Nothing Special   »   [go: up one dir, main page]

JPH03278839A - Preparation of hydrotreating catalyst composition for hydrocarbon oil - Google Patents

Preparation of hydrotreating catalyst composition for hydrocarbon oil

Info

Publication number
JPH03278839A
JPH03278839A JP7770890A JP7770890A JPH03278839A JP H03278839 A JPH03278839 A JP H03278839A JP 7770890 A JP7770890 A JP 7770890A JP 7770890 A JP7770890 A JP 7770890A JP H03278839 A JPH03278839 A JP H03278839A
Authority
JP
Japan
Prior art keywords
catalyst
component
carrier
group
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7770890A
Other languages
Japanese (ja)
Other versions
JP2794320B2 (en
Inventor
Ichiji Usui
薄井 一司
Mitsugi Yumoto
湯本 貢
Katsumi Oki
大木 勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP2077708A priority Critical patent/JP2794320B2/en
Publication of JPH03278839A publication Critical patent/JPH03278839A/en
Application granted granted Critical
Publication of JP2794320B2 publication Critical patent/JP2794320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a hydrotreating catalyst for hydrocarbon oil having high desulfurization activity by compounding a base material selected from zinc, cobalt and nickel compounds with alumina as the second component and subsequently supporting the first catalytically active component on the obtained compound. CONSTITUTION:An alumina gel and an aqueous solution of a compound selected from zinc, cobalt and nickel compounds are kneaded and the kneaded mixture is molded, dried and baked to form a metal oxide composite. Thereafter, a hydrogenating active component of a metal of the Group 6B of the Periodic Table such as molybdenum or a metal of the Group 8 such as nickel is supported on the composite. By this method, the active component can be supported with remarkably high dispersibility by the affinity of the hydrogenating active component and the second component. Therefore, a catalyst having high desulfurization activity is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、炭化水素油残渣油及び炭化水素油残渣油の高
度な水素化処理、特に水素化脱硫処理に使用される触媒
組成物の製造方法に関する。更に詳しくは、例えばアル
ミナゲルと亜鉛、コバルト又はニッケル化合物の水溶液
とを混練、焼成等することにより高い比表面積を有する
金属酸化物の複合担体を得、これに水素化活性成分を担
持させる工程を経る炭化水素油川水素化処理触媒組成物
の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to the production of a catalyst composition used for hydrocarbon oil residues and advanced hydrotreating of hydrocarbon oil residues, particularly hydrodesulfurization treatment. Regarding the method. More specifically, for example, a composite carrier of a metal oxide having a high specific surface area is obtained by kneading and calcining alumina gel and an aqueous solution of a zinc, cobalt or nickel compound, and a step of supporting a hydrogenation active component on this is carried out. The present invention relates to a method for producing a catalyst composition for hydrotreating hydrocarbon oil.

〔従来の技術〕[Conventional technology]

炭化水素油は一般に硫黄化合物を含み、これらの炭化水
素油を燃料として使用した場合には、該硫黄化合物中の
硫黄が硫黄酸化物に転化し、大気中に排出される。
Hydrocarbon oils generally contain sulfur compounds, and when these hydrocarbon oils are used as fuel, the sulfur in the sulfur compounds is converted to sulfur oxides and discharged into the atmosphere.

従って、これらの炭化水素油を燃焼させた場合の硫黄酸
化物による大気汚染をできるだけ抑制するために、該炭
化水素油の硫黄含有量を予め減少させておく必要がある
Therefore, in order to suppress air pollution caused by sulfur oxides as much as possible when these hydrocarbon oils are burned, it is necessary to reduce the sulfur content of the hydrocarbon oils in advance.

この硫黄含有量の減少は、炭化水素油の接触水素化脱硫
によって達成することができる。
This reduction in sulfur content can be achieved by catalytic hydrodesulfurization of hydrocarbon oils.

そして、酸性雨や窒素酸化物等の環境問題が地球規模で
取り上げられている昨今、現状の技術レベル以上の硫黄
分の除去が望まれている。
Nowadays, environmental problems such as acid rain and nitrogen oxides are being taken up on a global scale, and there is a desire to remove sulfur at a level higher than the current level of technology.

炭化水素油中の硫黄分をより低下させるためには、上記
の炭化水素油の接触水素化脱硫工程の運転条件、例えば
LH3V、温度、圧力を苛酷にすることで、ある程度達
成することができる。
In order to further reduce the sulfur content in hydrocarbon oil, it can be achieved to some extent by making the operating conditions of the above-mentioned catalytic hydrodesulfurization process for hydrocarbon oil more severe, such as LH3V, temperature, and pressure.

しかし、このような方法では、触媒上に炭素質を析出さ
せ、触媒の活性を低下させる。特に、炭化水素油が軽質
留分の場合、色相安定性や貯蔵安定性等の性状面の悪影
響もある。
However, in such a method, carbonaceous matter is deposited on the catalyst, reducing the activity of the catalyst. In particular, when the hydrocarbon oil is a light distillate, there may be adverse effects on properties such as hue stability and storage stability.

このように、運転条件をコントロールすることによって
深度な脱硫を得るには、限度がある。
Thus, there is a limit to how deep desulfurization can be achieved by controlling operating conditions.

従って、最も良い方策は、格段に優れた脱硫活性を有す
る触媒を開発することである。
Therefore, the best strategy is to develop catalysts with significantly better desulfurization activity.

ところで、従来、水素化脱硫触媒を製造する一般的な方
法としては、周期律表第6B族金属塩及び第8族金属塩
の水溶液を担体に含浸させた後、乾燥及び焼成するいわ
ゆる「含浸法」、アルミナあるいはアルミナゲルを分散
させた水溶液中に周期律表第6B族金属塩の水溶液及び
第8族金属塩の水溶液を加えて金属化合物を沈澱させる
「共沈法」、アルミナあるいはアルミナゲル、周期律表
第6B族金属塩の水溶液及び第8族金属塩の水溶液の混
合ペーストを混練しながら加熱し、水分除去を行う「混
練法」がある(「触媒調製化学」。
By the way, conventionally, as a general method for producing a hydrodesulfurization catalyst, a so-called "impregnation method" is used in which a carrier is impregnated with an aqueous solution of a Group 6B metal salt and a Group 8 metal salt of the periodic table, and then dried and calcined. ", "co-precipitation method" in which a metal compound is precipitated by adding an aqueous solution of a group 6B metal salt of the periodic table and an aqueous solution of a group 8 metal salt to an aqueous solution in which alumina or alumina gel is dispersed; alumina or alumina gel; There is a ``kneading method'' in which water is removed by heating a mixed paste of an aqueous solution of a Group 6B metal salt of the periodic table and an aqueous solution of a Group 8 metal salt (``Catalyst Preparation Chemistry'').

