JPH03276567A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPH03276567A JPH03276567A JP2077722A JP7772290A JPH03276567A JP H03276567 A JPH03276567 A JP H03276567A JP 2077722 A JP2077722 A JP 2077722A JP 7772290 A JP7772290 A JP 7772290A JP H03276567 A JPH03276567 A JP H03276567A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- electrode
- reservoir
- base material
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 17
- 239000003792 electrolyte Substances 0.000 claims abstract description 80
- 239000000463 material Substances 0.000 claims abstract description 44
- 239000011159 matrix material Substances 0.000 claims abstract description 28
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- 239000005871 repellent Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims description 4
- 230000035699 permeability Effects 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract 5
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 19
- 230000002940 repellent Effects 0.000 description 9
- 239000012495 reaction gas Substances 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 210000004905 finger nail Anatomy 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04276—Arrangements for managing the electrolyte stream, e.g. heat exchange
- H01M8/04283—Supply means of electrolyte to or in matrix-fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えぼりん#型燃料電池を対象としたリブ付
き電極方式の燃料電池、特にその電解質リザーバの構造
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ribbed electrode type fuel cell, such as an Eborin # type fuel cell, and particularly to the structure of an electrolyte reservoir thereof.
まず、本発明の実施対象となる燃料電池の従来構造を第
6図、第7図に示す0図において、1は燃料電池の単電
池、2は各単電池1の相互間に介装したガス不透過性の
セパレータ、3は冷却板であり、これらの積層体でセル
スタックを構成している。また、単電池1は電解質を含
浸保持したマトリクス4と、ガス透過性を有するリブ付
き電極基材5(カーボン繊維にバインダを添加して成形
。First, the conventional structure of the fuel cell to which the present invention is applied is shown in Figs. The impermeable separator 3 is a cooling plate, and these laminates constitute a cell stack. The cell 1 also includes a matrix 4 impregnated with an electrolyte and a ribbed electrode base material 5 having gas permeability (molded by adding a binder to carbon fibers).
焼成し、さらに撥水材であるフッ素樹脂を含浸させて撥
水処理したもの)に触媒層6を担持して前記マトリクス
の両側に配したアノード電極7.カソード電極8とで構
成されている。なお、外部から供給された燃料、酸化副
ガスの反応ガスは、電極基材6のリブ6aの間に形成さ
れているガス供給溝6bを流れる過程で電極基材6の内
部を拡散して触媒層5に供給される。An anode electrode 7, which is formed by carrying a catalyst layer 6 on a material (calcined and further impregnated with a fluororesin, which is a water repellent material, to make it water repellent), and disposed on both sides of the matrix. It is composed of a cathode electrode 8. Note that the reactant gases such as fuel and oxidizing secondary gas supplied from the outside diffuse inside the electrode base material 6 while flowing through the gas supply grooves 6b formed between the ribs 6a of the electrode base material 6, and become catalytic. Supplied to layer 5.
一方、前記の燃料電池では、マトリクス4に保持されて
いる電解質は運転申に未反応ガス、ないし反応生成水な
どと一緒に電池外に飛散して徐々に量が減少し、これが
原因で経時的に電池の内部抵抗を高めたり、マトリクス
内で反応ガスが混触して直接反応を引き起こすことがあ
る他、吸湿。On the other hand, in the fuel cell described above, the electrolyte held in the matrix 4 is scattered outside the cell together with unreacted gas or water produced by the reaction during operation, and its amount gradually decreases over time. This may increase the internal resistance of the battery, cause reaction gases to come into contact with each other within the matrix, and cause a direct reaction, as well as moisture absorption.
昇温により電解質の体積が増加して漏れを生じることが
ある。このような問題の対策として、図示のようにアノ
ード、カソード電極7,8の一方、例えばアノード電極
7に対してその電極基材6の一部に電解質を貯える親水
性のリザーバ部9を形成し、かつ触媒層5に穿孔した電
解質の通路10を介してマトリクス4とリザーバ部9と
の間を連通させるようにした電解質リザーバの構造が特
開昭61−188862号公報などで既に公知である。Elevated temperatures may increase the volume of the electrolyte and cause leakage. As a countermeasure to this problem, as shown in the figure, a hydrophilic reservoir portion 9 for storing electrolyte is formed in one of the anode and cathode electrodes 7 and 8, for example, in a part of the electrode base material 6 of the anode electrode 7. A structure of an electrolyte reservoir in which the matrix 4 and the reservoir section 9 are communicated through the electrolyte passage 10 formed in the catalyst layer 5 is already known in Japanese Patent Application Laid-Open No. 188862/1983.
