Nothing Special   »   [go: up one dir, main page]

JPH0334433A - Manufacturing method of thin film transistor - Google Patents

Manufacturing method of thin film transistor

Info

Publication number
JPH0334433A
JPH0334433A JP16667289A JP16667289A JPH0334433A JP H0334433 A JPH0334433 A JP H0334433A JP 16667289 A JP16667289 A JP 16667289A JP 16667289 A JP16667289 A JP 16667289A JP H0334433 A JPH0334433 A JP H0334433A
Authority
JP
Japan
Prior art keywords
thin film
manufacturing
film transistor
drain
po1y
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16667289A
Other languages
Japanese (ja)
Inventor
Hidemi Ando
安藤 英美
Takashi Aoyama
隆 青山
Akio Mimura
三村 秋男
Chiyuukou Ko
胡 中行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16667289A priority Critical patent/JPH0334433A/en
Publication of JPH0334433A publication Critical patent/JPH0334433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランジスタの製造方法に係り、特にアク
ティブマトリクス方式の液晶デイスプレィに好適な薄膜
トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film transistor, and particularly to a method for manufacturing a thin film transistor suitable for an active matrix type liquid crystal display.

〔従来の技術〕[Conventional technology]

近年、アクティブマトリクス方式液晶平面デイスプレィ
の大画面化、高精細化の要求が高まるにつれて、多結晶
シリコン(Poly CrystallineSili
con略してPo1y −S i )を用いた薄膜トラ
ンジスタ(Thin Film Transistor
略してTFT)の開発が盛んに進められている。デイス
プレィの表示品質を良くするために要求されているTP
Tの特性としては、オフ電流が小さいこと、電流のオン
、オフ比が大きいことである。
In recent years, as the demand for larger screens and higher definition for active matrix liquid crystal flat displays has increased, polycrystalline silicon (PolyCrystallineSilicon)
Thin Film Transistor using a thin film transistor (abbreviated as Po1y-S i )
The development of TFT (abbreviated as TFT) is actively progressing. TP required to improve display quality
The characteristics of T are that the off-state current is small and the current on/off ratio is large.

第2図は従来、−殻内に用いられているPo1y −S
i  TFTの断面構造である。絶縁基板(ガラス)1
上にPo1y −S i 2が形成され、その上にゲー
ト絶縁膜6が形成されている。そしてこのゲート絶縁膜
6上にゲート電極7が形成され、これをマスクとしてP
o1y −S i 2中に不純物を導入し、活性化する
ことで、不純物領域であるソース電極3およびドレイン
電極5を形成する。しかし、この構造のPo1y−8i
  TFTでは、オフ状態にあるとき、すなわちnチャ
ネルTPTでは負のゲート電圧が印加された状態、Pチ
ャネルTPTでは正のゲート電圧が印加された状態の時
、印加されたゲート電圧、ドレイン電圧による電界がド
レイン接合部10に集中する。このため、ドレイン接合
付近の結晶粒界中のトラック準位を介してキャリアが生
成し、ゲート電圧、ドレイン電圧の増加と共に大きなリ
ーク電流が流れ、オフ電流が大きく、かつ、オン、オフ
比が小さくなるという問題があった。
Figure 2 shows the conventional - Po1y -S used in the shell.
i This is a cross-sectional structure of TFT. Insulating substrate (glass) 1
Po1y-S i 2 is formed thereon, and a gate insulating film 6 is formed thereon. A gate electrode 7 is formed on this gate insulating film 6, and using this as a mask, P
By introducing an impurity into o1y-S i 2 and activating it, a source electrode 3 and a drain electrode 5, which are impurity regions, are formed. However, this structure of Po1y-8i
When a TFT is in the off state, that is, when a negative gate voltage is applied to an n-channel TPT, and when a positive gate voltage is applied to a p-channel TPT, the electric field due to the applied gate voltage and drain voltage increases. is concentrated at the drain junction 10. Therefore, carriers are generated through the track level in the grain boundaries near the drain junction, and a large leakage current flows as the gate voltage and drain voltage increase, resulting in a large off-state current and a small on/off ratio. There was a problem.