尾崎苓編、講談社すイエンテインク、250〜252頁
参照)。
(Reference: Rei Ozaki, ed., Kodansha Inc., pp. 250-252).

ここで、アルミナ担体として最もよく用いられているの
はアルミナである。そのアルミナの製法としては、硫酸
アルミニウムとアルミン酸ナトリウムの夫々の水溶液を
混合し、pH調整後、熟成し、水酸化アルミニウムの沈
澱を生成して得る方法 (J、八、Leimis、  
J、へpp1.che階、、8.223(1958))
  。
Here, alumina is most commonly used as the alumina carrier. The alumina can be produced by mixing aqueous solutions of aluminum sulfate and sodium aluminate, adjusting the pH, aging the mixture, and producing a precipitate of aluminum hydroxide (J, 8, Leimis,
J, pp1. che floor, 8.223 (1958))
.

アルミニウム金属を塩化アルミニウム水溶液に溶解して
塩基性塩化アルミニウムヒドロゲルを生成して得る方法
(Universal Oil Products、特
公昭29−1977号)、硫酸アルミニウム溶液を炭酸
カルシウム溶液中で中和し、塩基性硫酸アルミニウムの
コロイド溶液を生成して得る方法(Mizusawa 
Kagaku Kogyo、 USP3.183,19
4(1965))等が報告されている。
A method in which aluminum metal is dissolved in an aqueous aluminum chloride solution to produce a basic aluminum chloride hydrogel (Universal Oil Products, Japanese Patent Publication No. 1977-1977), an aluminum sulfate solution is neutralized in a calcium carbonate solution, and a basic aluminum chloride hydrogel is obtained. Method for producing and obtaining a colloidal solution of aluminum (Mizusawa)
Kagaku Kogyo, USP3.183,19
4 (1965)) etc. have been reported.

また、アルミナはど一般的ではないが、シリカ。Also, alumina is less common, but silica.

チタニア、ボリア等をアルミナと組み合わせたアルミナ
−シリカ アルミナ−チタニア、アルミナボリア等も担
体として使用される場合がある。
Alumina-silica in which titania, boria, etc. are combined with alumina Alumina-titania, alumina boria, etc. may also be used as carriers.

このアルミナ−シリカ担体の製法としては、ケイ酸ナト
リウム溶液から得られるシリカヒドロゲルと硝酸アルミ
ニウム溶液から得られるアルミナゲルを混合して得る方
法(特公昭55〜44795号)等が報告されている。
As a method for producing this alumina-silica carrier, a method has been reported such as a method in which a silica hydrogel obtained from a sodium silicate solution and an alumina gel obtained from an aluminum nitrate solution are mixed (Japanese Patent Publication No. 55-44795).

また、アルミナ−チタニアアルミナ−ボリア担体も同様
の方法により製造することができる。
Further, an alumina-titania-alumina-boria support can also be produced by a similar method.

このような方法で製造された担体に、金属活性成分を担
持させた触媒が炭化水素油の水素化脱硫触媒として広く
使用されている。
A catalyst in which a metal active component is supported on a carrier produced by such a method is widely used as a hydrodesulfurization catalyst for hydrocarbon oil.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述の従来の製造技術では、環境問題が地球規
模で取り上げられている昨今において、現状のレベル以
上の高い活性を有する触媒を得ることはできない。
However, with the above-mentioned conventional manufacturing techniques, it is not possible to obtain a catalyst having a higher activity than the current level, as environmental issues are being taken up on a global scale these days.

ところで、炭化水素油の水素化脱硫用触媒の脱硫活性を
高めるには、高い比表面積を有する担体を用い、これに
活性金属を高度に分散させることが必要である。
By the way, in order to increase the desulfurization activity of a catalyst for hydrodesulfurization of hydrocarbon oil, it is necessary to use a carrier having a high specific surface area and to highly disperse active metals therein.

このためには、活性金属を担持させる担体部分の性状が
極めて重要であり、前述の従来技術で得られる担体より
も、更に活性金属の分散性を高め得る担体を製造する必
要がある。
For this purpose, the properties of the carrier portion on which the active metal is supported are extremely important, and it is necessary to manufacture a carrier that can further improve the dispersibility of the active metal than the carrier obtained by the prior art described above.

そこで、本発明の解決しようとする課題は、多量の水素
化脱硫活性金属を高分散性で担持することができ、この
結果、脱硫活性を高めることのできる炭化水素油川水素
化処理触媒組成物の製造方法を開発することにある。
Therefore, the problem to be solved by the present invention is to develop a catalyst composition for hydrotreating hydrocarbon oil rivers, which can support a large amount of hydrodesulfurization active metal in a highly dispersed manner and, as a result, can increase desulfurization activity. The goal is to develop manufacturing methods.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、上記課題を解決するために、鋭意研究を
重ねた結果、先ず、通常のこの種の触媒担体に用いられ
ているアルミナに亜鉛、コバルト。
In order to solve the above problems, the inventors of the present invention conducted extensive research, and as a result, first of all, zinc and cobalt were added to alumina, which are normally used in this type of catalyst carrier.

ニッケル化合物の中から選ばれる1種以上の基材を担体
の第2の成分として特定の方法で配合させ、次いで、こ
れに触媒活性成分を担持させるという工程を経ることに
より、その触媒活性成分の高度の分散を可能にすること
を見い出し、本発明を完成するに至った。
By blending one or more base materials selected from nickel compounds as the second component of the carrier using a specific method, and then supporting the catalytically active component on this, the catalytically active component is The present inventors have discovered that a high degree of dispersion is possible, and have completed the present invention.