ところで、前記のように電極の一部を占有してここに電
解質を貯えるリザーバを形成した従来の電解質リザーバ
構造では次記のような問題点がある。However, the conventional electrolyte reservoir structure in which a reservoir for storing electrolyte is formed occupying a part of the electrode as described above has the following problems.
すなわち、リザーバ部9の電解質保持容量は電極基材6
の一部を占有して形成した親木性領域の容積で決り、リ
ザーバの容量を高めるには電極基材の親木性領域を大き
くする必要がある。しかして親水性のリザーバ部9の空
孔が電解質で満たされた状態になると、この部分はガス
不透過性になる。したがうて限られた面積の電極に対し
て電解質リザーバ部9の領域を大にすると、その分だけ
ガス拡散電極としての有効面積が縮小して触媒層5への
反応ガス供給能力が低下する。このために従来の電解質
リザーバ構造では、実際面でリザーバ容量が小容量に制
限される。That is, the electrolyte holding capacity of the reservoir section 9 is equal to that of the electrode base material 6.
In order to increase the capacity of the reservoir, it is necessary to enlarge the wood-loving region of the electrode base material. When the pores of the hydrophilic reservoir portion 9 are filled with electrolyte, this portion becomes gas impermeable. Therefore, if the area of the electrolyte reservoir section 9 is increased relative to the limited area of the electrode, the effective area as a gas diffusion electrode will be reduced by that amount, and the ability to supply the reaction gas to the catalyst layer 5 will be reduced. This limits the reservoir capacity to a small practical capacity in conventional electrolyte reservoir structures.
本発明は上記の点にかんがみなされたものであり、ガス
拡散電極として十分な有効面積を確保しつつ、しかも電
解質の貯留容量の増大化が図れるようにした燃料電池、
特にその電解質リザーバ構造を提供することを目的とす
る。The present invention has been made in view of the above points, and provides a fuel cell which can secure a sufficient effective area as a gas diffusion electrode and also increase the storage capacity of electrolyte.
In particular, the object is to provide such an electrolyte reservoir structure.
上記課題を解決するために、本発明の燃料電池では、ア
ノード、カソード電極の少な(とも一方の電極に対し、
リブ付き電極基材とセパレータとの間に電解質リザーバ
として機能する親水性材のリザーバプレートを介挿する
とともに、リザーバプレートと接する電極基材に対しそ
の一部にマトリクスとリザーバプレートとの間に這じる
親水性の電解質移動通路を形成して構成するものとする
。In order to solve the above problems, the fuel cell of the present invention has a small number of anode and cathode electrodes (both have a small number of anode and cathode electrodes,
A reservoir plate made of a hydrophilic material that functions as an electrolyte reservoir is inserted between the ribbed electrode base material and the separator, and a part of the electrode base material that is in contact with the reservoir plate is inserted between the matrix and the reservoir plate. The structure shall be constructed by forming a hydrophilic electrolyte movement passageway.
そして、前記構成における電解質の移動通路は、他の電
極領域よりも撥水性を弱めた希薄撥水処理部として形成
するか、あるいは撥水処理済みの電極基材に対し局部的
にレーザを照射して形成することができる。The electrolyte movement path in the above structure is formed as a dilute water-repellent treatment area whose water repellency is weaker than that of other electrode regions, or by locally irradiating a laser onto the water-repellent electrode base material. It can be formed by
また、マトリクスでの全面域で電解質を均一に保持させ
るためには、前記構成における電解質の移動通路を、電
極における反応ガスの入口側よりも出口s領域に多く分
布形するのがよい。Furthermore, in order to hold the electrolyte uniformly over the entire area of the matrix, it is preferable that the electrolyte movement paths in the above structure be distributed more in the outlet s region than in the reactant gas inlet side of the electrode.
