JPH03289122A - X-ray mask structure - Google Patents
X-ray mask structureInfo
- Publication number
- JPH03289122A JPH03289122A JP2090283A JP9028390A JPH03289122A JP H03289122 A JPH03289122 A JP H03289122A JP 2090283 A JP2090283 A JP 2090283A JP 9028390 A JP9028390 A JP 9028390A JP H03289122 A JPH03289122 A JP H03289122A
- Authority
- JP
- Japan
- Prior art keywords
- silicon wafer
- ray
- substrate
- mask structure
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 36
- 239000010703 silicon Substances 0.000 claims abstract description 36
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000006096 absorbing agent Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 abstract description 8
- 239000000428 dust Substances 0.000 abstract description 7
- 150000003376 silicon Chemical class 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 31
- 239000010410 layer Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000012780 transparent material Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はX線マスク構造体に関し、更に詳しくは支持基
板であるシリコンウェハーの形状に特徴を有するX線マ
スク構造体に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an X-ray mask structure, and more particularly to an X-ray mask structure characterized by the shape of a silicon wafer serving as a supporting substrate.
(従来の技術)
従来、IC,LSI等の電子デイバイスのリソグラフィ
ー加工方法として種々の方法が使用されているが、その
中でも、X線リソグラフィーはX線固有の高透過率(低
級酸性)や単波長等の性質に基づき、これ迄の可視光や
紫外光によるリソグラフィ一方法に比べて多くの優れた
点を有しており、サブミクロンリソグラフィ一方法の有
力な手段として注目されている。(Prior Art) Conventionally, various methods have been used as lithography processing methods for electronic devices such as ICs and LSIs. Based on these properties, it has many advantages over conventional lithography methods using visible light or ultraviolet light, and is attracting attention as a powerful means of submicron lithography.
これらX線マスク構造体は、X線透過膜の強度が不足す
る為、−Mに0.5〜2mm程度の厚さの円形シリコン
ウェハーを基板として用い、LP−CVD、プラズマC
VD、ECR−CVD等の各種CVD方法により、シリ
コンウェハー基板の表面上にSiN 、 SiC、BN
等の材料でX線透過膜を形成後、シリコンウェハー基板
の裏面にエツチング保護膜を設け、水酸化カリウム溶液
等でバックエツチングを行い、所望領域のX線透過膜を
露出させて作成されている。These X-ray mask structures use LP-CVD, plasma C
SiN, SiC, BN is deposited on the surface of a silicon wafer substrate by various CVD methods such as VD and ECR-CVD.
After forming an X-ray transparent film with a material such as, an etching protection film is provided on the back side of the silicon wafer substrate, and back etching is performed with a potassium hydroxide solution to expose the desired area of the X-ray transparent film. .
(発明が解決しようとしている問題点)しかしながら、
上記従来例ではシリコンウェハー基板上にX線透過膜材
料を各種CVD法で形成する際、シリコンウェハー基板
とシリコンウェハー基板を保持する基板ホルダーとの接
点部において、SiN等のX線透過膜材料の異常成長が
起き、数μm〜十数μmのX線透過膜材料の突起が発生
することがある。又、成膜時やリソグラフィーの段階で
の取り扱い時に、XI!マスク構造体表面にキズやゴミ
がつく等の問題点があった。(The problem that the invention is trying to solve) However,
In the above conventional example, when forming an X-ray transparent film material on a silicon wafer substrate by various CVD methods, the X-ray transparent film material such as SiN is Abnormal growth may occur and protrusions of the X-ray transparent membrane material of several micrometers to ten-odd micrometers may occur. Also, when handling during film formation or lithography, XI! There were problems such as scratches and dust on the surface of the mask structure.
従って、本発明の目的は、上記問題点を解決した優れた
X線リソグラフィー用マスク構造体を提供することであ
る。Therefore, an object of the present invention is to provide an excellent mask structure for X-ray lithography that solves the above problems.
(問題点を解決する為の手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.
即ち、本発明は、所望パターンのX線吸収体と、該吸収
体を支持するXll透過膜と、該X線透過膜を支持する
支持基板とからなるX線マスク構造体において、該支持
基板が側面部に1箇所以上の切り欠きを設けたシリコン
ウェハーであることを特徴とするX線マスク構造体であ
る。That is, the present invention provides an X-ray mask structure comprising an X-ray absorber having a desired pattern, an Xll-transparent film that supports the absorber, and a support substrate that supports the X-ray transmission film, in which the support substrate is This is an X-ray mask structure characterized in that it is a silicon wafer with one or more notches provided on its side surface.