すなわち、本発明は、(A)アルミナゲルと、(B)亜
鉛、コバルト又はニッケル化合物の少なくとも1種の水
溶液とを、混練し、成型、乾燥、焼成して金属酸化物の
複合体を得、その後、周期律表第6B族金属の中から選
ばれる少なくとも1種及び第8族金属の中から選ばれる
少なくとも1種の水素化活性成分を担持させることを特
徴とする炭化水素油川水素化処理触媒組成物の製造方法
を要旨とする。
That is, the present invention involves kneading (A) alumina gel and (B) an aqueous solution of at least one of zinc, cobalt, or nickel compounds, molding, drying, and firing to obtain a metal oxide composite; Thereafter, the hydrocarbon oil hydrotreating catalyst is characterized in that at least one hydrogenation active component selected from group 6B metals of the periodic table and at least one hydrogenation active component selected from group 8 metals is supported. The gist is a method for producing the composition.

本発明方法において用いられる担体の第1成分であるア
ルミナの前駆物質のアルミナゲルは、例えば、硫酸アル
ミニウム等のアルミニウム塩をアンモニウムのような塩
基で中和し、あるいはアルミン酸ナトリウムのようなア
ルミン酸塩を酸性アルミニウム塩又は酸で中和し、生成
したゲルをアンモニア水等で充分洗浄して得ることがで
きる。
Alumina gel, which is a precursor of alumina and is the first component of the carrier used in the method of the present invention, can be obtained by neutralizing an aluminum salt such as aluminum sulfate with a base such as ammonium, or by neutralizing an alumina gel such as sodium aluminate with a base such as ammonium. It can be obtained by neutralizing the salt with an acidic aluminum salt or an acid, and thoroughly washing the resulting gel with aqueous ammonia or the like.

一方、担体の第2成分である亜鉛、コバルト。On the other hand, zinc and cobalt are the second components of the carrier.

あるいはニッケルの酸化物の前駆物質は、工業的に入手
可能な硝酸塩、硫酸塩、塩化物等の水溶液又は水酸化物
でよく、原料は特定されない。
Alternatively, the nickel oxide precursor may be an industrially available aqueous solution or hydroxide of nitrate, sulfate, chloride, etc., and the raw material is not specified.

この第2成分の配合量は、最終的な触媒組成物に対して
、約0. 5〜0.8重量%、好ましくは約1.0〜5
.0重量%である。
The amount of this second component is about 0. 5-0.8% by weight, preferably about 1.0-5
.. It is 0% by weight.

本発明方法においては、上記のようにして得たアルミナ
ゲルと、亜鉛、コバルト又はニッケル化合物の中から選
ばれた少な(とも1種の水溶液又は水酸化物とを混練機
に入れて充分に混練する。
In the method of the present invention, the alumina gel obtained as described above and an aqueous solution or hydroxide of at least one of zinc, cobalt or nickel compounds are placed in a kneader and thoroughly kneaded. do.

混線条件は、特に限定されるものではないが、好ましく
は約40〜80°Cで、約3〜6時間混練することが適
している。
The mixing conditions are not particularly limited, but preferably kneading at about 40 to 80°C for about 3 to 6 hours is suitable.

混練段階で、押し出し成型できる程度にまで、水分の調
節がなされる。
During the kneading stage, the moisture content is adjusted to the extent that extrusion molding is possible.

混練の後、押し出し成型機にて必要な触媒直径となるよ
うに成型し、乾燥し、約350〜600°C1好ましく
は約400〜550°Cで、約3時間以上、好ましくは
約12〜24時間焼成して担体を得る。
After kneading, the catalyst is molded using an extrusion molding machine to the required catalyst diameter, dried, and heated at about 350 to 600°C, preferably about 400 to 550°C, for about 3 hours or more, preferably about 12 to 24°C. A carrier is obtained by firing for a period of time.

この担体は、通常、当業界で良く知られている方法、例
えば、所望の担体の前駆物質を所望の寸法及び形状の開
口を有するダイスを介して押し出し後、所望の長さに切
断する方法等により、成型粒子とされる。
The carrier is generally prepared by methods well known in the art, such as extruding a precursor of the desired carrier through a die having openings of the desired size and shape, and then cutting the precursor to the desired length. As a result, shaped particles are obtained.

上記の担体に担持させる活性成分としては、水素化脱硫
用触媒として通常良く使用されている各種の金属が用い
られる。主として、周期律表第6B族及び第8族の金属
から選ばれる少なくとも1種が用いられ、特に、モリブ
デン、タングステン。
As the active component supported on the above-mentioned carrier, various metals commonly used as catalysts for hydrodesulfurization can be used. At least one metal selected from Group 6B and Group 8 metals of the periodic table is mainly used, particularly molybdenum and tungsten.

コバルトニッケルが好適である。Cobalt nickel is preferred.

上記担体への第6B族及び第8族の金属担持方法も、通
常の方法により行うことができる。
The method for supporting Group 6B and Group 8 metals on the above-mentioned carrier can also be carried out by a conventional method.

例えば、担体をこれら水素化活性金属成分を含有する溶
液中に浸漬したり、担体とこの溶液を混合させたり、担
体上にこの溶液を滴下させたり、担体を溶液中に浸漬し
た状態で水素化活性金属成分の沈澱剤を加え担体上に水
素化活性金属成分を沈着させる等、担体を水素化活性金
属成分を含有する溶液と接触させることにより、担体上
に水素化活性金属成分を担持させる方法が採用できる。
For example, the carrier may be immersed in a solution containing these hydrogenation-active metal components, the carrier may be mixed with this solution, the solution may be dropped onto the carrier, or hydrogenation may be carried out while the carrier is immersed in the solution. A method of supporting a hydrogenation-active metal component on a carrier by bringing the support into contact with a solution containing the hydrogenation-active metal component, such as adding a precipitant for the active metal component and depositing the hydrogenation-active metal component on the support. can be adopted.

また、周期律表第6B族と第8族の担持順位は、どちら
が先でもよいし、また同時でもよい。
Furthermore, the order of carrying Group 6B and Group 8 of the periodic table may be either first or at the same time.

周期律表第6B族金属の溶液として使用できる例えばモ
リブデン化合物としては、パラモリブデン酸アンモニウ
ム、モリブデン酸、モリブデン酸アンモニウム、リンモ
リブデン酸アンモニウム。
Examples of molybdenum compounds that can be used as solutions of Group 6B metals of the periodic table include ammonium paramolybdate, molybdic acid, ammonium molybdate, and ammonium phosphomolybdate.