上記構成のように、リブ付き電極基材とセパレータとの
間に親水性材1例えばカーボンペーパーなどで作られた
リザーバプレートを介在させることにより、電極基材に
十分なガス拡散領域を確保しつつ、単電池内に貯留容量
の大きな電解質リザーバを構成できる。As in the above configuration, by interposing a reservoir plate made of a hydrophilic material 1 such as carbon paper between the ribbed electrode base material and the separator, a sufficient gas diffusion area is secured in the electrode base material. , an electrolyte reservoir with a large storage capacity can be constructed within a single cell.
また、電極基材の一部に形成した希薄撥水処理部は、外
部より単電池内部へ供給した反応ガスを触媒層に向けて
拡散供給させるガス拡散性を保持しつつ、一方ではマト
リクスとリザーバプレートとの間にまたがる電解質移動
通路として機能する。In addition, the dilute water-repellent treatment part formed on a part of the electrode base material maintains gas diffusivity that allows the reactive gas supplied from the outside to the inside of the cell to be diffused and supplied toward the catalyst layer, while at the same time protecting the matrix and reservoir. It functions as an electrolyte transfer path spanning between the plates.
さらに、全域を撥水処理した電極基材に対して触媒層側
から局部的にレーザビームを照射することにより、レー
ザ照射を受けた部分では電極基材。Furthermore, by locally irradiating a laser beam from the catalyst layer side to the electrode base material, which has been treated to be water repellent over the entire area, the electrode base material is exposed to the laser beam in the area that has been irradiated with the laser.
触媒層に含まれているフッ素樹脂などの撥水材が熱分解
して取り除かれ、この部分に親水性の電解質移動通路が
形成される。A water repellent material such as a fluororesin contained in the catalyst layer is thermally decomposed and removed, and a hydrophilic electrolyte transfer path is formed in this portion.
一方、電池の温度分布は反応ガスの通流方向に対して入
口側よりも出口側の方が温度が高く、したがってマトリ
クスから飛散する電解質量、並びに電解質の膨張量も反
応ガスの入口側に比べて出口側の方が多い、そこで、マ
トリクスとリザーバプレートとの間を連通ずる電解質移
動通路を電極の反応ガス出口側に多く分布させることに
より、マトリクス全面域での電解質保持量の分布を均一
化できる。On the other hand, the temperature distribution of the battery is higher on the outlet side than on the inlet side with respect to the flow direction of the reaction gas, so the amount of electrolyte scattered from the matrix and the amount of expansion of the electrolyte are also higher than on the inlet side of the reaction gas. Therefore, by distributing more electrolyte transfer passages that communicate between the matrix and the reservoir plate on the reaction gas outlet side of the electrode, the distribution of the amount of electrolyte retained over the entire matrix area is made uniform. can.
以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
なお、各実施例において、第7図に対応する同一部材に
は同じ符号が付しである。In each embodiment, the same members corresponding to FIG. 7 are given the same reference numerals.
実施例1:
第1図において、アノード、カソードの一方の電極、例
えばアノード電極7に対して、セパレータ2とリブ付き
電極基材6との間にはカーボンベーパーなどで作られた
親水性を有するリザーバプレー)12が介挿されている
。さらに、該リザーバプレー)12に接するアノード側
電極基材6の面域には、リブ6aの部分に触媒層5に通
じる電解質移動通路12が局部的に形成されている。Example 1: In FIG. 1, for one of the anode and cathode electrodes, for example, the anode electrode 7, there is a hydrophilic material made of carbon vapor or the like between the separator 2 and the ribbed electrode base material 6. A reservoir play) 12 is inserted. Further, in the surface area of the anode side electrode base material 6 in contact with the reservoir plate 12, an electrolyte transfer passage 12 communicating with the catalyst layer 5 is locally formed in the rib 6a portion.
