative displacement between the mold and slab. It is known to be effective in reducing silage marks. However, if only the amplitude of the mold is reduced, the surface of the mold and the slab will seize, making it impossible to achieve the original purpose of oscillation. In other words, in the past, mold vibration was generally set at a vibration stroke of 5 to 20 mm and a vibration frequency of 70 to 150 cycles/min, mainly from the perspective of preventing seizure, and if the cycle was higher than this and the amplitude was small, seizure would occur. However, even a small amplitude within this range is not effective in reducing oscillation marks. Therefore, in the past, in order to prevent burn-in, it was necessary to give up on reducing the oscillation marks to some extent.

この発明は以上の事情に鑑みてなされたもの
で、鋳型のオツシレーシヨンによる焼付き防止機
能を確保しつつ、オツシレーシヨンマークの発生
を軽減もしくは回避するようにした鋳型振動方法
を提供することを目的とするものである。
This invention was made in view of the above circumstances, and an object of the present invention is to provide a mold vibration method that reduces or avoids the occurrence of oscillation marks while ensuring the anti-seizure function of the oscillation of the mold. That is.

すなわちこの発明の鋳型振動方法は、従来と同
程度の比較的低サイクル、大振幅の振動、すなわ
ち振動周波数が70〜150サイクル/分でかつ振動
ストロークが5〜20mmの振動に加えて、その振動
の最大速度よりも振動最大速度が大きくしかも高
サイクル、小振幅の振動、すなわち振動周波数が
2000〜20000サイクル/分でかつ振動ストローク
が0.1〜0.5mmの振動を複合し、前記低サイクル、
大振幅の振動によつて焼付きを防止すると同時
に、高サイクル、小振幅の振動によつてオツシレ
ーシヨンマークの軽減を図るようにしたものであ
る。
In other words, the mold vibration method of the present invention not only generates relatively low-cycle, large-amplitude vibrations similar to conventional ones, that is, vibrations with a vibration frequency of 70 to 150 cycles/min and a vibration stroke of 5 to 20 mm, but also The maximum vibration speed is greater than the maximum speed of
The low cycle
The large-amplitude vibration prevents seizure, and at the same time, the high-cycle, small-amplitude vibration reduces oxidation marks.

以下この発明の鋳型振動方法をさらに詳細に説
明する。
The mold vibration method of the present invention will be explained in more detail below.

第2図はこの発明の方法を実施する装置の一例
を示すものであり、また第3図はこの発明による
鋳型の振動波形の一例を示すものである。なお第
2図において、第1図に示される要素と同一の要
素については同一の符号を附し、その説明は省略
する。
FIG. 2 shows an example of an apparatus for carrying out the method of the present invention, and FIG. 3 shows an example of vibration waveforms of a mold according to the present invention. In FIG. 2, the same elements as those shown in FIG. 1 are denoted by the same reference numerals, and the explanation thereof will be omitted.

第2図において、鋳型4はバネ材等からなる弾
性支持梁10を介して振動フレーム11に支持さ
れており、この振動フレーム11は、図示しない
従来公知の振動装置、例えばクランク・カム機構
あるいは油圧シリンダによつて矢印12および第
3図Aに示すように従来の通常の鋳型振動と同程
度の大振幅、低サイクルにて鋳片引抜方向に振動
せしめられるように構成されている。一方鋳型4
にはユーラスモータ等により駆動されてる高周波
加振器13が附設されている。この高周波加振器
13は矢印14および第3図Bに示すように前記
振動フレーム11の振動の最大振動速度よりも最
大速度が大きくしかも小振幅、高サイクルの鋳片
引抜方向への振動を鋳型4に与えるためのもので
ある。したがつて鋳型4には、第3図Aに示すよ
うな大振幅、低サイクルの振動と、それよりも最
大速度が大きくしかも小振幅、高サイクルの第3
図Bに示す振動とが複合された第3図Cに示すよ
うな複合振動が鋳片引抜方向に加えられることに
なる。
In FIG. 2, the mold 4 is supported by a vibrating frame 11 via an elastic support beam 10 made of a spring material or the like. As shown by the arrow 12 and FIG. 3A, the cylinder is configured to vibrate in the direction of drawing out the slab at a large amplitude and low cycle comparable to conventional mold vibration. On the other hand, mold 4
A high frequency exciter 13 driven by a Uras motor or the like is attached. As shown by the arrow 14 and FIG. 3B, this high-frequency vibrator 13 generates vibrations in the direction of drawing out the slab, which have a maximum speed larger than the maximum vibration speed of the vibration frame 11, a small amplitude, and a high cycle. It is for giving to 4. Therefore, the mold 4 has a large amplitude, low cycle vibration as shown in FIG.
A composite vibration as shown in FIG. 3C, which is a combination of the vibration shown in FIG. B, is applied in the slab drawing direction.