リンモリブデン酸等があり、また周期律表第8族金属の
溶液として使用できる例えばニッケル化合物としては、
ニッケルの硝酸塩、硫酸塩、フッ化物、塩化物、臭化物
、酢酸塩、炭酸塩、リン酸塩等がある。これ以外にも、
この種分野において利用できるとして当業者間に公知の
周期律表第6B族及び第8族金属化合物が利用できる。
Examples of nickel compounds that can be used as solutions for Group 8 metals in the periodic table include phosphomolybdic acid, etc.
Nickel nitrates, sulfates, fluorides, chlorides, bromides, acetates, carbonates, phosphates, etc. Besides this,
Compounds of metals from Groups 6B and 8 of the Periodic Table known to those skilled in the art as being available in this field may be used.

以上のようにして担体への活性成分の担持処理を行った
後、通常の方法により、乾燥、焼成等を行うことが好ま
しい。
After carrying out the treatment of supporting the active ingredient on the carrier as described above, it is preferable to carry out drying, calcination, etc. by a conventional method.

乾燥は、通常、常温ないし約150″C1特に約100
〜120°Cで、約5時間以上、特に約12〜24時間
保持するのが好ましく、焼成は、通常、約350〜60
0℃、特に約400〜550″Cで、約3時間以上、特
に約12〜24時間保持するのが好ましい。
Drying is usually done at room temperature to about 150" C1, especially about 100"
It is preferable to hold the temperature at ~120°C for about 5 hours or more, especially about 12 to 24 hours, and the firing is usually carried out at about 350 to 60 °C.
Preferably, the temperature is maintained at 0°C, especially about 400-550''C, for about 3 hours or more, especially about 12-24 hours.

本発明方法で得られる触媒は、触媒基準で、通常、酸化
物として計算して約7〜25重量%、好ましくは約10
〜20重量%の第6B族金属と、約3〜6重量%、好ま
しくは約3〜5重量%の第8族金属とを含有する。これ
らの水素化活性金属成分は、上記の焼成後の触媒中にお
いて、大部分が酸化物となり、一部が単体元素になって
いると考えられる。
The catalyst obtained by the method of the present invention is usually about 7 to 25% by weight, preferably about 10% by weight, calculated as oxide, based on the catalyst.
It contains ~20% by weight Group 6B metal and about 3-6% by weight, preferably about 3-5% by weight Group 8 metal. It is considered that most of these hydrogenation-active metal components become oxides and some become simple elements in the above-mentioned fired catalyst.

本発明方法で得られる触媒を硫化物の形態で使用する場
合には、この触媒を予備硫化しておく。
When the catalyst obtained by the method of the present invention is used in the form of a sulfide, the catalyst is presulfurized.

硫化の方法としては、約1.0重量%又はそれ以上の硫
黄を含有する炭化水素油や気相硫化物を、高温高圧下で
触媒上に通じる方法等が採用される。
As the sulfiding method, a method is employed in which hydrocarbon oil or gas phase sulfide containing about 1.0% by weight or more of sulfur is passed over the catalyst at high temperature and high pressure.

本発明方法で得られる触媒を適用することのできる炭化
水素油としては、原油の常圧蒸留留出油及び残渣、減圧
蒸留留出油及び残渣、ビスブレーキング油、タールサン
ド油、シェールオイル等が挙げられる。
Hydrocarbon oils to which the catalyst obtained by the method of the present invention can be applied include atmospheric distillate oils and residues of crude oil, vacuum distillate oils and residues, visbreaking oils, tar sand oils, shale oils, etc. can be mentioned.

特に、本発明方法で得られる触媒は、灯油留分及び軽油
留分のような中質留出油、減圧蒸留の重質留出油、アス
ファルトを含有する残渣油、あるいはこれらの混合油の
水素化処理を実施するのに好適である。
In particular, the catalyst obtained by the method of the present invention is suitable for hydrogenation of medium distillate oils such as kerosene fractions and gas oil fractions, heavy distillate oils from vacuum distillation, asphalt-containing residual oils, or mixtures thereof. It is suitable for carrying out chemical treatment.

また、本発明方法で得られる触媒による炭化水素油の水
素化処理条件は、温度約200〜450℃、圧力約10
〜200Kg/cm2.LH3V(液空間速度)約0.
1〜5,0Hr−’とすることが好ましい。
Further, the conditions for hydrogenating hydrocarbon oil using the catalyst obtained by the method of the present invention are a temperature of about 200 to 450°C and a pressure of about 10°C.
~200Kg/cm2. LH3V (liquid hourly velocity) approximately 0.
It is preferable to set it as 1-5,0 Hr-'.

〔作用〕[Effect]

本発明方法では、従来のアルミナ担体に活性成分を含浸
担持させたり、共沈担持させる等の方法とは異なり、亜
鉛、コバルト、ニッケルという活性成分の一部を担体の
第2成分として、予め、担体の主要成分であるアルミナ
に均一な状態で混合されるよう充分混練し、焼成してお
く。
In the method of the present invention, unlike conventional methods such as impregnating and supporting an active ingredient on an alumina carrier or co-precipitating the active ingredient, the method of the present invention uses a part of the active ingredients such as zinc, cobalt, and nickel as the second component of the carrier in advance. The mixture is sufficiently kneaded to be uniformly mixed with alumina, which is the main component of the carrier, and fired.

次いで、この第2成分を均一な状態で含む担体に、第6
B族及び第8族金属からなる水素化処理用活性成分を担
持させる。
Next, the sixth component is added to the carrier containing the second component in a uniform state.
An active component for hydrotreating consisting of Group B and Group 8 metals is supported.

すると、上記の担体に、第6B族及び第8族金属が、高
度の分散性で担持される。この理由は必ずしも明らかで
はないが、上記の第2成分と第6B族及び第8族金属と
の親和性によるものと推測される。
Then, the Group 6B and Group 8 metals are supported on the above-mentioned carrier with a high degree of dispersion. Although the reason for this is not necessarily clear, it is presumed that it is due to the affinity of the second component with the Group 6B and Group 8 metals.

このように高度の分散状態で活性成分を担持している本
発明方法による触媒は、炭化水素油の水素化処理に対し
、極めて高効率での水素化処理を実現し、地球規模での
要請に応え得る高度に脱硫された燃料製品を提供するこ
とができる。
The catalyst according to the present invention, which supports active ingredients in a highly dispersed state, realizes extremely highly efficient hydrogenation of hydrocarbon oils and meets global demands. A responsive highly desulfurized fuel product can be provided.

