Nothing Special   »   [go: up one dir, main page]

JPH0327198B2 - - Google Patents

Info

Publication number
JPH0327198B2
JPH0327198B2 JP62175747A JP17574787A JPH0327198B2 JP H0327198 B2 JPH0327198 B2 JP H0327198B2 JP 62175747 A JP62175747 A JP 62175747A JP 17574787 A JP17574787 A JP 17574787A JP H0327198 B2 JPH0327198 B2 JP H0327198B2
Authority
JP
Japan
Prior art keywords
chitosan
gel
aldehyde
enzymes
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62175747A
Other languages
Japanese (ja)
Other versions
JPS6420087A (en
Inventor
Hideo Kusaoke
Kenzo Kanai
Masahiro Sawazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanai Educational Institution
Original Assignee
Kanai Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanai Educational Institution filed Critical Kanai Educational Institution
Priority to JP17574787A priority Critical patent/JPS6420087A/en
Publication of JPS6420087A publication Critical patent/JPS6420087A/en
Publication of JPH0327198B2 publication Critical patent/JPH0327198B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、担体として酵素または微生物菌体の
固定化方法の改良に関するもので、食品・医薬・
醸造・農業・化学工業・環境浄化・エネルギー産
業など広い分野において利用可能である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement in a method for immobilizing enzymes or microbial cells as a carrier, and is applicable to foods, medicines,
It can be used in a wide range of fields such as brewing, agriculture, chemical industry, environmental purification, and energy industry.

〔従来の技術、および解決すべき問題点〕[Conventional technology and problems to be solved]

最近、酵素・微生物菌体を固定化する方法は、
急速な進歩を見ており、吸着法・共有結合法・包
括法・架橋法など様々な技術が提案されている。
Recently, methods for immobilizing enzymes and microbial cells are
Rapid progress has been made, and various techniques have been proposed, including adsorption methods, covalent bonding methods, inclusion methods, and crosslinking methods.

そこで、上記固定化法の代表例として包括法に
ついて見れば、ポリアクリルアミドゲルやκ−カ
ラギーナン、アルギン酸塩、寒天などの多糖ゲル
中に酵素や菌体を包含する場合、ゲル格子の大き
さとも関連して、酵素や微生物菌体を固定化した
としても、物理的強度がなかつたり、ゲルの膨潤
度が大きかつたりすると、酵素反応中に酵素の溶
出が起き、酵素の保持活性の低下を引き起こした
り、 逆に、ゲル強度が弱いと、大規模スケールの使
用に耐えなかつたり、あるいは連続反応の途中で
固定化酵素または、固定化微生物菌体が膨潤して
目詰まりを起したり、また仮に物理的強度に耐え
られたとしても酵素の保持活性が低く、生産性が
頗る低いと云つた難点があり、工業的に使用でき
る固定化酵素や固定化微生物としては、未だ十分
とは云うことができない。
Therefore, if we look at the inclusion method as a typical example of the above immobilization method, when enzymes and bacterial cells are included in polysaccharide gels such as polyacrylamide gels, κ-carrageenan, alginate, agar, etc., there is a correlation with the size of the gel lattice. Even if enzymes and microorganisms are immobilized, if the gel does not have sufficient physical strength or has a large degree of swelling, the enzyme will elute during the enzyme reaction, resulting in a decrease in enzyme retention activity. Conversely, if the gel strength is weak, it may not be able to withstand large-scale use, or the immobilized enzyme or immobilized microorganisms may swell during continuous reactions, causing clogging. Even if it can withstand physical strength, it has the drawbacks of low enzyme retention activity and extremely low productivity, and is still not sufficient as an industrially usable immobilized enzyme or immobilized microorganism. Can not.

本発明の目的は、酵素・微生物菌体の包括固定
化の従来技術に内在する前述の欠点を解消して、
量産性に富み、工業的に利用可能な固定化酵素・
固定化微生物を提供しようとするものである。
The purpose of the present invention is to solve the above-mentioned drawbacks inherent in the conventional technology of comprehensive immobilization of enzymes and microorganisms, and to
Immobilized enzymes that can be mass-produced and are industrially usable.
The aim is to provide immobilized microorganisms.