この電解質移動通路12は、他の基材領域よりも撥水性
を弱めるように希薄撥水処理を施して形成されたもので
あり、例えば次記のような方法て作られる。すなわち、
ガス拡散性を有する多孔質の電極基材6に対して、まず
電解質移動通路12となる部分をマスキングして撥水材
であるフッ素樹脂(フッ素樹脂の懸濁液)を電極基材6
に含浸させ、次いで前記のマスクを取り除いた後に該部
分に濃度を薄めたフッ素の懸濁液を含浸させる。これに
より電解質移動通路12となる部分が希薄撥水処理され
る。このようにして形成された希薄撥水処理部は親木性
とガス拡散性の性質を兼ね備えている。The electrolyte transfer passage 12 is formed by subjecting it to a dilute water repellent treatment so that its water repellency is weaker than that of other base material regions, and is made, for example, by the following method. That is,
First, the portion of the porous electrode base material 6 that has gas diffusivity that will become the electrolyte transfer passage 12 is masked, and a fluororesin (suspension of fluororesin), which is a water repellent material, is applied to the electrode base material 6.
and then, after removing the mask, the area is impregnated with a diluted suspension of fluorine. As a result, the portion that will become the electrolyte transfer path 12 is subjected to a dilute water repellent treatment. The diluted water-repellent treated portion thus formed has both wood-philicity and gas diffusivity.
さらに、電解質移動通路12に連ねて触媒層5にはマト
リクス4に通じる電解貫通路孔13が穿孔されている。Furthermore, an electrolytic through hole 13 communicating with the matrix 4 is bored in the catalyst layer 5 in series with the electrolyte transfer path 12 .
なお、この電解貫通路孔13にはマトリクス材と同じS
iC粉末を充填しておく。Note that this electrolytic through-hole 13 is made of S, which is the same as the matrix material.
Fill it with iC powder.
かかる構成で、前記のリザーバプレート12には燃料電
池の運転開始に先立って電解質を含浸保持させておく、
ここで燃料電池の運転中にリザーバ4に保持されている
電解質が飛散して減少すると、リザーバプレート12に
貯留されている電解質が電極基材6の電解質移動通路1
2.触媒層5の電解質通路孔13を通じてマトリクス4
に移動して補給される。なお、この場合に電解質の移動
は毛管力に支配されることから、あらかじめリザーバプ
レート12として細孔径をマトリクス4.を解質基材6
の細孔径よりも大きな材料を用いることにより、電解質
がマトリクス4に向けて毛管力により円滑に移動する。With this configuration, the reservoir plate 12 is impregnated and held with an electrolyte prior to the start of operation of the fuel cell.
Here, when the electrolyte held in the reservoir 4 scatters and decreases during operation of the fuel cell, the electrolyte stored in the reservoir plate 12 is transferred to the electrolyte transfer passage 1 of the electrode base material 6.
2. The matrix 4 passes through the electrolyte passage holes 13 of the catalyst layer 5.
will be moved to and resupplied. In this case, since the movement of the electrolyte is controlled by capillary force, the pore diameter is set in advance as the reservoir plate 12 in the matrix 4. The solute base material 6
By using a material larger than the pore diameter of the electrolyte, the electrolyte moves smoothly toward the matrix 4 by capillary force.
一方、電解質の吸湿ないし電池温度の上昇に伴って電解
質の体積が増加した場合には、前記とは逆にマトリクス
4からリザーバプレート12に向けて余剰の電解質が移
動する。On the other hand, when the volume of the electrolyte increases due to moisture absorption by the electrolyte or an increase in battery temperature, excess electrolyte moves from the matrix 4 toward the reservoir plate 12, contrary to the above.
なお、希薄撥水処理して形成された電極基材6の電解質
移動通路12は、極狭い範囲に限定して局部的に形成さ
れており、かつその道路自身はガス拡散性も有るので、
アノード電極7の全体での反応ガス供給能力は殆ど低下
することはない。Note that the electrolyte movement passage 12 of the electrode base material 6 formed by dilute water repellent treatment is locally formed in an extremely narrow area, and the road itself has gas diffusivity.
The overall reaction gas supply capacity of the anode electrode 7 hardly decreases.
実施例2:
第4図ないし第4図は先記した実施例1と異なる実施例
を示すものである。この実施例は、基本的な電解質リザ
ーバの構造は先記した実施例1と同様でり、特にリザー
バプレート11とマトリクス4との間にまたがる電解質
移動通路をレーザ照射により形成したものである。Embodiment 2: FIGS. 4 and 4 show an embodiment different from Embodiment 1 described above. In this embodiment, the basic structure of the electrolyte reservoir is the same as that of the first embodiment described above, and in particular, an electrolyte transfer path extending between the reservoir plate 11 and the matrix 4 is formed by laser irradiation.