なお、本発明における「水素化処理」とは、炭化水素油
と水素との接触による処理を称し、比較的反応条件の苛
酷度の低い水素化精製、比較的苛酷度の高い若干の分解
反応を伴う水素化精製、水添異性化、水素化脱アルキル
化、その他の水素の存在下における炭化水素油の反応を
包含するものである。
In addition, "hydrotreatment" in the present invention refers to treatment by contacting hydrocarbon oil with hydrogen, and includes hydrorefining with relatively low severity of reaction conditions, and some decomposition reactions with relatively high severity of reaction conditions. This includes hydrorefining, hydroisomerization, hydrodealkylation, and other reactions of hydrocarbon oils in the presence of hydrogen.

例えば、常圧蒸留又は減圧蒸留の留出液及び残渣油の水
素化脱硫、水素化膜窒素、水素化分解を含み、また灯油
留分、軽油留分、ワックス、潤滑油留分の水素化精製等
を包含する。
Examples include hydrodesulfurization of distillates and residual oils of atmospheric distillation or vacuum distillation, hydrogenated membrane nitrogen, hydrocracking, and hydrorefining of kerosene fractions, gas oil fractions, waxes, and lubricating oil fractions. etc.

〔実施例〕〔Example〕

以下、実施例及び比較例を用いて本発明を更に具体的に
説明する。
Hereinafter, the present invention will be explained in more detail using Examples and Comparative Examples.

実施例1 (アルミナゲル及び第2成分の調製工程)50fのイオ
ン交換水の中に、29.8Kgのアルミン酸ナトリウム
溶液(A j2203として約23%含む)と、38.
0Kgの硫酸アルミニウム溶液(Affi20:lとし
て約7.9%含む)とをゆっくり滴下した。このとき、
その溶液のpHは8〜9の間に保持した。最後に、残っ
ているアルミン酸ナトリウム溶液を加え、最終的に溶液
のpHは11とした。
Example 1 (Preparation process of alumina gel and second component) In 50f of ion-exchanged water, 29.8Kg of sodium aluminate solution (containing about 23% as A j2203) and 38.
0 kg of aluminum sulfate solution (containing about 7.9% as Affi20:l) was slowly added dropwise. At this time,
The pH of the solution was maintained between 8 and 9. Finally, the remaining sodium aluminate solution was added to bring the final pH of the solution to 11.

以上の操作により生成したアルミナスラリーを口過し、
日別された沈澱物(アルミナゲル)を、先ずアンモニア
を加えてpHを9に調整した水で繰り返し洗浄し、次い
で硝酸を加えてpHを6に調整した水で再び繰り返し洗
浄して、アルミナゲルを得た。
Pass the alumina slurry produced by the above operations,
The separated precipitate (alumina gel) is first washed repeatedly with water to which the pH has been adjusted to 9 by adding ammonia, and then repeatedly washed again with water to which the pH has been adjusted to 6 by adding nitric acid. I got it.

一方、3.5!のイオン交換水の中に、950gの硝酸
亜鉛を溶解させて第2成分を調製した。
On the other hand, 3.5! The second component was prepared by dissolving 950 g of zinc nitrate in ion-exchanged water.

(混練工程) 混練機の中に、上記のアルミナゲル及び硝酸亜鉛水溶液
を入れ、3時間混練した。
(Kneading Step) The above alumina gel and zinc nitrate aqueous solution were placed in a kneader and kneaded for 3 hours.

その後、この混練機の中を70°Cに加熱し、押し出し
成型できる程度の水分量になるように調湿した。
Thereafter, the inside of this kneader was heated to 70° C., and the humidity was adjusted so that the moisture content was sufficient for extrusion molding.

これを押し出し成型機で、必要な触媒直径に合うように
押し出し成型した。
This was extruded and molded using an extrusion molding machine to match the required catalyst diameter.

この押し出し成型物を、120°Cで一昼夜乾燥し、次
いで550°Cで12時間焼成した。
This extruded product was dried at 120°C for a day and night, and then baked at 550°C for 12 hours.

以上の操作で得られた担体の比表面積は、303m”/
gであった。
The specific surface area of the carrier obtained by the above operation is 303 m”/
It was g.

(活性成分担持工程) 先ず、2800mlのアンモニア水溶液を用意し、その
中に1252gのバラモリブデン酸アンモニウムを加え
て溶解させた。更に、この中に、785gの硝酸ニッケ
ルを加えた。この溶液には沈澱物はなかった。
(Active ingredient supporting step) First, 2800 ml of ammonia aqueous solution was prepared, and 1252 g of ammonium rosemolybdate was added and dissolved therein. Further, 785 g of nickel nitrate was added thereto. There was no precipitate in this solution.

このようにして調製された溶液を、上述の混練工程で調
製された触媒担体5Kgを採取して、これに注意深く滴
下した。
The solution thus prepared was carefully dropped onto 5 kg of the catalyst carrier prepared in the above-mentioned kneading process.

全ての溶液を滴下した後、3時間静置し、その後120
°Cで12時間乾燥した。最後に、500°Cで12時
間焼成して触媒Aを得た この触媒Aには、酸化ニッケルが5重量%、酸化モリブ
デンが17重量%、酸化亜鉛が3重量%含まれていた。
After dropping all the solutions, let stand for 3 hours, then 120
Dry at °C for 12 hours. Finally, catalyst A was obtained by calcining at 500°C for 12 hours. Catalyst A contained 5% by weight of nickel oxide, 17% by weight of molybdenum oxide, and 3% by weight of zinc oxide.

実施例2 (アルミナゲル及び第2成分の調製工程)実施例1の触
媒Aと同様の方法で、アルミナゲルを調製した。
Example 2 (Process for preparing alumina gel and second component) Alumina gel was prepared in the same manner as for catalyst A in Example 1.

一方、3.51!、のイオン交換水の中に、317gの
硝酸コバルトを溶解させて第2成分を調製した。
On the other hand, 3.51! The second component was prepared by dissolving 317 g of cobalt nitrate in ion-exchanged water.