(作 用)
本発明によれば、シリコンウェハー基板の側面に切り欠
きを設けることにより、シリコンウェハー表面にX線透
過膜を成膜する際、その表面に基板ホルダーが接地する
ことなく、各種CVD法等によりX線透過膜材料を蒸着
することが可能となる。(Function) According to the present invention, by providing a notch on the side surface of the silicon wafer substrate, when an X-ray transparent film is formed on the surface of the silicon wafer, the substrate holder is not grounded on the surface, and various types of CVD can be performed. It becomes possible to deposit an X-ray transparent film material by a method or the like.
その結果、シリコンウェハー基板表面上にxB透過膜材
料の突起が生成するのを防止することが出来、しかも、
その他の諸工程での取り扱い時においても表面にキズや
ゴミがつくのを防止出来、優れた特性のX線マスク構造
体が提供される。As a result, it is possible to prevent the formation of protrusions of the xB permeable film material on the surface of the silicon wafer substrate, and
Even during handling in other processes, scratches and dust can be prevented from forming on the surface, providing an X-ray mask structure with excellent characteristics.
(好ましい実施態様)
次に添付図面に示す好ましい実施態様を挙げて本発明を
更に詳しく説明する。(Preferred Embodiments) Next, the present invention will be described in more detail with reference to preferred embodiments shown in the accompanying drawings.
本発明のX線マスク構造体に使用するX線透過膜は、ベ
リリウム(Be) 、チタン(Ti) 、硅素(Si)
、硼素(B)等の単体又はそれらの化合物等の無機物
或いはこれらの無機膜とポリイミド等の有機膜との複合
膜の如く、従来X線透過膜として使用されているものは
いずれも本発明で使用することが出来、これらのX線透
過膜はX線透過量を可能な限り大きくする為に、0.5
〜5μmの厚みであるのが好ましい。The X-ray transparent film used in the X-ray mask structure of the present invention is made of beryllium (Be), titanium (Ti), and silicon (Si).
In the present invention, any of the materials conventionally used as X-ray transmitting membranes, such as simple substances such as boron (B) or inorganic substances such as compounds thereof, or composite membranes of these inorganic films and organic films such as polyimide, can be used in the present invention. These X-ray transparent membranes have a 0.5
A thickness of ~5 μm is preferred.
これらのX線透過膜は、X線透過膜の強度が不足するの
で、シリコンウェハー支持基板上にX線透過膜をLP−
CVD、プラズマCVD、ECR−CVD等の各種CV
D方法により成膜される。Since the strength of these X-ray transparent films is insufficient, the X-ray transparent film is placed on a silicon wafer support substrate using LP-
Various CVD such as CVD, plasma CVD, ECR-CVD, etc.
The film is formed by method D.
次いでその裏面にエツチング保護膜を設け、水酸化カリ
ウム水溶液でエツチングすることによりシリコンウェハ
ー基板に支持された無機メンブレンを形成することが出
来る。Next, an etching protection film is provided on the back surface and etching is performed with an aqueous potassium hydroxide solution, thereby forming an inorganic membrane supported on the silicon wafer substrate.
上記X線透過膜上に形成するXll吸収体としては、−
Uに密度の高い物質1例えば、金、白金、タングステン
、タンタル、銅、ニッケル及びそれらを含む化合物の薄
膜(例えば、0.5〜1μm程度の厚み)の如く、従来
のX11ilマスク構造体に使用されているX線吸収体
はいずれも本発明において使用出来、特に限定されない
。As the Xll absorber formed on the above-mentioned X-ray transparent membrane, -
Substances with high U density 1, such as gold, platinum, tungsten, tantalum, copper, nickel, and thin films (for example, about 0.5 to 1 μm thick) of compounds containing them, used in conventional X11il mask structures Any of the X-ray absorbers listed above can be used in the present invention and is not particularly limited.
この様なX線吸収体は、例えば、上記X線透過膜上にメ
ツキ電極層を設け、その上に単層又は多層のレジストを
エレクトロンビーム描画によりバターニングし、例えば
、金をメツキしてX線吸収体である金パターンを形成す
る。又、X線透過膜上にタングステンやタンタル等を成
膜し、単層又は多層のレジストをエレクトロンビーム描
画により形成し、次いでタングステンやタンタル層をプ
ラズマエツチングしてXll吸収体を形成することが出
来る。又、X線吸収体はシリコンウェハーのバックエツ
チング前に形成してもよい。Such an X-ray absorber can be made by, for example, providing a plating electrode layer on the above-mentioned X-ray transmitting film, patterning a single-layer or multi-layer resist on the electrode layer by electron beam writing, and plating it with gold, for example. Form a gold pattern that is a line absorber. Alternatively, an Xll absorber can be formed by forming a film of tungsten, tantalum, etc. on an X-ray transparent film, forming a single layer or multilayer resist by electron beam writing, and then plasma etching the tungsten or tantalum layer. . Alternatively, the X-ray absorber may be formed before back etching the silicon wafer.