すなわち、単電池1の内部に組み込んだリザーバプレー
トllと当接し合うアノード電極7について、まず電極
基材6の全域にフッ素樹脂を含浸させて撥水処理を施し
た後、第3図のように電極基材6に担持した触媒層5の
方から電極基材6のリブ6aの部分に向けてレーザ発振
器15より出射したレーザビーム16を照射する。これ
によりレーザの照射を受けた部分が局部的に加熱され、
この部分の内部空孔に前記の撥水処理工程で被着された
フッ素樹脂かが熱分解して飛散し、撥水処理前の親木性
状態に戻る。なお、電極基材6の厚さは1〜2−程度の
極薄いものであり、レーザ出力を調節することにより、
電極6の厚さ方向に通じる親水性の電解質移動通路14
を簡単に形成できる。また、この場合に電極6に照射す
るレーザビームのスポット径をできるだけ小さくして電
解質移動通路14の断面積を最小必要限に抑え、ガス拡
散電極として機能する有効面積を十分確保させるように
するのがよい。That is, for the anode electrode 7 that comes into contact with the reservoir plate ll incorporated inside the unit cell 1, first, the entire area of the electrode base material 6 is impregnated with fluororesin to make it water repellent, and then it is treated as shown in FIG. A laser beam 16 emitted from a laser oscillator 15 is irradiated from the catalyst layer 5 supported on the electrode base material 6 toward the rib 6a portion of the electrode base material 6. This causes the area irradiated by the laser to be locally heated,
The fluororesin resin coated in the water-repellent treatment step in the internal pores of this portion thermally decomposes and scatters, returning to the tree-friendly state before the water-repellent treatment. In addition, the thickness of the electrode base material 6 is extremely thin, about 1 to 2 mm, and by adjusting the laser output,
A hydrophilic electrolyte transfer passage 14 extending in the thickness direction of the electrode 6
can be easily formed. Additionally, in this case, the spot diameter of the laser beam irradiated onto the electrode 6 is made as small as possible to minimize the cross-sectional area of the electrolyte transfer passage 14, thereby ensuring a sufficient effective area that functions as a gas diffusion electrode. Good.
第3図、第4図はこのようにして形成された電解質移動
通路14のパターン例を示すものである。FIGS. 3 and 4 show examples of patterns of electrolyte transfer passages 14 formed in this manner.
ここで、第3図は電解質移動通路14がアノード電極7
の全面域でほぼ均等に分布して形成されているのに対し
、第4図では電極への反応ガス供給方向に対し、その入
口側(図示の左側)よりも出口側(右Il)の領域に多
く集中して電解質移動通路!4が形成されている。Here, in FIG. 3, the electrolyte movement passage 14 is connected to the anode electrode 7.
On the other hand, in Fig. 4, the area on the outlet side (right side Il) is smaller than the inlet side (left side in the figure) with respect to the reaction gas supply direction to the electrode. Concentrate more on electrolyte movement passages! 4 is formed.
すなわち、運転時における電極の濃度は反応ガスの入口
側に比べて出口側の方がより高温であり、マトリクス4
から飛散する電解質の量も多い、したがって第4図のよ
うに反応ガス出口側の1域により多くの電解質移動通路
14を分布形成してマトリクス4への電解質供給箇所を
増やすことにより、マトリクス4に保持される電解質の
面内分布が常に均一となる。なお、このような電解質移
動通路の分布パターンは実施例1に適用しても同様を効
果が得られる。In other words, the concentration of the electrode during operation is higher on the outlet side than on the inlet side of the reaction gas, and matrix 4
Therefore, as shown in FIG. 4, by forming more electrolyte transfer passages 14 in one region on the reaction gas outlet side and increasing the number of electrolyte supply points to the matrix 4, The in-plane distribution of the retained electrolyte is always uniform. Note that even if such a distribution pattern of electrolyte movement paths is applied to the first embodiment, the same effect can be obtained.
