JPH03269254A - Small-sized oxygen electrode and manufacture thereof - Google Patents
Small-sized oxygen electrode and manufacture thereofInfo
- Publication number
- JPH03269254A JPH03269254A JP2067302A JP6730290A JPH03269254A JP H03269254 A JPH03269254 A JP H03269254A JP 2067302 A JP2067302 A JP 2067302A JP 6730290 A JP6730290 A JP 6730290A JP H03269254 A JPH03269254 A JP H03269254A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- electrode
- groove
- electrolyte
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001301 oxygen Substances 0.000 title claims description 43
- 229910052760 oxygen Inorganic materials 0.000 title claims description 43
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 239000003792 electrolyte Substances 0.000 claims abstract description 40
- 238000005530 etching Methods 0.000 claims abstract description 25
- 239000007789 gas Substances 0.000 claims description 19
- 239000012528 membrane Substances 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 230000006866 deterioration Effects 0.000 abstract description 5
- 230000002209 hydrophobic effect Effects 0.000 abstract description 4
- 239000012212 insulator Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- 235000012431 wafers Nutrition 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 9
- 239000010931 gold Substances 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000000855 fermentation Methods 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Micromachines (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
小型酸素電極及びその製造方法に関し、特にガス透過性
膜及びその製造方法に関し、
電解質層を有さず(穴部状としておく)ガス透過性膜劣
化を生じない小型酸素電極及びその製造方法を提供する
ことを目的とし、
基板と、該基板上に異方性エツチングにより作製された
電解質収容溝と、該電解質収容溝面に形成されたガス透
過性膜とからなる電解質収容部と:平板基板上に絶縁膜
を介して形成され、且つそれぞれの一部が前記溝内に延
在する複数の電極とからなる電極形成部と;を張り合わ
せてなることを構成とする。[Detailed Description of the Invention] [Summary] Regarding a small oxygen electrode and its manufacturing method, particularly regarding a gas permeable membrane and its manufacturing method, the present invention relates to a gas permeable membrane without an electrolyte layer (having a hole shape) to prevent deterioration of the gas permeable membrane. The purpose of the present invention is to provide a small oxygen electrode that does not generate oxygen, and a method for manufacturing the same, which includes a substrate, an electrolyte storage groove made on the substrate by anisotropic etching, and a gas permeable membrane formed on the surface of the electrolyte storage groove. and an electrode forming section formed on a flat substrate with an insulating film interposed therebetween, each of which partially extends into the groove. composition.
本発明は小型酸素電極及びその製造方法に関し、特にガ
ス透過性膜及びその製造方法に関する。The present invention relates to a small oxygen electrode and a method for manufacturing the same, and more particularly to a gas permeable membrane and a method for manufacturing the same.
小型酸素電極は、いろいろな分野において、溶存酸素濃
度の測定に有利に用いることができる。Small oxygen electrodes can be advantageously used for measuring dissolved oxygen concentrations in various fields.
(1)
(2)
例えば、水質保全の見地から水中の生化学的酸素要求量
(BOD)の測定が行われているが、この溶存酸素濃度
の測定器としてこの小型酸素電極を使用することができ
る。また、醗酵工業において、効率良くアルコール醗酵
を進めるた必には醗酵槽中の溶存酸素濃度の調整が必要
であり、この測定器として本発明の小型酸素電極を使用
することができる。さらにまた、小型酸素電極は、酵素
と組み合わせて酵素電極を形成し、糖やアルコールなど
の濃度測定に用いることもできる。例えば、グルコース
はグルコースオキシダーゼという酵素を触媒とし、溶存
酸素と反応してグルコノラクトンに酸化するが、これに
より酸素電極セルの中に拡散してくる溶存酸素が減るこ
とを利用し、溶存酸素の消費量からグルコース濃度を測
定することができる。(1) (2) For example, biochemical oxygen demand (BOD) in water is measured from the perspective of water quality conservation, and this small oxygen electrode can be used as a measuring device for dissolved oxygen concentration. can. Further, in the fermentation industry, in order to efficiently proceed with alcohol fermentation, it is necessary to adjust the dissolved oxygen concentration in the fermenter, and the small oxygen electrode of the present invention can be used as a measuring device for this purpose. Furthermore, the small oxygen electrode can be combined with an enzyme to form an enzyme electrode, which can be used to measure the concentration of sugars, alcohols, and the like. For example, glucose is oxidized to gluconolactone by reacting with dissolved oxygen using the enzyme glucose oxidase as a catalyst. Glucose concentration can be determined from consumption.