本発明は上記の如きX線マスク構造体の構成において、
シリコンウェハー基板の側面部に切り欠きを設けたこと
を特徴とする。このシリコンウェハー基板の側面部に設
ける切り欠きは、同一シリコンウェハー基板に一箇所以
上あり、その形状としてはシリコンウェハーを基板ホル
ダーで保持する際に、基板ホルダーシリコンウェハーの
表面に接地しなければどの様な形状でもよいが、好まし
くは第1図(a)〜(c)に示す如くの形状がよい。The present invention provides the structure of the X-ray mask structure as described above.
A feature is that a notch is provided on the side surface of the silicon wafer substrate. There are more than one notch on the side of the silicon wafer substrate, and the shape of the notch is such that when the silicon wafer is held in the substrate holder, the notch must be grounded to the surface of the substrate holder silicon wafer. Although the shape may be different, preferably the shape shown in FIGS. 1(a) to 1(c) is good.
即ち、第1図に示す様にシリコンウェハー基板に切り欠
きが設けられている為、シリコンウェバー基板は、X線
透過膜の成膜時に成膜装置の基板ホルダーとこの切り欠
は部分でのみで接触することになる。In other words, as shown in Figure 1, the silicon wafer substrate has a notch, so when forming an X-ray transparent film, the silicon wafer substrate is only partially connected to the substrate holder of the film forming apparatus. will come into contact.
この結果、X線透過材料をシリコンウェハー基板上にC
VD法等で蒸着した場合に、X線透過材料の異常成長が
生ずることなく、X線透過材料の突起が発生することは
ない。As a result, the X-ray transparent material was placed on the silicon wafer substrate with C
When deposited by VD method or the like, abnormal growth of the X-ray transparent material does not occur, and no protrusions of the X-ray transparent material occur.
更に、成膜時やリソグラフィーの段階での取り扱い時に
も、シリコンウェハー基板は基板ホルダーとこの切り欠
は部分でのみで接触している為、マスク構造体の表面に
傷やゴミが付くことがない。Furthermore, during film formation and handling during the lithography stage, the silicon wafer substrate is in contact with the substrate holder only at this notch, so there is no chance of scratches or dust on the surface of the mask structure. .
尚、シリコンウェハー基板の切り欠きの形成方法はどの
様な方法を用いてもよいが、例えば、ドライエツチング
、ウェットエツチング、研磨等によって行われる。Note that any method may be used to form the notch in the silicon wafer substrate, and examples thereof include dry etching, wet etching, polishing, and the like.
(実施例) 以下本発明の詳細を実施例により説明する。(Example) The details of the present invention will be explained below with reference to Examples.
実施例1
第1図(a)の如く、2mm厚及び3インチ径のシリコ
ンウェハー基板の側面に切り欠きを2箇所入れた。この
シリコンウェハー基板上に、LP−CVD法を用いてS
iC膜を2μm蒸着した。蒸着装置は縦形炉を用い、ウ
ェハーのホールドはウェハーの切り欠きの2箇所のみが
ホルダーと接触する様にした。Example 1 As shown in FIG. 1(a), two notches were made in the side surface of a silicon wafer substrate with a thickness of 2 mm and a diameter of 3 inches. On this silicon wafer substrate, S
An iC film was deposited to a thickness of 2 μm. A vertical furnace was used as the vapor deposition apparatus, and the wafer was held so that only two notches of the wafer were in contact with the holder.
又、SiC膜の蒸着条件は、反応ガスに5i)IaC1
□とCJ2を用い、キャリアガスとしてH2を用いた。In addition, the deposition conditions for the SiC film are as follows: 5i) IaC1 in the reaction gas.
□ and CJ2 were used, and H2 was used as a carrier gas.
流量比(SiH*C1□/C2L)を7、ガス圧力は8
torr、基板温度は1,000℃で行った。Flow rate ratio (SiH*C1□/C2L) is 7, gas pressure is 8
torr and the substrate temperature was 1,000°C.
これにより成膜されたSiC膜は、表面上に突起等は全
く形成されなかった。The SiC film thus formed had no protrusions or the like formed on its surface.