ここで高周波加振器13のみを用いて小振幅、
高サイクルの振動のみを鋳型4に与えた場合に
は、鋳片と鋳型との間の相対変位量が小さいため
前述のように焼付きが生じ易くなる。そこでこの
発明では単に小振幅、高サイクルの振動を与える
だけではなく、それに従来の通常の鋳型振幅と同
程度の大振幅、低サイクルの振動を複合して加え
て、鋳型と鋳片とのトータルとしての相対変位量
を大きくしている。ここで低サイクル側の振動モ
ードは、焼付き発生防止の観点から、上述のよう
に従来の通常の鋳型振動と同様に振動ストローク
5〜20mm程度、振動周波数70〜150サイクル/分
とする。一方高サイクル側の振動は、オツシレー
シヨンマークの形成を軽減もしくは回避するた
め、振幅を可及的に小さくすることが必要であ
り、振動ストローク0.1〜0.5mm、振動周波数2000
〜20000サイクル/分とする。
Here, using only the high frequency exciter 13,
If only high-cycle vibrations are applied to the mold 4, the amount of relative displacement between the slab and the mold is small, so seizure is likely to occur as described above. Therefore, in this invention, we not only apply small-amplitude, high-cycle vibrations, but also combine large-amplitude, low-cycle vibrations that are comparable to the conventional normal mold amplitude to improve the total vibration between the mold and the slab. The amount of relative displacement is increased. Here, from the viewpoint of preventing the occurrence of seizure, the vibration mode on the low cycle side is set to have a vibration stroke of about 5 to 20 mm and a vibration frequency of 70 to 150 cycles/minute, similar to the conventional normal mold vibration as described above. On the other hand, in order to reduce or avoid the formation of oscillation marks, it is necessary to reduce the amplitude of high-cycle vibrations as much as possible, with a vibration stroke of 0.1 to 0.5 mm and a vibration frequency of 2000.
~20000 cycles/min.

なお高サイクル側の振動の最大速度が低サイク
ル側の最大速度と等しいかまたは小さい場合に
は、高サイクル側の振動の1サイクル中において
実際に鋳型が上昇−下降しないことがある。例え
ば低サイクル側の振動による振動フレームの下降
過程でその下降速度よりも高サイクル側の振動に
よる鋳型の最大上昇速度が遅ければ鋳型は高サイ
クル側の振動の上昇過程で実際には上昇しないこ
とになる。このような場合にはオツシレーシヨン
マークの生成が低サイクル側の振動の影響を受け
てしまい、オツシレーシヨンマークの形成を軽減
もしくは回避できなくなるから、高サイクル側の
振動の最大速度を低サイクル側の振動の最大速度
よりも大きくする必要がある。
Note that if the maximum speed of vibration on the high cycle side is equal to or smaller than the maximum speed on the low cycle side, the mold may not actually rise or fall during one cycle of vibration on the high cycle side. For example, if the maximum rising speed of the mold due to vibration on the high cycle side is slower than the descending speed of the vibration frame due to vibration on the low cycle side, the mold will not actually rise during the rise process of vibration on the high cycle side. Become. In this case, the generation of oscillation marks will be affected by the vibrations on the low cycle side, making it impossible to reduce or avoid the formation of oscillation marks. It must be greater than the maximum speed of vibration on the side.