(混練工程) 混練機の中に、上記のアルミナゲル及び硝酸コバルト水
溶液を入れ、3時間混練した。
(Kneading Step) The above alumina gel and cobalt nitrate aqueous solution were placed in a kneader and kneaded for 3 hours.

その後、この混練機の中を70°Cに加熱し、押し出し
成型できる程度の水分量になるように調湿した。
Thereafter, the inside of this kneader was heated to 70° C., and the humidity was adjusted so that the moisture content was sufficient for extrusion molding.

これを押し出し成型機で、必要な触媒直径に合うように
押し出し成型した。
This was extruded and molded using an extrusion molding machine to match the required catalyst diameter.

この押し出し成型物を、120″Cで一昼夜乾燥し、次
イで550°Cで12時間焼成した。
This extruded product was dried at 120°C for a day and night, and then baked at 550°C for 12 hours.

以上の操作で得られた担体の比表面積は、291m27
gであった。
The specific surface area of the carrier obtained by the above operation is 291 m27
It was g.

(活性成分担持工程) 実施例1の触媒Aと同様の方法で、活性成分を担持させ
て、触媒Bを得た この触媒Bには、酸化ニッケルが5重量%、酸化モリブ
デンが17重量%、酸化コバルトが1重量%含まれてい
た。
(Active component supporting step) Catalyst B was obtained by supporting an active component in the same manner as catalyst A in Example 1. This catalyst B contained 5% by weight of nickel oxide, 17% by weight of molybdenum oxide, It contained 1% by weight of cobalt oxide.

実施例3 (アルミナゲル及び第2成分の調製工程)実施例1の触
媒Aと同様の方法で、アルミナゲルを調製した。
Example 3 (Process for preparing alumina gel and second component) Alumina gel was prepared in the same manner as for catalyst A in Example 1.

一方、3.5I!、のイオン交換水の中に、317gの
硝酸ニッケルを溶解させて第2成分を調製した。
On the other hand, 3.5I! The second component was prepared by dissolving 317 g of nickel nitrate in ion-exchanged water.

(混練工程) 混練機の中に、上記のアルミナゲル及び硝酸ニッケル水
溶液を入れ、3時間混練した。
(Kneading Step) The above alumina gel and nickel nitrate aqueous solution were placed in a kneader and kneaded for 3 hours.

その後、この混練機の中を70°Cに加熱し、押し出し
成型できる程度の水分量になるように調湿した。
Thereafter, the inside of this kneader was heated to 70° C., and the humidity was adjusted so that the moisture content was sufficient for extrusion molding.

これを押し出し成型機で、必要な触媒直径に合うように
押し出し成型した。
This was extruded and molded using an extrusion molding machine to match the required catalyst diameter.

この押し出し成型物を、120 ”Cで一昼夜乾燥し、
次いで550°Cで12時間焼成した。
This extruded product was dried at 120"C overnight,
Then, it was baked at 550°C for 12 hours.

以上の操作で得られた担体の比表面積は、295m27
gであった。
The specific surface area of the carrier obtained by the above operation is 295 m27
It was g.

(活性成分担持工程) 実施例1の触媒Aと同様の方法で、活性成分を担持させ
て、触媒Cを得た この触媒Cには、酸化ニッケルが6重量%、酸化モリブ
デンが17重量%含まれていた。
(Active component supporting step) An active component was supported in the same manner as catalyst A in Example 1 to obtain catalyst C. This catalyst C contained 6% by weight of nickel oxide and 17% by weight of molybdenum oxide. It was

比較例1 実施例1の触媒Aと同様の方法で、アルミナゲルを調製
した。
Comparative Example 1 Alumina gel was prepared in the same manner as for Catalyst A in Example 1.

このアルミナゲルとイオン交換水3.52とを混練機に
入れ、3時間混練した。
This alumina gel and 3.5 g of ion-exchanged water were put into a kneader and kneaded for 3 hours.

その後、この混練機の中を70°Cに加熱し、押し出し
成型できる程度の水分量になるように調湿した。
Thereafter, the inside of this kneader was heated to 70° C., and the humidity was adjusted so that the moisture content was sufficient for extrusion molding.

これを押し出し成型機で、必要な触媒直径に合うように
押し出し成型した。
This was extruded and molded using an extrusion molding machine to match the required catalyst diameter.

この押し出し成型物を、120°Cで一昼夜乾燥し、次
いで550°Cで12時間焼成した。
This extruded product was dried at 120°C for a day and night, and then baked at 550°C for 12 hours.

以上の操作で得られた担体に、実施例1の触媒へと同様
の方法で、活性成分を担持させて、触媒りを得た。
An active ingredient was supported on the carrier obtained by the above operation in the same manner as the catalyst of Example 1 to obtain a catalyst.

この触媒りには、酸化ニッケルが5重量%、酸化モリブ
デン力月7重量%含まれていた。
This catalyst contained 5% by weight of nickel oxide and 7% by weight of molybdenum oxide.

比較例2 比較例1の触媒りを1Kg採取し、これに硝酸亜鉛72
.1gを550rnlのイオン交換水中に溶解させた溶
液を注意深く滴下した。
Comparative Example 2 1 kg of the catalyst of Comparative Example 1 was collected, and 72 kg of zinc nitrate was added to it.
.. A solution of 1 g dissolved in 550 rnl of ion-exchanged water was carefully added dropwise.

全ての溶液を滴下した後、3時間静置し、その後120
°Cで12時間乾燥した。
After dropping all the solutions, let stand for 3 hours, then 120
Dry at °C for 12 hours.

最後に、500 ”Cで12時間焼成して触媒Eを得た
Finally, catalyst E was obtained by calcining at 500''C for 12 hours.

この触媒Eには、酸化ニッケルが5重量%、酸化モリブ
デンが16重量%、酸化亜鉛が3重量%含まれていた。
This catalyst E contained 5% by weight of nickel oxide, 16% by weight of molybdenum oxide, and 3% by weight of zinc oxide.

上記の実施例1〜3及び比較例1.2で得られた触媒A
−Eを、下記条件の水素化脱硫の相対活性評価試験で評
価した。
Catalyst A obtained in Examples 1 to 3 and Comparative Example 1.2 above
-E was evaluated in a hydrodesulfurization relative activity evaluation test under the following conditions.