次に、このSiC上にRFスパッタリング法によりX線
吸収体として窒化タングステン(WN、)層を1μm成
膜した。タングステン(W)ターゲットを用い、ガスは
アルゴン及び窒素を用いた。ガス流量比(Ar/Ni)
は9とし、放電電力(RFパワー)は0.2KWで行っ
た。このWNX膜上にポリイミド層を1μm形成し、更
にポリイミド層上にシリコン含有レジスト層を形成した
。Next, a 1 μm thick tungsten nitride (WN) layer was formed as an X-ray absorber on this SiC by RF sputtering. A tungsten (W) target was used, and argon and nitrogen were used as gases. Gas flow ratio (Ar/Ni)
was 9, and the discharge power (RF power) was 0.2 KW. A 1 μm thick polyimide layer was formed on this WNX film, and a silicon-containing resist layer was further formed on the polyimide layer.
次に、電子線描画によりバターニングし、続いて酸素ガ
スによるリアクティブイオンエツチング(RIE)でレ
ジストパターンをポリイミド層に転写し、更にこのパタ
ーンをマスクとして、CF4 + 02ガスによるRI
Eで上層パターンをWNx層に転写した。Next, the resist pattern is patterned by electron beam lithography, then the resist pattern is transferred to the polyimide layer by reactive ion etching (RIE) using oxygen gas, and then RI is performed using CF4+02 gas using this pattern as a mask.
The upper layer pattern was transferred to the WNx layer using E.
この基板を裏面よりKO)I水溶液でバックエツチング
を行いX線マスク構造体を得た。This substrate was back-etched from the back side with a KO)I aqueous solution to obtain an X-ray mask structure.
これら一連の工程におけるハンドリングを全てシリコン
ウェハー基板の側面に形成した切り欠きのみの接触で操
作したところ、表面のキズ、ゴミ等は生成せず、良好な
XI!マスク構造体が得られた。When handling in this series of steps was carried out by contacting only the notch formed on the side surface of the silicon wafer substrate, no scratches or dust were generated on the surface, and a good XI! A mask structure was obtained.
実施例2
第1図(b)の如くシリコンウェハー基板の側面部に切
り欠きを4ケ所入れた2mm厚及び3インチ径のシリコ
ンウェハー基板上に、ECR−CVD法を用いてX線吸
収体としてSiN膜を2μm蒸着した。Example 2 As shown in Fig. 1(b), a silicon wafer substrate with a thickness of 2 mm and a diameter of 3 inches with four notches cut out on the side surface of the substrate was prepared as an X-ray absorber using the ECR-CVD method. A SiN film was deposited to a thickness of 2 μm.
シリコンウェハーのホールドはシリコンウェハー表面と
ホルダーが接触しない様に2ケ所で保持した。反応ガス
はSiH4とN2を用い、流量比(SiH4/Ni)は
0.7、マイクロ波パワーは200Wとした。これによ
り成膜されたSiN膜は、表面上に突起やキズは全く形
成されなかった。The silicon wafer was held at two locations so that the holder did not come into contact with the silicon wafer surface. SiH4 and N2 were used as reaction gases, the flow rate ratio (SiH4/Ni) was 0.7, and the microwave power was 200W. The SiN film thus formed had no protrusions or scratches formed on its surface.
続いてこのSiN上にEB蒸着法によりメツキ下地層と
してクロム及び金を連続蒸着した。次に、PMMAレジ
ストを1μm形成し、EB描画によりPMMAをバター
ニングした。これにパルスメツキ注により金メツキを行
った後PMMAを剥離した。Subsequently, chromium and gold were successively deposited as a plating base layer on this SiN by EB deposition. Next, a PMMA resist was formed to a thickness of 1 μm, and the PMMA was patterned by EB drawing. After gold plating was performed on this by pulse plating, the PMMA was peeled off.
作成した基板をKOH水溶水溶上りバックエツチングを
行いX線マスク構造体を得た。The prepared substrate was back-etched using a KOH aqueous solution to obtain an X-ray mask structure.
これらの諸工程のハンドリングを全て基板の切り欠きを
利用して行ったところ、基板表面にハンドリングによる
キズ、ゴミ等は全く付着することはなく良好なX線マス
ク構造体が得られた。When handling in all of these steps was carried out using the notches in the substrate, a good X-ray mask structure was obtained with no scratches or dust attached to the surface of the substrate due to handling.
(発明の効果)
以上説明した様に、シリコンウェハー基板の側面に切り
欠きを入れることにより、これまで成膜時のX線透過材
料の突起生成や、ハンドリング時におけるホルダーとの
接触によるキズ或はゴミの発生を十分に抑えることが出
来、X線マスク構造体の性能向上及び歩留り向上が図れ
る効果がある。(Effects of the Invention) As explained above, by making a notch on the side surface of a silicon wafer substrate, it is possible to prevent the formation of protrusions in the X-ray transparent material during film formation and the damage caused by contact with the holder during handling. This has the effect of sufficiently suppressing the generation of dust and improving the performance and yield of the X-ray mask structure.