〔目的達成のために採用した手段〕[Means adopted to achieve the purpose]

即ち、本発明は、キトサンを脂肪族アルデヒド
と反応させることによつてキトサン中の1部のア
ミノ基とアルデヒドがシツフ塩基を形成して、下
記一般式で示される (たゞし、式中Rは水素原子と−(CH2oCH3
表わされる基で、式中のnは0〜2の整数) キトサン−アルデヒドゲルを生成することに着
目し、このキトサン−アルデヒドゲルと酵素また
は微生物を添加し、更にグルタルアルデヒドを添
加すると、凝集して樹脂状の固いゲルを効率的に
形成する事実があることを試行錯誤的実験を通じ
て知見し、この新知見を酵素または微生物菌体の
固定化方法に利用するものであり、 こうして得られた固定化酵素・固定化微生物
は、樹脂状の固いゲル生成物を形成して、従来法
で生成したもののようにゲル強度が弱いため大規
模スケールの使用に耐えなかつたり、あるいは連
続反応の過程で固定化酵素または固定化菌体が膨
潤して目詰まりしたりするという欠点が全くな
く、 また、熱安定性も良好で80〜100℃の熱に曝し
てもゲルの形状に全然変化が生じなかつた。
That is, in the present invention, by reacting chitosan with an aliphatic aldehyde, a part of the amino group in chitosan and the aldehyde form a Schiff base, which is represented by the following general formula. (In the formula, R is a hydrogen atom and a group represented by -(CH 2 ) o CH 3 , and n in the formula is an integer of 0 to 2.) Focusing on producing a chitosan-aldehyde gel, this Through trial and error experiments, we discovered that when chitosan-aldehyde gel, enzymes or microorganisms are added, and glutaraldehyde is added, they coagulate and efficiently form a hard, resin-like gel. This method is used to immobilize enzymes or microorganisms, and the immobilized enzymes and microorganisms obtained in this way form a resin-like hard gel product and do not gel like those produced by conventional methods. It has no drawbacks such as being unable to withstand large-scale use due to its low strength, or clogging due to swelling of the immobilized enzyme or immobilized bacterial cells during continuous reactions, and also has good thermal stability. Even when exposed to heat of 80 to 100°C, there was no change in the shape of the gel.

次いで、本発明者らは、自然界で豊富に得られ
るカニやエビなどの有機骨格物質であるキチン
を、脱アセチル化処理を施してキトサンとし、更
にこれをアルデヒドで処理したキトサン−アルデ
ヒドゲルを利用すれば、酵素または微生物菌体を
一層経済的に固定化できることも確認した。
Next, the present inventors deacetylated chitin, which is an organic skeletal material found in crabs, shrimps, etc., which is abundantly available in nature, to obtain chitosan, and further treated this with aldehyde to create a chitosan-aldehyde gel. It was also confirmed that enzymes or microbial cells could be immobilized more economically by doing so.

また、キトサン−アルデヒドゲルは、キトサン
を適当な脂肪族アルデヒドと処理しても得られ
る。かゝる脂肪族アルデヒドとては、ホルムアル
デヒド、アセトアルデヒド、プロピルアルデヒ
ド、n−ブチルアルデヒド等を挙げることができ
る。
Chitosan-aldehyde gels can also be obtained by treating chitosan with a suitable aliphatic aldehyde. Examples of such aliphatic aldehydes include formaldehyde, acetaldehyde, propylaldehyde, and n-butyraldehyde.