そこで、次に特開昭63−204769号公報に記載の
ようにドレイン接合付近に集中する電界を緩和するため
に、LSIで用いられているL D D[J(Ligh
tly−Doped Drain)を用いたTPTが考
えられた。第3図はLDD構造を用いたPo1y −S
 1TFTの断面構造である。ガラスなどの絶縁基板1
上にPo1y −S i 2 、ゲート絶縁膜6を積層
する。
Therefore, as described in Japanese Unexamined Patent Publication No. 63-204769, in order to alleviate the electric field concentrated near the drain junction, L D D [J (Light
TPT using tly-Doped Drain was considered. Figure 3 shows Po1y-S using LDD structure.
This is a cross-sectional structure of 1 TFT. Insulating substrate 1 such as glass
Po1y-S i 2 and a gate insulating film 6 are laminated thereon.

次にゲート絶縁膜6上にゲート電極7を形成し。Next, a gate electrode 7 is formed on the gate insulating film 6.

これをマスクとして低濃度で不純物を導入し、不純物濃
度の低い領域9をPo1y −S i 2中に形成する
。さらに、ゲートff1ti7より大きいレジストマス
クをゲート電極7上に形成し、不純物を導入し、ソース
?i!極3およびドレイン電極5を形成する。
Using this as a mask, impurities are introduced at a low concentration to form a region 9 with a low impurity concentration in the Po1y-S i 2. Furthermore, a resist mask larger than the gate ff1ti7 is formed on the gate electrode 7, impurities are introduced, and the source ? i! A pole 3 and a drain electrode 5 are formed.

このような構造をもつPo1y  Si  TFTは、
ドレイン接合付近の不純物濃度が低いため、ゲート電極
やドレイン電圧による電界が分散され、ドレイン接合部
10の電界強度が弱まり、リーク電流を減少させること
ができた。
PolySi TFT with such a structure is
Since the impurity concentration near the drain junction is low, the electric field due to the gate electrode and drain voltage is dispersed, the electric field strength at the drain junction 10 is weakened, and leakage current can be reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術は、通常の製造工程に加えて、ホ
ト、不純物導入の工程が加わり、プロセスが煩雑にむる
問題があった。
However, the above-mentioned conventional technology has a problem in that the process becomes complicated because the steps of photophotography and introduction of impurities are added in addition to the normal manufacturing steps.

そこで、本発明では、プロセスを煩雑にすることなく、
ドレイン接合部に不純物濃度の低い領域を設けることに
よりオフ電流を低減、かつオン。
Therefore, in the present invention, without complicating the process,
Providing a region with low impurity concentration at the drain junction reduces off-current and turns on.

オフ比を大きくすることができるPo1y −S 1T
FTの製造方法を提供することにある。
Po1y-S 1T that can increase the off ratio
An object of the present invention is to provide a method for manufacturing FT.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、Po1y −8i
  TFTを製造する工程の不純物導入後の活性化法と
して、ゲート電極をマスクとしてレーザ光をななめから
照射することを特徴としたものである。
In order to achieve the above object, the present invention provides Po1y-8i
As an activation method after introducing impurities in the process of manufacturing a TFT, this method is characterized by diagonally irradiating laser light using the gate electrode as a mask.

〔作用〕[Effect]

不純物の活性化において、ななめからレーザ照射すると
、ゲート電極がマスクとなってドレイン接合付近にはレ
ーザ光が照射されず、不純物が活性化されない領域が形
成され、レーザ光のあたるソース電極、ドレイン電極、
ゲート電極は活性化される。これによりドレイン接合部
の活性化した不純物濃度は低くでき通常のプロセスをあ
まり煩雑にすることなく、ドレイン部のLDD構造を作
ることができる。
When activating impurities, when laser irradiation is performed diagonally, the gate electrode acts as a mask and the laser light is not irradiated near the drain junction, forming a region where impurities are not activated. ,
The gate electrode is activated. As a result, the concentration of activated impurities in the drain junction can be lowered, and an LDD structure in the drain can be formed without complicating normal processes.