なおまた、第3図の例では低サイクル側の振動
波形および高サイクル側の振動波形としてサイン
波を用いる場合について示したが、必ずしもサイ
ン波に限らないことはもちろんであり、また低サ
イクル側の振動波形と高サイクル側の振動波形と
を異ならしめても良い。
Furthermore, although the example in Fig. 3 shows the case where a sine wave is used as the vibration waveform on the low cycle side and the vibration waveform on the high cycle side, it is needless to say that it is not limited to a sine wave. The vibration waveform and the vibration waveform on the high cycle side may be made different.

次にこの発明の鋳型振動方法を適用して鋼の連
続鋳造を行なつた実施例を記す。
Next, an example will be described in which continuous casting of steel was performed by applying the mold vibration method of the present invention.

実施例 スラブサイズ220mm×1400mmの鋼スラブを引抜
速度1.5m/minで連続鋳造するにあたり、振動
フレームに従来の鋳型振動と同程度の振動、すな
わち周波数120サイクル/分、振幅±5mm、最大
速度63mm/秒の振動を与えると同時に、高周波加
振器によつて周波数5000〜10000サイクル、振幅
±0.2mm、最大速度105〜210mm/秒の振動を与え
た。その結果オツシレーシヨンマークの深さおよ
びその長さを従来よりも格段に小さくすることが
できた。また焼き付きもほとんど発生しないこと
が確認された。
Example: When continuously casting a steel slab with a slab size of 220 mm x 1400 mm at a drawing speed of 1.5 m/min, the vibrating frame had the same level of vibration as conventional mold vibration, that is, frequency 120 cycles/min, amplitude ±5 mm, and maximum speed 63 mm. At the same time, vibrations were applied using a high-frequency exciter at a frequency of 5000 to 10000 cycles, an amplitude of ±0.2 mm, and a maximum speed of 105 to 210 mm/second. As a result, the depth and length of the oscillation mark can be made much smaller than in the past. It was also confirmed that burn-in hardly occurred.

以上の説明で明らかなようにこの発明の鋳型振
動方法によれば、連続鋳造に際しての鋳片の焼付
きを防止すると同時に、オツシレーシヨンマーク
の発生を軽減もしくは回避することができ、した
がつて表面肌の優れた鋳片を容易に得ることがで
き、また、オツシレーシヨンマークからの割れの
発生やオツシレーシヨンマークにおけるノロかみ
等の欠陥発生を有効に防止できる等、種々の顕著
な効果を得ることができる。
As is clear from the above explanation, according to the mold vibration method of the present invention, it is possible to prevent seizure of slabs during continuous casting, and at the same time reduce or avoid the occurrence of oscillation marks. It has various remarkable effects, such as being able to easily obtain slabs with excellent surface texture, and effectively preventing the occurrence of cracks from the oscillation marks and defects such as gouges in the oscillation marks. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の鋳型振動方法を実施する連続鋳
造設備の要部を示す略解図、第2図はこの発明の
鋳型振動方法を実施するための連続鋳造設備の要
部の一例を示す略解図、第3図A〜Cはこの発明
の方法に使用される振動波形の一例を示す波形図
であつて、Aは低サイクル側の振動波形、Bは高
サイクル側の振動波形、Cは両者の複合振動波形
を示す。 2……溶融金属、4……鋳型、5……鋳片、1
1……振動フレーム、13……高周波加振器。
FIG. 1 is a schematic diagram showing the main parts of continuous casting equipment for implementing the conventional mold vibration method, and FIG. 2 is a schematic diagram showing an example of the main parts of continuous casting equipment for implementing the mold vibration method of the present invention. , FIGS. 3A to 3C are waveform diagrams showing examples of vibration waveforms used in the method of the present invention, where A is the vibration waveform on the low cycle side, B is the vibration waveform on the high cycle side, and C is the vibration waveform of both. Shows a complex vibration waveform. 2... Molten metal, 4... Mold, 5... Slab, 1
1... Vibration frame, 13... High frequency exciter.