このように本発明の小型酸素電極は、環境計測、醗酵工
業、臨床医療など各種の分野で使用することができるが
、特に臨床医療分野においてカテーテルに装着し、体内
に挿入する用途においては、小型であるとともに使い捨
て可能で低価格であるので、非常に利用価値がある。As described above, the small oxygen electrode of the present invention can be used in various fields such as environmental measurement, fermentation industry, and clinical medicine. In addition, it is disposable and inexpensive, making it very useful.
本発明者らは、従来のガラス製の酸素電極では、小型化
ができず大量生産も不可能であるので、リソグラフィー
技術及び異方性エツチング技術を利用した新しいタイプ
の小型酸素電極を開発し、特許出願した(特願昭62−
71739号、特開昭63−238548号公報)。こ
の酸素電極は、シリコン基板上に異方性エツチングによ
り形成した穴(溝)の上に、絶縁膜を介して2本の電極
を形成し、さらにこの穴の内部に電解液含有体を収容し
、そして最後に穴の上面をガス透過性膜で覆った構造を
有する酸素電極である。この酸素電極は、小型で、特性
のばらつきが少なく、しかも低コストである。Since conventional glass oxygen electrodes cannot be miniaturized or mass produced, the inventors developed a new type of small oxygen electrode using lithography technology and anisotropic etching technology. Applied for a patent (Patent application 1986-
No. 71739, Japanese Unexamined Patent Publication No. 63-238548). In this oxygen electrode, two electrodes are formed on a hole (groove) formed by anisotropic etching on a silicon substrate, with an insulating film interposed therebetween, and an electrolyte-containing body is housed inside the hole. , and finally an oxygen electrode having a structure in which the upper surface of the hole is covered with a gas permeable membrane. This oxygen electrode is small, has little variation in characteristics, and is low cost.
上記酸素電極のガス透過性膜は主にシリコンゴム、その
他ネガレジストと材料が限られる。特に(3)
(4)
シリコンゴムはデイツプ工程のみで形成されるため膜厚
が不安定になったり、またシリコン基板との密着性が問
題となる。The gas permeable membrane of the oxygen electrode is mainly limited to silicone rubber and other negative resist materials. In particular, (3) and (4) silicone rubber is formed only by a dip process, resulting in unstable film thickness and problems in adhesion to the silicon substrate.
また穴(溝)内部に収容される電解液含有体は水を含有
しておりガス透過性膜質の劣化を招く。Further, the electrolyte-containing body accommodated inside the hole (groove) contains water, which causes deterioration of the gas permeable membrane quality.
また、酸素電極の製造では、数百用もの段差に電極パタ
ーンを形成する必要が生じてくるが、これは決して容易
なプロセスではない。Furthermore, in the production of oxygen electrodes, it becomes necessary to form electrode patterns with hundreds of steps, which is by no means an easy process.
本発明は電解質層を有さす(穴部状としておく)ガス透
過性膜劣化を生じない小型酸素電極及びその製造方法を
提供することを目的とする。An object of the present invention is to provide a small-sized oxygen electrode having an electrolyte layer (in the form of a hole) that does not cause deterioration of a gas-permeable membrane, and a method for manufacturing the same.
上記課題は本発明によれば基板と、該基板上に異方性エ
ツチングにより作製された電解質収容溝と、該電解質収
容溝面に形成されたガス透過性膜とからなる電解質収容
部と;平板基板上に絶縁膜を介して形成され、且つそれ
ぞれの一部が前記溝内に延在する複数の電極とからなる
電極形成部と;を張り合わせてなることを特徴とする小
型酸素電極によって解決される。According to the present invention, the above-mentioned problem is solved by: a substrate; an electrolyte storage section comprising an electrolyte storage groove formed on the substrate by anisotropic etching; and a gas permeable membrane formed on the surface of the electrolyte storage groove; The problem is solved by a small-sized oxygen electrode, which is formed by pasting together an electrode forming part formed on a substrate with an insulating film interposed therebetween, and each of which partially extends into the groove. Ru.