また、本発明により形成したPo1y −S i  T
FTは不純物が活性化されていない領域が設けられてい
るため、ゲート電圧とドレイン電圧による電界が分散さ
れ、ドレイン接合部の電界強度が弱まり、ドレイン接合
付近の結晶粒中のトラップ準位を介して生成するキャリ
アが少なくなり、リーク電流を低減させることができる
Moreover, Po1y-S i T formed according to the present invention
Since the FT has a region where impurities are not activated, the electric field due to the gate voltage and drain voltage is dispersed, the electric field strength at the drain junction is weakened, and the electric field is As a result, fewer carriers are generated, and leakage current can be reduced.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第1図は本発明を
用いたTPT全体の断面構造を示す。まず、絶縁基板l
としては、ガラスあるいは石英を用い、基板温度を58
0℃に保ち、減圧CVD注により厚さ1500ÅのPo
1y −S i 2を形成する。
An embodiment of the present invention will be described below. FIG. 1 shows the cross-sectional structure of the entire TPT using the present invention. First, the insulating substrate l
As a substrate, glass or quartz is used, and the substrate temperature is set to 58℃.
The temperature was maintained at 0°C, and the Po
1y-S i 2 is formed.

この膜をアイランドホト、エツチングの工程を通した後
、常圧CVD法によりゲート絶縁膜6用の5iOzll
Iを1500人堆積させる。次に、ゲート電極7用のP
o1y −S i gを1500Å堆積させる。ゲート
電極7.ゲート絶縁膜6をホト、エツチングした後、ゲ
ート電極7をマスクとしてリンをイオン注入し、さらに
、不純物活性化のために、ななめから波長308nmの
XeCQ パルスエキシマレーザ光8を300mJ/a
ltのエネルギーで45@の角度から照射し、ソース電
極3.ドレイン電極5.不純物の活性化していない領域
4をつくる。これによりLDD領域が0.3μm以上形
成できる。さらにリンガラス(Phospho Sil
iconglass +略してPSG)を400℃で5
000λ堆積させる。コンタクト用のホト、エッチ工程
の後、AQ電極を6000Åスパッタする。
After passing this film through island photo and etching steps, 5iOzll for the gate insulating film 6 is formed by atmospheric pressure CVD.
Deposit 1500 I. Next, P for the gate electrode 7
Deposit o1y-S i g to 1500 Å. Gate electrode7. After photo-etching the gate insulating film 6, phosphorus is ion-implanted using the gate electrode 7 as a mask, and then XeCQ pulsed excimer laser light 8 with a wavelength of 308 nm is applied diagonally at 300 mJ/a to activate the impurity.
Irradiate from an angle of 45@ with an energy of lt, and the source electrode 3. Drain electrode5. A region 4 in which impurities are not activated is created. As a result, the LDD region can be formed with a thickness of 0.3 μm or more. In addition, Phospho Sil
iconglass + PSG for short) at 400℃ for 5
000λ is deposited. After photolithography and etching processes for contact, AQ electrodes are sputtered to a thickness of 6000 Å.

第4図は上記、本発明のPo1y −S i  T F
 Tと、従来のPo1y−8i  TFTのゲート電圧
によるドレイン電流依存性の測定結果を示す図である。
FIG. 4 shows the above-mentioned Po1y-S i T F of the present invention.
FIG. 3 is a diagram showing measurement results of drain current dependence on gate voltage of a conventional Poly-8i TFT.