つぎに、本発明における固定化用酵素として
は、α−アミラーゼ、β−アミラーゼ、グルコア
ミラーゼ、イソアミラーゼ、α−ガラクトシダー
ゼ、β−ガラクトシダーゼ、インベルターゼ、グ
ルコースイソメラーゼ、ガラクトースイソメラー
ゼ、キモトリプシン、酸性プロテアーゼ、中性プ
ロテアーゼ、アルカリプロテアーゼ、ペプシン、
パパイン、ウロキナーゼ、セルラーゼ、ヘミセル
ラーゼ、リパーゼ、アミノアシラーゼ、ペニシリ
ンアミダーゼ等のごとき広範囲の酵素を利用する
ことができる。
Next, as enzymes for immobilization in the present invention, α-amylase, β-amylase, glucoamylase, isoamylase, α-galactosidase, β-galactosidase, invertase, glucose isomerase, galactose isomerase, chymotrypsin, acid protease, neutral protease, alkaline protease, pepsin,
A wide variety of enzymes are available, such as papain, urokinase, cellulases, hemicellulases, lipases, aminoacylases, penicillin amidases, and the like.

以下、便宜上、β−ガラクトシダーゼを対象例
として本発明を更に詳しく説明する。
Hereinafter, for convenience, the present invention will be explained in more detail using β-galactosidase as an example.

本発明方法では、キトサン−アルデヒドゲルの
PHを5〜6とし、これにβ−ガラクトシダーゼを
加え、さらに全量の0.5〜2%のグルタルアルデ
ヒドを加えて樹脂状で固いゲル状の固定化酵素製
品を得た。
In the method of the present invention, chitosan-aldehyde gel is
The pH was adjusted to 5 to 6, β-galactosidase was added thereto, and 0.5 to 2% of the total amount of glutaraldehyde was added to obtain a resinous and hard gel-like immobilized enzyme product.

こうして得られたゲル状の固定化酵素製品は、
乾燥して粉末状の製品にしても、酵素の活性は何
ら低下しなかつた。
The gel-like immobilized enzyme product thus obtained is
Even after drying into a powdered product, the activity of the enzyme did not decrease at all.

また、固定化酵素製品はカラムに充填した場
合、目詰まりがなく、かつ、樹脂状の固いゲルで
あるため、反応速度が良好で高速度で基質である
乳糖の溶液を流すことができ、さらに乳糖の加水
分解による生産性も極めて高く、工業的規模で実
施しても十分に満足出来るものである。
In addition, when the immobilized enzyme product is packed in a column, it does not clog and is a hard resin-like gel, so the reaction rate is good and the solution of the substrate lactose can flow at high speed. The productivity of lactose hydrolysis is also extremely high, and is sufficiently satisfactory even when carried out on an industrial scale.

しかも、酵素はゲル表面にあるいは内部に包括
されているので、従来のキトサンのアルデヒド架
橋による酵素固定化方法に比較して、固定される
酵素の量が多い。
Moreover, since the enzyme is encapsulated on the surface or inside the gel, the amount of enzyme immobilized is larger than in the conventional enzyme immobilization method using aldehyde crosslinking of chitosan.

また更に、第1図に示すように20日間の連続使
用においても酵素活性の低下は認められなかつ
た。
Furthermore, as shown in FIG. 1, no decrease in enzyme activity was observed even after 20 days of continuous use.

次に、本発明において採択可能な微生物菌体と
しては、細菌類、放線菌類、カビ類、酵母類など
の広範囲の微生物を挙げることができる。
Next, as the microbial cells that can be adopted in the present invention, a wide range of microorganisms can be mentioned, such as bacteria, actinomycetes, molds, and yeasts.

そこで、グルコースイソメラーゼを含有する放
線菌ストレプトマイセス・フエオクロモゲネスを
対象例とした場合について、補足説明をしてお
く。
Therefore, a supplementary explanation will be provided regarding the case where Streptomyces phaeochromogenes, which contains glucose isomerase, is used as a target example.