更に上記課題は本発明によれば基板上に異方性エツチン
グによって電解質収容溝を形成し、前記電解質収容溝形
成面にガス透過性膜を形成することによって電解質収容
部を形成し、平板基板上に絶縁膜を介して複数の電極を
形成することによって電極形成部を形成し、前記電解質
収容部と前記電極形成部とを該電極のそれぞれの一部が
前記溝内に延在するように張り合せることを特徴とする
小型酸素電極の製造方法によって解決される。Furthermore, according to the present invention, the above-mentioned problem is solved by forming an electrolyte storage groove on a substrate by anisotropic etching, forming an electrolyte storage part by forming a gas permeable film on the surface where the electrolyte storage groove is formed, and forming an electrolyte storage groove on a flat substrate. an electrode forming portion is formed by forming a plurality of electrodes through an insulating film, and the electrolyte accommodating portion and the electrode forming portion are stretched such that a portion of each electrode extends into the groove. The problem is solved by a method of manufacturing a small-sized oxygen electrode, which is characterized by combining the two.
すなわち本発明者らはカソード・アノードの2極あるい
は作用極・参照極・対極等の複数の電極およびガス透過
性膜を先に形成し、電解液は完成後・使用前に感応部に
導入することにした。また、カソード・アノードあるい
は作用極・参照極・対極等は平坦な基板上に形成し、段
差上へのパターンの形成を不用にした。That is, the present inventors first form two electrodes such as a cathode and an anode, or multiple electrodes such as a working electrode, a reference electrode, and a counter electrode, as well as a gas permeable membrane, and introduce the electrolyte into the sensitive part after completion and before use. It was to be. In addition, the cathode, anode, working electrode, reference electrode, counter electrode, etc. are formed on a flat substrate, making it unnecessary to form a pattern on a step.
本発明の特徴は、いわゆるマイクロマシーニングの基礎
技術を応用して、上記の問題点を解決したところにある
。即ち、カソード、アノードある(5)
(6)
いは作用極・参照極・対極を形成した平板状基板と、シ
リコン基板上に異方性エツチングにより穴(溝)をあけ
、穴のあいた面にはっ水性のガス透過性膜を塗布した後
、このガス透過性膜で2枚の基板を張り合わせ、さらに
穴の中に電解液を導入して作成する小型酸素電極および
その製法にある。The feature of the present invention is that the above-mentioned problems are solved by applying basic technology of so-called micromachining. That is, a hole (groove) is made by anisotropic etching on a flat substrate with a cathode and an anode (5) (6) or a silicon substrate on which a working electrode, a reference electrode, and a counter electrode are formed, and then a hole (groove) is made on the surface with the hole. The present invention relates to a small oxygen electrode that is made by applying a water-repellent gas-permeable membrane, then bonding two substrates together using the gas-permeable membrane, and then introducing an electrolyte into the hole, and a method for manufacturing the same.
この本発明の方法を実施するにあたって、電極本体の基
板としては、半導体基板、特にシリコン基板、あるいは
ガラス基板、セラミック基板を有利に使用することがで
きる。シリコン基板を使用する場合、絶縁膜は、シリコ
ン酸化膜、その他から形成することができる。シリコン
酸化膜は、例えば基板がシリコンである場合に、その基
板を熱酸化することによって容易に形成することができ
る。In carrying out the method of the present invention, a semiconductor substrate, particularly a silicon substrate, a glass substrate, or a ceramic substrate can be advantageously used as the substrate of the electrode body. When using a silicon substrate, the insulating film can be formed from a silicon oxide film or others. A silicon oxide film can be easily formed by thermally oxidizing a silicon substrate, for example.
本発明では完成した後使用直前に電解液等の電解材料を
電解質収容部に導入すればよく、リソグラフィー技術と
薄膜形成技術を用いて量産を可能にする。In the present invention, it is only necessary to introduce an electrolytic material such as an electrolytic solution into the electrolyte container immediately before use after completion, and mass production is possible using lithography technology and thin film forming technology.