本発明の燃料電池は、以上説明したように構成されてい
るので、次記の効果を奏する。Since the fuel cell of the present invention is configured as described above, it achieves the following effects.
(1)アノード、カソード電極の少なくとも一方の電極
に対し、リブ付き電極基材とセパレータとの間に電解質
リザーバとして機能する親水性材のリザーバプレートを
介挿するとともに、リザーバプレートと接する電極基材
に対しその一部にマトリクスとリザーバプレートとの間
に通じる親水性の電解質移動通路を形成したことにより
、電極の一部に電極リザーバ部を構成した従来構造のも
のと比べて、電極のガス拡散性を十分に確保しつつ、し
かも電解質の貯留容量を増大して電池特性の長期安定化
を図ることができる。(1) For at least one of the anode and cathode electrodes, a reservoir plate made of a hydrophilic material that functions as an electrolyte reservoir is inserted between the ribbed electrode base material and the separator, and the electrode base is in contact with the reservoir plate. However, by forming a hydrophilic electrolyte transfer path between the matrix and the reservoir plate in a part of the electrode, gas diffusion in the electrode is improved compared to the conventional structure in which the electrode reservoir part is formed in a part of the electrode. It is possible to achieve long-term stabilization of battery characteristics by increasing the electrolyte storage capacity while ensuring sufficient performance.
(2)電極内部の電解質移動通路を、他の電極領域より
も撥水性を弱めた希薄撥水処理部として形成したことに
より、ガス拡散電極としての反応ガス供給機能を十分に
保持しつつ、マトリクスとリザーバプレートとの間で電
解質を円滑に移動させることができる。(2) By forming the electrolyte movement passage inside the electrode as a dilute water-repellent treatment area whose water repellency is weaker than that of other electrode regions, the matrix The electrolyte can be smoothly moved between the reservoir plate and the reservoir plate.
(3)電極内部の電解質移動通路を、指爪処理済みの電
極基材に対しレーザを照射して形成したことにより、電
解質移動通路を簡単な作業工程で電極面上の任意箇所に
形成できる。(3) By forming the electrolyte movement path inside the electrode by irradiating the fingernail-treated electrode base material with a laser, the electrolyte movement path can be formed at any location on the electrode surface with a simple work process.
(4)電解質移動通路を、電極における反応ガスの入口
側よりも出口側領域に多く分布して形成したことにより
、マトリクスに保持した電解質の面内分布の均一化が図
れる。(4) By forming more electrolyte transfer passages on the outlet side of the reactant gas than on the inlet side of the electrode, the in-plane distribution of the electrolyte held in the matrix can be made uniform.
第1図は本発明の実施例1に対応する単電池の構成断面
図、第2図は本発明の実施例2に対応する単電池の構成
断面図、第3図は第2図における電解質移動通路をレー
ザ照射により形成する作業工程図、第4図、第5図は電
極面上に分布形成した電解質移動通路のパターン図、第
6図、第7図はそれぞれ燃料電池の従来構成を示すセル
スタックの斜視図、および単電池の断面図である。図に
おいて、
l:単電池、2:セパレータ、4:マトリクス、5:触
媒層、6:電極基材、6a:リブ1.7:アノード・電
極、8:カソード電極、11:リザーバプレート、13
,14:電解質移動通路、16:レーザビ第2図
第4胆
4Fig. 1 is a cross-sectional view of the structure of a unit cell corresponding to Example 1 of the present invention, Fig. 2 is a cross-sectional view of the structure of a unit cell corresponding to Example 2 of the present invention, and Fig. 3 is the electrolyte movement in Fig. 2. A work process diagram for forming passages by laser irradiation, Figures 4 and 5 are pattern diagrams of electrolyte transfer passages distributed on the electrode surface, and Figures 6 and 7 are cell diagrams showing the conventional structure of a fuel cell, respectively. FIG. 2 is a perspective view of a stack and a cross-sectional view of a cell. In the figure, l: unit cell, 2: separator, 4: matrix, 5: catalyst layer, 6: electrode base material, 6a: rib 1.7: anode/electrode, 8: cathode electrode, 11: reservoir plate, 13
, 14: Electrolyte movement path, 16: Laser beam Figure 2, Figure 4, Figure 4
Claims (1)
有するリブ付き電極基材に触媒層を担持して前記マトリ
クスの両側に配したアノード、カソード電極とで単電池
を構成し、かつ単電池をセパレータを介して多数積層し
て成る燃料電池において、アノード、カソード電極の少