キトサン−ホルムアルデヒドゲルは、酵素の場
合と同様で、放線菌菌体に対して包括−架橋によ
つて著しい凝集力を示すことは上述のとおりであ
り、例えばストレプトマイセス・フエオクロモゲ
ネスについて説明すると、キトサン−ホルムアル
デヒドゲルのPHを8にした後、菌体を加え、次い
で全量の0.5〜2%のグルタルアルデヒドを加え
ることによつて凝集沈澱が起こり、樹脂状の固定
化菌体の製品が得られた。
As mentioned above, chitosan-formaldehyde gel, similar to the case of enzymes, exhibits remarkable aggregation power against actinomycete cells due to entrapment and cross-linking. Then, after adjusting the pH of the chitosan-formaldehyde gel to 8, microbial cells are added, and then 0.5 to 2% of the total amount of glutaraldehyde is added to cause flocculation and precipitation, resulting in a resin-like product of immobilized microbial cells. Obtained.

かくして得られたゲル状の固定化菌体製品は、
固定化酵素の場合と同様、乾燥して粉末状の製品
として何ら活性の低下は認められなかつた。
The gel-like immobilized bacterial cell product thus obtained is
As in the case of the immobilized enzyme, no decrease in activity was observed as a dried powder product.

また、固定化菌体をカラムに充填したものも、
固定化酵素の場合と同様、目詰まりがなく、か
つ、樹脂状のゲルであるため、反応速度が速く高
速度でグルコース溶液を流すことができ、 しかもグルコースの異性化反応によつてフラク
トース生産性は極めて高く、工業的規模で満足出
来るものである。
In addition, columns filled with immobilized bacterial cells are also available.
As with the case of immobilized enzymes, there is no clogging, and since it is a resin-like gel, the reaction rate is fast and the glucose solution can be flowed at high speed. Moreover, fructose productivity is improved by the isomerization reaction of glucose. is extremely high and can be satisfied on an industrial scale.

しかも、酵素はゲル表面にあるいは内部に包括
されているので、従来のキトサンのアルデヒド架
橋による酵素固定化方法に比較して、固定される
酵素の量が多い。
Moreover, since the enzyme is encapsulated on the surface or inside the gel, the amount of enzyme immobilized is larger than in the conventional enzyme immobilization method using aldehyde crosslinking of chitosan.

更に、異性化反応に至適温度は80℃であるが、
この温度においても本発明のゲルにはまつたく形
状の変化がなかつた。第1図に示すように、20日
間以上の連続使用においても、菌体のイソメラー
ゼ活性の極端な低下は認められなかつた。
Furthermore, the optimal temperature for isomerization reaction is 80℃,
Even at this temperature, there was no change in the shape of the gel of the present invention. As shown in FIG. 1, no extreme decrease in bacterial isomerase activity was observed even after continuous use for 20 days or more.

なお、上記した各処理は、放線菌の生死菌体の
何れにも有効で、菌体内酵素の保持性も高く、か
つ、カラムに充填した場合、固い樹脂状のゲルで
ある為、目詰まりがない良好な菌体処理物が得ら
れることとなつた。また、本発明方法は放線菌の
みならず、細菌類、カビ類、酵母類など他の微生
物菌体についても有効である。
The above-mentioned treatments are effective for both live and dead actinomycete cells, have a high retention of intracellular enzymes, and are hard resin-like gels that prevent clogging when packed in a column. As a result, a good bacterial cell-treated product was obtained. Furthermore, the method of the present invention is effective not only for actinomycetes but also for other microorganisms such as bacteria, molds, and yeasts.

以下、本発明の作用効果を、実施例を挙げて、
更に具体的に説明する。
Hereinafter, the effects of the present invention will be described with examples,
This will be explained more specifically.