の アラビアンライト軽油(AL−LGO)、J圧軽油(A
L−VCO)あるいはアラビアンヘビー常圧残油(AH
−AR)に対する水素化脱硫相対活性を内径10mmφ
の固定床式反応管を用い、夫々10日日(条件1)、2
0日目(条件2)。
Arabian light gas oil (AL-LGO), J pressure gas oil (A
L-VCO) or Arabian Heavy Atmospheric Residual Oil (AH
-AR) with an inner diameter of 10 mmφ
10 days (conditions 1) and 2 days using fixed bed reaction tubes.
Day 0 (condition 2).

25日目(条件3)(反応初期には生成物の硫黄分は少
ないが、日数とともに増加安定するため、10日日日2
0日目、25日目とした。)の反応生成物の残留硫黄分
(重量%)から得られる初期相対脱硫活性求めた。
Day 25 (Condition 3) (At the beginning of the reaction, the sulfur content of the product is low, but it increases and stabilizes as the days pass, so
Day 0 and Day 25 were designated as days. ) The initial relative desulfurization activity obtained from the residual sulfur content (wt%) of the reaction product was determined.

原料油の性状と反応条件を第1表に示し、結果を第2表
(軽質軽油)、第3表(減圧軽油)及び第4表(常圧残
油)に示す。
The properties and reaction conditions of the feedstock oil are shown in Table 1, and the results are shown in Table 2 (light gas oil), Table 3 (vacuum gas oil), and Table 4 (atmospheric residual oil).

第 2 表 注1)No、4 (触媒D)の脱硫反応速度定数を10
0で表した相対値。()内は、生成油硫黄濃度(重量%
)。
Table 2 Note 1) The desulfurization reaction rate constant of No. 4 (Catalyst D) is 10
Relative value expressed as 0. Values in parentheses indicate produced oil sulfur concentration (wt%)
).

第2表から明らかなように、実施例1〜3で製造された
触媒A−Cはいずれも、比較例1,2で製造された触媒
り、Eに比較して、軽質軽油の脱硫活性に優れた結果を
示していることが判る。
As is clear from Table 2, all of the catalysts A to C produced in Examples 1 to 3 had better desulfurization activity for light gas oil than catalysts E and E produced in Comparative Examples 1 and 2. It can be seen that the results are excellent.

第 表 注2)No、9(触媒D)の脱硫反応速度定数を100
で表した相対値。()内は、生成油硫黄濃度(重量%)
Table Note 2) The desulfurization reaction rate constant of No. 9 (Catalyst D) was set to 100.
Relative value expressed in . Values in parentheses are produced oil sulfur concentration (wt%)
.

一般には、原料油が重質油になる程、触媒の構成成分等
の差による初期相対脱硫活性値間の差は縮まるとされて
いる。しかし、第3表から明らかなように、本発明の実
施例1〜3で製造された触媒A−Cと、比較例1.2で
製造された触媒DEとでは、初期相対脱硫活性値に差が
あり、本発明で製造された触媒A−Cはいずれも、比較
例で製造された触媒り、Eに比して、減圧軽油の脱硫活
性に優れた結果を示していることが判る。
Generally, it is believed that the heavier the feedstock oil is, the smaller the difference in initial relative desulfurization activity values due to differences in catalyst components, etc. However, as is clear from Table 3, there is a difference in initial relative desulfurization activity values between catalysts A-C manufactured in Examples 1 to 3 of the present invention and catalyst DE manufactured in Comparative Example 1.2. It can be seen that Catalysts A to C produced in the present invention all showed superior results in the desulfurization activity of vacuum gas oil compared to Catalysts A and E produced in Comparative Examples.

第4表 注3)No、12(触媒D)の脱硫反応速度定数を10
0で表した相対値。()内は、生成油硫黄濃度(重量%
)。
Table 4 Note 3) The desulfurization reaction rate constant of No. 12 (Catalyst D) was set to 10
Relative value expressed as 0. Values in parentheses indicate produced oil sulfur concentration (wt%)
).

第4表から明らかなように、実施例1で製造された触媒
Aは、比較例1で製造された触媒りに比較して、常圧残
油の脱硫活性に優れた結果を示していることが判る。
As is clear from Table 4, Catalyst A manufactured in Example 1 shows superior results in the desulfurization activity of atmospheric residual oil compared to the catalyst manufactured in Comparative Example 1. I understand.

〔発明の効果〕〔Effect of the invention〕

本発明方法では、亜鉛、コバルト、ニッケルという活性
成分の一部を担体の第2成分として、予め、担体の主要
成分であるアルミナに均一に混練して調製した言わば複
合担体に、水素化処理用活性成分を担持させると言う工
程を経るため、水素化処理用活性成分と上記第2成分と
の親和性により、従来法による触媒に比べて、飛躍的に
高い分散性で活性成分を担持する触媒を得ることができ
る。
In the method of the present invention, some of the active ingredients zinc, cobalt, and nickel are used as the second component of the carrier, and a so-called composite carrier prepared by uniformly kneading them into alumina, which is the main component of the carrier, is used for hydrogenation treatment. Because it goes through a step of supporting the active ingredient, the affinity between the active ingredient for hydrotreating and the above-mentioned second component allows the catalyst to support the active ingredient with dramatically higher dispersibility than catalysts using conventional methods. can be obtained.

このため、本発明方法で得られる触媒によれば、石油各
留分及び残渣骨のいずれの原料油に対しても、従来法に
よる触媒よりも、大幅に高い脱硫活性を示し、特に、石
油留出原料に対して顕著な効果を有する。
Therefore, the catalyst obtained by the method of the present invention exhibits significantly higher desulfurization activity for both petroleum fractions and residual bone stock oils than catalysts produced by conventional methods. It has a remarkable effect on raw materials.