なくとも一方の電極に対し、リブ付き電極基材とセパレ
ータとの間に電解質リザーバとして機能する親水性材の
リザーバプレートを介挿するとともに、リザーバプレー
トと接する電極基材に対しその一部にマトリクスとリザ
ーバプレートとの間に通じる親水性の電解質移動通路を
形成したことを特徴とする燃料電池。 2)請求項1に記載の燃料電池において、電解質移動通
路を、他の電極領域よりも撥水性を弱めた希薄撥水処理
部として形成したことを特徴とする燃料電池。 3)請求項1に記載の燃料電池において、電解質移動通
路を、撥水処理済みの電極基材に対し局部的にレーザを
照射して形成したことを特徴とする燃料電池。 4)請求項1に記載の燃料電池において、電解質移動通
路を、電極における反応ガスの入口側よりも出口側領域
に多く分布して形成したことを特徴とする燃料電池。[Scope of Claims] 1) A unit cell is constituted by a matrix impregnated with an electrolyte, and an anode and a cathode electrode arranged on both sides of the matrix with a catalyst layer supported on a ribbed electrode base material having gas permeability. In a fuel cell formed by stacking a large number of single cells with separators in between, a hydrophilic material that functions as an electrolyte reservoir between a ribbed electrode base material and the separator for at least one of the anode and cathode electrodes. What is claimed is: 1. A fuel cell comprising: a reservoir plate inserted therein; and a hydrophilic electrolyte transfer passageway communicating between the matrix and the reservoir plate formed in a part of the electrode base material in contact with the reservoir plate. 2) The fuel cell according to claim 1, wherein the electrolyte transfer passage is formed as a dilute water-repellent treatment section whose water repellency is weaker than that of other electrode regions. 3) The fuel cell according to claim 1, wherein the electrolyte movement passage is formed by locally irradiating a water-repellent electrode base material with a laser. 4) The fuel cell according to claim 1, characterized in that the electrolyte transfer passages are more distributed on the outlet side of the reactant gas than on the inlet side of the electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2077722A JPH03276567A (en) | 1990-03-27 | 1990-03-27 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2077722A JPH03276567A (en) | 1990-03-27 | 1990-03-27 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03276567A true JPH03276567A (en) | 1991-12-06 |
Family
ID=13641789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2077722A Pending JPH03276567A (en) | 1990-03-27 | 1990-03-27 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03276567A (en) |
-
1990
- 1990-03-27 JP JP2077722A patent/JPH03276567A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01217861A (en) | Fuel cell | |
JPH03276567A (en) | Fuel cell | |
JP2003151565A (en) | Electrode for fuel cell and fuel cell using it | |
JP2005235418A (en) | Solid polymer fuel cell | |
JP3342079B2 (en) | Solid polymer electrolyte fuel cell | |
JPH07176307A (en) | Fuel cell | |
JPS624832B2 (en) | ||
JPS58166636A (en) | Fuel cell | |
JPH0695459B2 (en) | Fuel cell | |
JP2002093433A (en) | Solid polymer fuel cell | |
JPS6253905B2 (en) | ||
JPH081803B2 (en) | Fuel cell | |
JPH08250132A (en) | Phosphoric acid type fuel cell | |
JPH0541223A (en) | Fuel cell | |
JPS61188862A (en) | Rib-attached electrode base material for fuel cell | |
JPH08264192A (en) | Electrode base material for fuel cell and its manufacture | |
JPH09180738A (en) | Pohsphate fuel cell | |
JPH0311556A (en) | Electrolyte reservoir structure for fuel battery | |
JPS60262362A (en) | Matrix-type fuel cell | |
JPS6174265A (en) | Porous electrode base of fuel cell | |
JPH039590B2 (en) | ||
JPH0272560A (en) | Fuel cell | |
JPS62268064A (en) | Fuel cell | |
JPH09330727A (en) | Phosphoric acid type fuel cell | |
JPS6029809Y2 (en) | Matrix fuel cell |