なお、β−ガラクトシダーゼ活性は、国際β−
ガラクトシダーゼ単位を用い、乳糖溶液(乳糖濃
度180mM、酢酸ナトリウム緩衝液濃度0.1M、PH
4.2)で反応温度40℃1分間で乳糖をグルコース
とガラクトースに加水分解する酵素量を1単位と
する。また固定化収率は、加えた遊離のβ−ガラ
クトシダーゼの酵素活性(Unit)に対する固定
化β−ガラクトシダーゼの酵素活性(Unit)の
割合で表わされる。
In addition, β-galactosidase activity is determined by the international β-galactosidase activity.
Using a galactosidase unit, prepare a lactose solution (lactose concentration 180mM, sodium acetate buffer concentration 0.1M, PH
In 4.2), the amount of enzyme that hydrolyzes lactose into glucose and galactose in 1 minute at a reaction temperature of 40°C is defined as 1 unit. Further, the immobilization yield is expressed as the ratio of the enzyme activity (Unit) of immobilized β-galactosidase to the enzyme activity (Unit) of added free β-galactosidase.

{固定化収率}=〔固定化β−ガラクトシダ
ーゼの酵素活性(Unitsun)〕/〔加えた遊離のβ−ガ
ラクトシダーゼの酵素活性(Unitsun)〕×100 また、ストレプトマイセス・フエオクロモゲネ
ス菌体のグルコースイソメラーゼ活性は、国際グ
ルコースイソメラーゼ単位を用い、グルコース溶
液(グルコース濃度0.8M、硫酸マグネシウム溶
液0.01M、PH7.5)で反応温度60℃1分間でグル
コース1μモルを異性化する酵素活性を1単位と
する。なお、固定化収率は加えた遊離の菌体の酵
素活性(Units)に対する固定化菌体の酵素活性
(Units)の割合で表わされる。
{Immobilization yield} = [enzyme activity of immobilized β-galactosidase (Unitsun)] / [enzyme activity of added free β-galactosidase (Unitsun)] × 100 In addition, Streptomyces phaeochromogenes bacterial cells The glucose isomerase activity is determined by using the international glucose isomerase unit, and the enzyme activity to isomerize 1 μmol of glucose in a glucose solution (glucose concentration 0.8M, magnesium sulfate solution 0.01M, pH 7.5) at a reaction temperature of 60°C for 1 minute is 1. Unit. The immobilization yield is expressed as the ratio of the enzyme activity (Units) of the immobilized bacterial cells to the enzyme activity (Units) of the added free bacterial cells.

{固定化収率}=〔固定化菌体のグルコースイソ
メラーゼ活性(Units)〕/〔加えた遊離菌体のグルコ
ースイソメラーゼ活性(Units)〕×100 実施例 1 キトサン0.5gを10%酢酸(15ml)に溶解し、
更にメタノール(20ml)を加えて希釈した。これ
にホルムアルデヒド(グルコサミン残基当たり25
モル当量)を加え室温で一昼夜放置した。生成し
た固いゲルは、ミキサーで細粉した後、蒸留水で
十分洗浄し、さらに濾過してPH7に調整すること
によつて細かいゲルを製した。次いで、蒸留水25
mlにゲルを懸濁し、PH5に調整した後、β−ガラ
クトシダーゼ(15mg、Aspergillus起源)を加え、
さらにグルタルアルデヒドを全量1%になるよう
に加えることによつて包括−架橋で固定化した。
{Immobilization yield} = [Glucose isomerase activity (Units) of immobilized bacterial cells] / [Glucose isomerase activity (Units) of added free bacterial cells] × 100 Example 1 0.5 g of chitosan was added to 10% acetic acid (15 ml) dissolved in
Further methanol (20 ml) was added for dilution. This is combined with formaldehyde (25 glucosamine per residue)
molar equivalent) was added and left at room temperature overnight. The resulting hard gel was pulverized with a mixer, thoroughly washed with distilled water, and further filtered to adjust the pH to 7 to produce a fine gel. Then distilled water 25
After suspending the gel in ml and adjusting the pH to 5, β-galactosidase (15 mg, Aspergillus origin) was added.
Further, by adding glutaraldehyde to a total amount of 1%, immobilization was carried out by entrapping-crosslinking.