特許出廓人 株式会社コスモ総合研究所コスモ石油株式
会社
Patent distributor Cosmo Research Institute Co., Ltd. Cosmo Oil Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (A)アルミナゲルと、(B)亜鉛、コバルト又はニッ
ケル化合物の少なくとも1種の水溶液とを、混練し、成
型、乾燥、焼成して金属酸化物の複合体を得、その後、
周期律表第6B族金属の中から選ばれる少なくとも1種
及び第8族金属の中から選ばれる少なくとも1種の水素
化活性成分を担持させることを特徴とする炭化水素油用
水素化処理触媒組成物の製造方法。
(A) alumina gel and (B) an aqueous solution of at least one of zinc, cobalt, or nickel compounds are kneaded, molded, dried, and fired to obtain a metal oxide composite, and then,
A hydrotreating catalyst composition for hydrocarbon oil, characterized in that it supports at least one hydrogenation active component selected from group 6B metals of the periodic table and at least one hydrogenation active component selected from group 8 metals. How things are manufactured.
JP2077708A 1990-03-27 1990-03-27 Method for producing hydrotreating catalyst composition for hydrocarbon oil Expired - Lifetime JP2794320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077708A JP2794320B2 (en) 1990-03-27 1990-03-27 Method for producing hydrotreating catalyst composition for hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077708A JP2794320B2 (en) 1990-03-27 1990-03-27 Method for producing hydrotreating catalyst composition for hydrocarbon oil

Publications (2)

Publication Number Publication Date
JPH03278839A true JPH03278839A (en) 1991-12-10
JP2794320B2 JP2794320B2 (en) 1998-09-03

Family

ID=13641399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077708A Expired - Lifetime JP2794320B2 (en) 1990-03-27 1990-03-27 Method for producing hydrotreating catalyst composition for hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP2794320B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017910A1 (en) * 1993-02-15 1994-08-18 Idemitsu Kosan Co., Ltd. Catalyst composition manufacturing method and sulfur-containing hydrocarbon hydrodesulfurization method using the same catalyst composition
KR100804942B1 (en) * 2001-08-24 2008-02-20 주식회사 포스코 Method for manufacturing gamma-alumina for desulfurization
CN100400158C (en) * 2006-06-16 2008-07-09 中国石油化工股份有限公司 Catalyst for hydrogen refining of paraffin wax, prepn. method and application thereof
WO2010071172A1 (en) * 2008-12-17 2010-06-24 新日本石油株式会社 Hydrocarbon desulfurizing agent and manufacturing method thereof, kerosene desulfurization method, and fuel cell system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838884A (en) * 1971-09-22 1973-06-07
JPS5018475A (en) * 1973-06-23 1975-02-26
JPS5270996A (en) * 1975-12-08 1977-06-13 Raffinage Cie Francaise Novel catalysts* manufacture of same and application for conversion of hydrocarbon inserted substances
JPS5282690A (en) * 1975-12-10 1977-07-11 Ici Ltd Catalyst composition and its manufacture
JPS54104493A (en) * 1978-01-31 1979-08-16 Exxon Research Engineering Co Manufacture of catalyst having predetermined pore size distribution and pore volume
JPS56115638A (en) * 1980-02-19 1981-09-10 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation of heavy-duty hydrocarbon oil containing asphaltene
JPS61114736A (en) * 1984-10-01 1986-06-02 ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ Catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838884A (en) * 1971-09-22 1973-06-07
JPS5018475A (en) * 1973-06-23 1975-02-26
JPS5270996A (en) * 1975-12-08 1977-06-13 Raffinage Cie Francaise Novel catalysts* manufacture of same and application for conversion of hydrocarbon inserted substances
JPS5282690A (en) * 1975-12-10 1977-07-11 Ici Ltd Catalyst composition and its manufacture
JPS54104493A (en) * 1978-01-31 1979-08-16 Exxon Research Engineering Co Manufacture of catalyst having predetermined pore size distribution and pore volume
JPS56115638A (en) * 1980-02-19 1981-09-10 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation of heavy-duty hydrocarbon oil containing asphaltene
JPS61114736A (en) * 1984-10-01 1986-06-02 ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ Catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017910A1 (en) * 1993-02-15 1994-08-18 Idemitsu Kosan Co., Ltd. Catalyst composition manufacturing method and sulfur-containing hydrocarbon hydrodesulfurization method using the same catalyst composition
KR100804942B1 (en) * 2001-08-24 2008-02-20 주식회사 포스코 Method for manufacturing gamma-alumina for desulfurization
CN100400158C (en) * 2006-06-16 2008-07-09 中国石油化工股份有限公司 Catalyst for hydrogen refining of paraffin wax, prepn. method and application thereof
WO2010071172A1 (en) * 2008-12-17 2010-06-24 新日本石油株式会社 Hydrocarbon desulfurizing agent and manufacturing method thereof, kerosene desulfurization method, and fuel cell system
JP2010142715A (en) * 2008-12-17 2010-07-01 Nippon Oil Corp Desulfurizing agent for hydrocarbons and method for manufacturing the same, method for desulfurizing kerosene, and fuel battery system

Also Published As

Publication number Publication date
JP2794320B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
US5215955A (en) Resid catalyst with high metals capacity
US5620592A (en) Low macropore resid conversion catalyst
CA2360121C (en) Hydroprocessing catalyst and use thereof
JP2009545443A (en) Catalyst comprising molybdenum and a Group VIII metal and its use for hydrodesulfurized hydrodistillate
US5177047A (en) High activity resid catalyst
KR20170003593A (en) A catalyst and its use for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
EP0804288B1 (en) Low macropore resid conversion catalyst
JP2888536B2 (en) Hydrotreating catalyst and method
JP2001506914A (en) Catalyst containing at least one element of group VII and its use in hydrotreating
JP2556340B2 (en) Process for producing hydrogenated catalyst prepared from hydrogel and produced catalyst
JPH10296091A (en) Catalyst for hydrogenation treatment and method for hydrogenation treatment for hydrocarbon oil using the same
JPH03278839A (en) Preparation of hydrotreating catalyst composition for hydrocarbon oil
EP0266012B1 (en) Process for preparing hydrotreating catalysts from hydrogels
US5035793A (en) Hydrotreating catalyst and process
JPH01164440A (en) Production of hydrogen purifying catalyst from hydrogel
US4957895A (en) Hydrotreating catalyst and process
JP2556343B2 (en) Method for producing hydrogenated catalyst from hydrogel
JPH03281596A (en) Hydrogenation treatment of hydrocarbon oil
JPH0813328B2 (en) Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same
JPH06154610A (en) Catalyst for residual oil having high metal content, method for its production and process for its use
JP4408527B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same
JPH05317712A (en) Hydrogenation desulfurization catalyst and its preparation
JPH03281595A (en) Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst
JPH08182930A (en) Catalyst for hydrogenation refining
JP3333229B2 (en) Hydrodesulfurization catalyst and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12