この従来のPo1y−3i  TFTは、不純物活性化
ではレーザ光を垂直に照射したものである。測定したT
PTのチャネル幅、チャネル長はそれぞれ10μm、5
0μmである。本発明と従来の特性を比へると、オン、
オフ比は↓桁以上増加し、オフ電流も1桁低減している
In this conventional Po1y-3i TFT, impurity activation is performed by vertically irradiating laser light. Measured T
The channel width and channel length of PT are 10 μm and 5 μm, respectively.
It is 0 μm. Comparing the characteristics of the present invention and the conventional technology, on,
The off-ratio has increased by more than ↓ orders of magnitude, and the off-state current has also decreased by one order of magnitude.

上記実施例において、不純物活性化用レーザ光は45°
の角度から照射しているが、これは、ドレイン接合の部
分に不純物が活性化されていない領域が設けることがで
きる角度であれば、45゜に限定されない。
In the above example, the laser beam for impurity activation is 45°
However, this angle is not limited to 45 degrees as long as it can provide a region where impurities are not activated at the drain junction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ドレイン接合部の電界強度を緩和でき
るので、薄膜半導体装置のリーク電流低減の効果がある
。また、プロセスは従来とのほとんど変更はないため、
コストが変わらず、より特性の優れた薄膜トランジスタ
を製造できる。
According to the present invention, since the electric field strength at the drain junction can be relaxed, leakage current of the thin film semiconductor device can be reduced. In addition, since the process is almost unchanged from the previous one,
Thin film transistors with better characteristics can be manufactured without changing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるPo1y−5i  TFTの一実
施例を示す概略構造の断面図、第2図は従来のPo1y
  Si  TFTの概略構造の断面図、第3図は従来
のLDD構造をもつPo1y−8i  TFTの概略構
造の断面図、第4図は従来のPo1y −S 1TFT
と本発明のPo1y−3i  TFTのゲート電圧によ
るドレイン電流依存性の測定結果を示す図である。 l・・・絶縁基板、2・・・多結晶シリコン膜、3・・
・ソース電極、4・・・不純物が活性化されていない領
域。 5・・・ドレイン電極、6・・ゲート絶縁膜、7・・・
ゲート電極、8・・・レーザ光、9・・・低濃度の不純
物を含率2図 第3図 躬4−図 +T=+−を圧(v)
FIG. 1 is a cross-sectional view of the schematic structure of an embodiment of the Po1y-5i TFT according to the present invention, and FIG. 2 is a cross-sectional view of the conventional Po1y-5i TFT.
Fig. 3 is a cross-sectional view of the schematic structure of a Si TFT, Fig. 3 is a cross-sectional view of the schematic structure of a Poly-8i TFT with a conventional LDD structure, and Fig. 4 is a cross-sectional view of the schematic structure of a Poly-8i TFT with a conventional LDD structure.
FIG. 3 is a diagram showing measurement results of drain current dependence on gate voltage of the Po1y-3i TFT of the present invention. l...Insulating substrate, 2...Polycrystalline silicon film, 3...
- Source electrode, 4...A region where impurities are not activated. 5...Drain electrode, 6...Gate insulating film, 7...
Gate electrode, 8... Laser light, 9... Low concentration impurity content 2 Figure 3 Figure 4- Figure +T = +- pressure (v)

Claims (1)

【特許請求の範囲】 1、絶縁基板上に形成された多結晶シリコン膜中に不純
物を導入することにより形成された不純物領域の不純物
活性化工程において、ゲート電極を形成後レーザ光をな
なめから照射することを特徴とする薄膜トランジスタの
製造方法。 2、請求項1において、上記不純物領域は、ドレイン電
極であることを特徴とする薄膜トランジスタの製造方法
。 3、請求項2において、上記レーザ光をソース電極側か
ら照射してドレイン電極の一部分にレーザを照射しない
領域を設けることを特徴とする薄膜トランジスタの製造
方法。
[Claims] 1. In the impurity activation step of an impurity region formed by introducing impurities into a polycrystalline silicon film formed on an insulating substrate, a laser beam is irradiated diagonally after forming a gate electrode. A method for manufacturing a thin film transistor, characterized by: 2. The method of manufacturing a thin film transistor according to claim 1, wherein the impurity region is a drain electrode. 3. A method of manufacturing a thin film transistor according to claim 2, characterized in that the laser beam is irradiated from the source electrode side, and a region where the laser beam is not irradiated is provided in a part of the drain electrode.
JP16667289A 1989-06-30 1989-06-30 Manufacturing method of thin film transistor Pending JPH0334433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16667289A JPH0334433A (en) 1989-06-30 1989-06-30 Manufacturing method of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16667289A JPH0334433A (en) 1989-06-30 1989-06-30 Manufacturing method of thin film transistor