かくして、本実施例の方法で得られた固定化酵
素製品の固定化収率は67.0%であつた。
Thus, the immobilization yield of the immobilized enzyme product obtained by the method of this example was 67.0%.

実施例 2 キトサン0.5gを10%酢酸(15ml)に溶解し、
更にメタノール(20ml)を加えて希釈。これにプ
ロピルアルデヒド(グルコサミン残茎当り25モル
当量)を加え室温で一昼夜放置した。生成した固
いゲルは、ミキサーで細粉した後、蒸留水で十分
洗浄し、さらに濾過し、PH7に調整することによ
つて細かいゲルを製した。次いで、蒸留水25mlに
ゲルを懸濁しPH5に調整した後、β−ガラクトシ
ダーゼ(15mg、Aspergillus起源)を加え、更に
グルタルアルデヒドを全量1%になるように加え
ることによつて包括−架橋で固定化した。
Example 2 0.5g of chitosan was dissolved in 10% acetic acid (15ml),
Further dilute by adding methanol (20ml). Propylaldehyde (25 molar equivalents per glucosamine residue) was added to this and left at room temperature overnight. The resulting hard gel was pulverized with a mixer, thoroughly washed with distilled water, filtered, and adjusted to pH 7 to produce a fine gel. Next, after suspending the gel in 25 ml of distilled water and adjusting the pH to 5, β-galactosidase (15 mg, originating from Aspergillus) was added, and glutaraldehyde was added to a total amount of 1% to immobilize by entrapment-crosslinking. did.

かくして、本実施例の方法で得られた固定化酵
素製品の固定化収率は64.0%であつた。
Thus, the immobilization yield of the immobilized enzyme product obtained by the method of this example was 64.0%.

実施例 3 ストレプトマイセス・フエオクロモゲネス(微
工研菌寄第221号)を培養して得たグルコースイ
ソメラーゼ生産菌体(8500Units/g)の30mg
(乾物)を蒸留水2mlに懸濁した。実施例1と同
様、予じめ調整しておいたキトサン−ホルムアル
デドゲルに0.1M燐酸緩衝液5mlを加え、PH8に
調整した後、菌体懸濁液(PH7)を加えた。次い
で、全量の1%になるようにグルタルアルデヒド
を加え、1時間放置後、洗浄・濾過して樹脂状の
固定化菌体製品を得た。
Example 3 30 mg of glucose isomerase-producing bacterial cells (8500 Units/g) obtained by culturing Streptomyces pheochromogenes (Feikoken Bibori No. 221)
(dry matter) was suspended in 2 ml of distilled water. As in Example 1, 5 ml of 0.1M phosphate buffer was added to the chitosan-formaldehyde gel prepared in advance to adjust the pH to 8, and then the bacterial cell suspension (PH 7) was added. Next, glutaraldehyde was added to make up 1% of the total amount, and after being allowed to stand for 1 hour, the mixture was washed and filtered to obtain a resin-like immobilized bacterial cell product.

かくして、本実施例の方法で製した固定化製品
の固定化収率は53.1%であつた。
Thus, the immobilization yield of the immobilized product produced by the method of this example was 53.1%.

実施例 4 実施例3と同様に、ストレプトマイセス・フエ
オクロモゲネスを培養して得たグルコースイソメ
ラーゼ生産菌体(8500Units/g)の30mg(乾
物)を蒸留水2mlに懸濁。ついで、実施例2と同
様、予じめ調整しておいたキトサン−プロピルア
ルデドゲルに0.1M燐酸緩衝液5mlを加え、PH8
に調整した後、菌体懸濁液(PH7)を加えた。次
いで、全量の1%になるようにグルタルアルデヒ
ドを加え1時間放置後、洗浄・濾過して樹脂状の
固定化菌体製品を得た。
Example 4 In the same manner as in Example 3, 30 mg (dry matter) of glucose isomerase-producing bacterial cells (8500 Units/g) obtained by culturing Streptomyces phaeochromogenes was suspended in 2 ml of distilled water. Next, as in Example 2, 5 ml of 0.1M phosphate buffer was added to the chitosan-propyl aldedo gel prepared in advance, and the pH was adjusted to 8.
After adjusting to pH 7, a bacterial cell suspension (PH7) was added. Next, glutaraldehyde was added to make up 1% of the total amount, and the mixture was left to stand for 1 hour, followed by washing and filtration to obtain a resin-like immobilized bacterial cell product.