第1図は、本発明を実施した基板の断面図である。 1:基板 FIG. 1 is a cross-sectional view of a substrate implementing the present invention. 1: Substrate
Claims (1)
るX線透過膜と、該X線透過膜を支持する支持基板とか
らなるX線マスク構造体において、該支持基板が側面部
に1箇所以上の切り欠きを設けたシリコンウェハーであ
ることを特徴とするX線マスク構造体。(1) In an X-ray mask structure consisting of an X-ray absorber with a desired pattern, an X-ray transparent film that supports the absorber, and a support substrate that supports the X-ray transparent film, the support substrate has a side surface. An X-ray mask structure characterized in that it is a silicon wafer with one or more notches formed in it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2090283A JPH03289122A (en) | 1990-04-06 | 1990-04-06 | X-ray mask structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2090283A JPH03289122A (en) | 1990-04-06 | 1990-04-06 | X-ray mask structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03289122A true JPH03289122A (en) | 1991-12-19 |
Family
ID=13994192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2090283A Pending JPH03289122A (en) | 1990-04-06 | 1990-04-06 | X-ray mask structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03289122A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015062212A (en) * | 2013-09-23 | 2015-04-02 | ナショナル シンクロトロン ラディエイション リサーチ センターNational Synchrotron Radiation Research Center | X-ray mask structure and manufacturing method therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63251084A (en) * | 1987-03-07 | 1988-10-18 | ビーチヤム・グループ・ピーエルシー | Novel compound, its production and pharmaceutical composition containing the same |
JPH0294422A (en) * | 1988-09-30 | 1990-04-05 | Canon Inc | Mask structure for lithography |
-
1990
- 1990-04-06 JP JP2090283A patent/JPH03289122A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63251084A (en) * | 1987-03-07 | 1988-10-18 | ビーチヤム・グループ・ピーエルシー | Novel compound, its production and pharmaceutical composition containing the same |
JPH0294422A (en) * | 1988-09-30 | 1990-04-05 | Canon Inc | Mask structure for lithography |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015062212A (en) * | 2013-09-23 | 2015-04-02 | ナショナル シンクロトロン ラディエイション リサーチ センターNational Synchrotron Radiation Research Center | X-ray mask structure and manufacturing method therefor |
US9152036B2 (en) | 2013-09-23 | 2015-10-06 | National Synchrotron Radiation Research Center | X-ray mask structure and method for preparing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6670284B2 (en) | Method of decontaminating process chambers, methods of reducing defects in anti-reflective coatings, and resulting semiconductor structures | |
JPH0642480B2 (en) | Method for treating the backside of a semiconductor wafer | |
JPH07294700A (en) | X-ray window | |
JPH0864524A (en) | Preparation of x-ray absorption mask | |
US5204210A (en) | Method for the direct patterning of diamond films | |
Haghiri‐Gosnet et al. | A 100‐nm patterned x‐ray mask technology based on amorphous SiC membranes | |
US4998267A (en) | X-ray lithography carbon mask and method of manufacturing the same | |
FR2488730A1 (en) | METHOD FOR MANUFACTURING INTEGRATED CIRCUITS BY CHARGED PARTICLE BEAM LITHOGRAPHY | |
JP3077393B2 (en) | X-ray exposure mask | |
JPH03289122A (en) | X-ray mask structure | |
JP2513900B2 (en) | Method for manufacturing semiconductor device | |
JPS63317676A (en) | Production of thin metallic compound film having non-grained structure | |
JP2002168998A (en) | Method of manufacturing metal membrane, and metal filter | |
JP3220523B2 (en) | X-ray mask | |
US5785871A (en) | Process for minute processing of diamonds | |
JP3116904B2 (en) | Semiconductor device film forming apparatus, semiconductor device manufacturing method, and semiconductor thin film forming method | |
JP3233707B2 (en) | Selective diamond formation | |
JP2002338387A (en) | Method of producing diamond film and diamond film | |
JPH05102068A (en) | Forming method for electrode of electronic device using diamond | |
GB2288272A (en) | X-ray windows | |
JPH01203293A (en) | Formation of diamond crystal | |
JPS62119924A (en) | Manufacture of transmitting mask | |
JPH0654756B2 (en) | Thin film formation method | |
JPH08115903A (en) | Manufacture of semiconductor, and plasma etching device | |
JP2002217094A (en) | Mask for electron beam exposure and its manufacturing method |