Publications (1)

Publication Number Publication Date
JPH0334433A true JPH0334433A (en) 1991-02-14

Family

ID=15835587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16667289A Pending JPH0334433A (en) 1989-06-30 1989-06-30 Manufacturing method of thin film transistor

Country Status (1)

Country Link
JP (1) JPH0334433A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308998A (en) * 1991-08-26 1994-05-03 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices having a LDD region and an anodic oxide film of a gate electrode
JPH06252079A (en) * 1993-02-23 1994-09-09 G T C:Kk Ion implantation method and its device
US5650338A (en) * 1991-08-26 1997-07-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming thin film transistor
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JP2008004867A (en) * 2006-06-26 2008-01-10 Denso Corp Process for fabricating semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913112A (en) * 1991-03-06 1999-06-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an insulated gate field effect semiconductor device having an offset region and/or lightly doped region
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5308998A (en) * 1991-08-26 1994-05-03 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices having a LDD region and an anodic oxide film of a gate electrode
US5650338A (en) * 1991-08-26 1997-07-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming thin film transistor
US5962870A (en) * 1991-08-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices
JPH06252079A (en) * 1993-02-23 1994-09-09 G T C:Kk Ion implantation method and its device
JP2008004867A (en) * 2006-06-26 2008-01-10 Denso Corp Process for fabricating semiconductor device

Similar Documents

Publication Publication Date Title
JP3483484B2 (en) Semiconductor device, image display device, method of manufacturing semiconductor device, and method of manufacturing image display device
KR100197780B1 (en) Method of manufacturing transistors and semiconductor circuits
JP3277892B2 (en) Display substrate manufacturing method
JP3442500B2 (en) Method for manufacturing semiconductor circuit
JP3173854B2 (en) Method for manufacturing thin-film insulated gate semiconductor device and semiconductor device manufactured
JPH05190568A (en) Method for manufacturing insulated gate thin film transistor
KR970018635A (en) A method of forming a polycrystalline silicon layer, a thin film transistor comprising the polycrystalline silicon layer, a method of manufacturing the same, and a liquid crystal display device comprising the thin film transistor.
JPH0688972A (en) Liquid crystal display device
US5985701A (en) Process for fabricating liquid crystal electro-optical device comprising complementary thin film field effect transistors
US5879976A (en) Thin film transistor and method for producing the same
JPH1098196A (en) Active matrix type display device and manufacturing method thereof
JP3224215B2 (en) Method for manufacturing thin-film insulated gate semiconductor device
JP3423108B2 (en) Display device and method of manufacturing display device
JPH0334433A (en) Manufacturing method of thin film transistor
JPH04362616A (en) active matrix panel
JP3216502B2 (en) CMOS thin film semiconductor device and method of manufacturing the same
JP2009048199A (en) Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
JP2720779B2 (en) Thin film transistor and method of manufacturing the same
JP3266861B2 (en) Active matrix device
JP3027013B2 (en) Method of doping impurities in semiconductor and method of manufacturing semiconductor device
JP4197270B2 (en) Method for manufacturing semiconductor integrated circuit
JP3431903B2 (en) Semiconductor circuit and semiconductor device
JPH07193252A (en) Thin film transistor and its manufacture
JP3469183B2 (en) Liquid crystal display
JP3963663B2 (en) Semiconductor device