かくして、本実施例の方法で製した固定化製品
の固定化収率は60.0%であつた。
Thus, the immobilization yield of the immobilized product produced by the method of this example was 60.0%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は固定化β−ガラクトシダーゼ製品Aお
よび固定化グルコースイソメラーゼ生産菌体の製
品Bをカラムに充填し、連続反応を行つた時の酵
素活性の経過を示したグラフである。
FIG. 1 is a graph showing the course of enzyme activity when a column was filled with immobilized β-galactosidase product A and immobilized glucose isomerase-producing bacterial cell product B and continuous reactions were performed.

Claims (1)

【特許請求の範囲】 1 酵素または微生物菌体にキトサン−アルデヒ
ドゲルを加え、次いでグルタルアルデヒドで架橋
してゲル状に樹脂化させ凝集せしめることを特徴
とした酵素または微生物菌体の固定化方法。 2 キトサン−アルデヒドゲルが、キトサンの一
部のアミノ基とアルデヒドとによりシツフ塩基を
形成した下記一般式: (たゞし、式中Rは水素原子と−(CH2oCH3
表わされる基で、式中のnは0〜2の整数) をもつて示される物質である請求項1記載の、酵
素または微生物の固定化方法。 3 キトサン1重量部をアルデヒド1〜50重量部
と反応して得られるキトサン−アルデヒドゲルの
水分含有量が、キトサン自重の100〜1000倍に相
当するものを使用する請求項1又は2記載の、酵
素または微生物菌体の固定化方法。 4 キトサン−アルデヒドゲルとして、80〜100
℃の熱に対しても安定で形状の変化がないものを
使用する請求項1〜3の何れか一つに記載の、酵
素または微生物菌体の固定化方法。 5 酵素または微生物菌体をキトサン−アルデヒ
ドゲルの表面および内部に包括させた後、グルタ
ルアルデヒドで架橋固定する請求項1〜4の何れ
か一つに記載の、酵素または微生物菌体の固定化
方法。
[Scope of Claims] 1. A method for immobilizing enzymes or microbial cells, which comprises adding chitosan-aldehyde gel to enzymes or microbial cells, and then cross-linking with glutaraldehyde to form a gel-like resin and aggregate it. 2 Chitosan-aldehyde gel has the following general formula in which a Schiff base is formed by some amino groups of chitosan and aldehyde: (wherein R is a hydrogen atom and a group represented by -( CH2 ) oCH3 , and n is an integer of 0 to 2 ) according to claim 1. , enzyme or microorganism immobilization methods. 3. The method according to claim 1 or 2, wherein the water content of the chitosan-aldehyde gel obtained by reacting 1 part by weight of chitosan with 1 to 50 parts by weight of aldehyde is equivalent to 100 to 1000 times the weight of chitosan itself. Method for immobilizing enzymes or microbial cells. 4 As chitosan-aldehyde gel, 80-100
The method for immobilizing enzymes or microorganisms according to any one of claims 1 to 3, wherein an enzyme is used that is stable even when exposed to heat at a temperature of 0.degree. C. and does not change shape. 5. The method for immobilizing enzymes or microbial cells according to any one of claims 1 to 4, which comprises enclosing enzymes or microbial cells on the surface and inside of the chitosan-aldehyde gel, and then cross-linking and immobilizing them with glutaraldehyde. .
JP17574787A 1987-07-13 1987-07-13 Immobilization of enzyme or bacterium cell using chitosan-aldehyde gel as carrier Granted JPS6420087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17574787A JPS6420087A (en) 1987-07-13 1987-07-13 Immobilization of enzyme or bacterium cell using chitosan-aldehyde gel as carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17574787A JPS6420087A (en) 1987-07-13 1987-07-13 Immobilization of enzyme or bacterium cell using chitosan-aldehyde gel as carrier