Claims (1)

【特許請求の範囲】 1 溶融金属を鋳型内に連続的に注湯して鋳片を
得る連続鋳造法において、 鋳型に対し鋳片の引抜方向と同一方向に、振動
周波数が70〜150サイクル/分でかつ振動ストロ
ークが5〜20mmの低サイクルかつ大振幅の振動
と、その振動よりも最大速度が大きくしかも振動
周波数が2000〜20000サイクル/分でかつ振動ス
トロークが0.1〜0.5mmの高サイクルかつ小振幅の
振動とを複合して加えることを特徴とする連続鋳
造鋳型の振動方法。
[Scope of Claims] 1. In a continuous casting method for obtaining slabs by continuously pouring molten metal into a mold, the vibration frequency is set to 70 to 150 cycles per second in the same direction as the direction in which the slab is pulled out from the mold. 2000 to 20,000 cycles/min and a vibration stroke of 0.1 to 0.5 mm. A continuous casting mold vibration method characterized by applying small amplitude vibration in combination.
JP8175582A 1982-05-14 1982-05-14 Oscillating method of mold for continuous casting Granted JPS58199645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8175582A JPS58199645A (en) 1982-05-14 1982-05-14 Oscillating method of mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8175582A JPS58199645A (en) 1982-05-14 1982-05-14 Oscillating method of mold for continuous casting

Publications (2)

Publication Number Publication Date
JPS58199645A JPS58199645A (en) 1983-11-21
JPH0337455B2 true JPH0337455B2 (en) 1991-06-05

Family

ID=13755250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8175582A Granted JPS58199645A (en) 1982-05-14 1982-05-14 Oscillating method of mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS58199645A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004125A1 (en) * 1984-03-19 1985-09-26 Amb Technology, Inc. Method and apparatus for the continuous casting of metal
DE4117052A1 (en) * 1990-07-23 1992-11-26 Mannesmann Ag LIQUID-CHILLED CHOCOLATE FOR METAL CONTINUOUS
JP4773796B2 (en) * 2005-10-28 2011-09-14 昭和電工株式会社 Aluminum alloy continuous casting rod, continuous casting rod casting method, continuous casting equipment
JP6733336B2 (en) * 2016-06-16 2020-07-29 日本製鉄株式会社 Continuous casting machine and continuous casting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427176A (en) * 1977-08-01 1979-03-01 Matsushita Electric Ind Co Ltd Apparatus for storing ariticles to be machined
JPS5855153A (en) * 1981-09-28 1983-04-01 Nippon Kokan Kk <Nkk> Continuous casting method for steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427176A (en) * 1977-08-01 1979-03-01 Matsushita Electric Ind Co Ltd Apparatus for storing ariticles to be machined
JPS5855153A (en) * 1981-09-28 1983-04-01 Nippon Kokan Kk <Nkk> Continuous casting method for steel

Also Published As

Publication number Publication date
JPS58199645A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
US5355935A (en) Method and device for vibrating an ingot mould for the continuous casting of metals
JPH04284950A (en) Method for continuously casting metal strip
JPH0337455B2 (en)
US2897557A (en) Metal casting
JP2885824B2 (en) Metal continuous casting method
JP2000117397A (en) Casting method for thin steel sheet
JP3651447B2 (en) Operation method of continuous casting machine
JP3191594B2 (en) Continuous casting method using electromagnetic force
JPS5853354A (en) Continuous casting method for steel
JPH0479744B2 (en)
JPH08192255A (en) Method for vibrating continuous casting mold
JPS61276749A (en) Ultrasonically oscillating method for continuous casting mold
JP3388686B2 (en) Flow control method in continuous casting strand
JP3595529B2 (en) Continuous casting machine for molten metal
JPS6235855B2 (en)
JPH08155611A (en) Method for continuously casting molten metal
JPH08187562A (en) Method for continuously casting steel
JPH082486B2 (en) Powder supply method in continuous casting
JP2002321044A (en) Molding equipment for continuous casting of metal and method of continuous casting
SU1560389A1 (en) Method of producing castings from high-alloyed steels inclined to scab-formation
JPH038541A (en) Apparatus for continuously casting strip
JPS62179854A (en) Continuous casting method for steel
Ten Low-frequency vibration treatment of liquid iron
JPS63126654A (en) Continuous casting method for cast slab
JPH03210942A (en) Method for continuously casting steel