Publications (2)

Publication Number Publication Date
JPS6420087A JPS6420087A (en) 1989-01-24
JPH0327198B2 true JPH0327198B2 (en) 1991-04-15

Family

ID=16001545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17574787A Granted JPS6420087A (en) 1987-07-13 1987-07-13 Immobilization of enzyme or bacterium cell using chitosan-aldehyde gel as carrier

Country Status (1)

Country Link
JP (1) JPS6420087A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL100096A (en) * 1991-11-20 1996-03-31 Univ Ramot Method for entrapment of active materials in chitosan
CN1312991C (en) * 2005-10-19 2007-05-02 中国科学院海洋研究所 Agricultural bactericidal agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745555A (en) * 1980-09-01 1982-03-15 Hitachi Metals Ltd Electric charge type magnetic toner
JPS5849234A (en) * 1981-09-18 1983-03-23 Bridgestone Corp Molder for tire
JPS5849234U (en) * 1981-09-30 1983-04-02 株式会社日立製作所 Multi-slit spectrophotometer
JPS59213390A (en) * 1983-05-19 1984-12-03 Asahi Denka Kogyo Kk Immobilized enzyme and its preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745555A (en) * 1980-09-01 1982-03-15 Hitachi Metals Ltd Electric charge type magnetic toner
JPS5849234A (en) * 1981-09-18 1983-03-23 Bridgestone Corp Molder for tire
JPS5849234U (en) * 1981-09-30 1983-04-02 株式会社日立製作所 Multi-slit spectrophotometer
JPS59213390A (en) * 1983-05-19 1984-12-03 Asahi Denka Kogyo Kk Immobilized enzyme and its preparation

Also Published As

Publication number Publication date
JPS6420087A (en) 1989-01-24

Similar Documents

Publication Publication Date Title
Kotwal et al. Immobilized invertase
Górecka et al. Immobilization techniques and biopolymer carriers
US4797358A (en) Microorganism or enzyme immobilization with a mixture of alginate and silica sol
EP0034609B1 (en) Immobilized enzyme(s) and microorganism(s) and their production
US4578354A (en) Immobilization of catalytically active microorganisms in agar gel fibers
Zhang et al. Enhancement of chitosanase production by cell immobilization of Gongronella sp. JG
Nwagu et al. Stabilization of a raw-starch-digesting amylase by multipoint covalent attachment on glutaraldehyde-activated amberlite beads
Kennedy et al. Immobilisation of biocatalysts by metal-link/chelation processes
JPH0327198B2 (en)
CN106148319B (en) Method for preparing immobilized enzyme based on reaction adsorption method
JPS6244914B2 (en)
CN1059759A (en) The preparation method of complex solidifying enzyme
Roy et al. Immobilization of β-glucosidase from Myceliophthora thermophila D-14
US4411999A (en) Immobilization of enzymes on granular gelatin
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
Svensson et al. Entrapment of chemical derivatives of glycoamylase in calcium alginate gels
Srividya et al. IMMOBILIZATION OF THERAPEUTICALLY BENEFICIAL ENZYMES
KR800000241B1 (en) The method for the prepation of fixed glucose transferase
SU883175A1 (en) Method of producing immobilized glucosoisomerase
CA2003767A1 (en) Biocatalysts and processes for the manufacture thereof
SU1634715A1 (en) Method for producing immobilized cells exhibiting glucosoisomerase activity
Žurková et al. Immobilization of Escherichia coli cells with penicillin‐amidohydrolase activity on solid polymeric carriers
JPH0468912B2 (en)
CN113699200A (en) Production process for increasing content of monosaccharide in sugar solution
JPS5876097A (en) Preparation of gluconic acid by immobilized fungus