ついで、本発明による小型酸素電極の好ましい一例を図
面を参照しながら説明する。Next, a preferred example of the small-sized oxygen electrode according to the present invention will be explained with reference to the drawings.
第1図は、本発明による小型酸素電極の好ましい一例を
示した斜視図である。図示の酸素電極は直方体の形状を
有していて、感応部がガス透過性膜10で覆われるとと
もに、付属のデバイスに接続するため、カソード3as
アノード3bの一部が露出している。電極としてのカソ
ード3asアノード3bは、本実施例の場合、ポーラ口
型とするために画電極とも金電極で構成した。FIG. 1 is a perspective view showing a preferred example of a small-sized oxygen electrode according to the present invention. The illustrated oxygen electrode has a rectangular parallelepiped shape, and the sensitive part is covered with a gas permeable membrane 10, and the cathode 3as is connected to an attached device.
A part of the anode 3b is exposed. In this embodiment, the cathode 3as and the anode 3b serving as electrodes are made of gold electrodes as well as the picture electrode in order to have a polar mouth type.
第1図の小型酸素電極の構造は、その■−■線に沿った
断面図である第2図から詳しく理解できるであろう。対
向するシリコン基板1の一方は、異方性エツチングによ
り形成された穴(溝)を有する。また、一方のシリコン
基板1には、カソード3aおよびアノード3bが対をな
して被着せしめられている他、さらに基板裏面は破れに
くい疎(7)
(8)
水性絶縁膜7で覆われている。また、穴の上部には、ガ
ス透過性膜槽10が形成されている。シリコン基板1の
穴5にはこの電極を使用する際電解質として0.1M
KCIが満たされる。図中L1 は2mm。The structure of the small oxygen electrode shown in FIG. 1 can be understood in detail from FIG. 2, which is a sectional view taken along line 1--2. One of the opposing silicon substrates 1 has a hole (groove) formed by anisotropic etching. In addition, a cathode 3a and an anode 3b are deposited as a pair on one silicon substrate 1, and the back surface of the substrate is covered with a sparse (7) (8) water-based insulating film 7 that is hard to tear. . Furthermore, a gas permeable membrane tank 10 is formed above the hole. When using this electrode, 0.1M is placed in the hole 5 of the silicon substrate 1 as an electrolyte.
KCI is satisfied. In the figure, L1 is 2 mm.
L2 は15mmである。L2 is 15 mm.
第1図および第2図に示した小型酸素電極は、例えば、
下記工程(1)〜(14)及び第3図に順を追って示す
製造プロセスで有利に製造することができる。なお、以
下の説明では、理解を容易ならしめるため、1枚のウェ
ハーに1個だけ酸素電極を形成する場合について記載す
るけれども、実際には多数個の小型酸素電極が同時に形
成される。The small oxygen electrode shown in FIGS. 1 and 2 is, for example,
It can be advantageously manufactured by the following steps (1) to (14) and the manufacturing process sequentially shown in FIG. In the following explanation, in order to facilitate understanding, a case will be described in which only one oxygen electrode is formed on one wafer, but in reality, a large number of small oxygen electrodes are formed at the same time.
(1)ウェハー洗浄
厚さ350tnTlの(100)面2インチ、シリコン
ウェハー(基板)を用意し、これを過酸化水素とアンモ
ニアの混合溶液および濃硝酸で洗浄した。(1) Wafer Cleaning A silicon wafer (substrate) with a (100) surface of 2 inches and a thickness of 350 tnTl was prepared and was cleaned with a mixed solution of hydrogen peroxide and ammonia and concentrated nitric acid.
(2)SiO2膜の形成
シリコンウェハーをウェット熱酸化し、その全面に膜厚
0.8pの5102膜を形成した。(2) Formation of SiO2 film A silicon wafer was subjected to wet thermal oxidation to form a 5102 film with a thickness of 0.8p on the entire surface.
(3)エツチング用パターンの形成
ネガ型フォトレジスト (東京応化製OMR−83(商
品名)、粘度60 cP)を粗い基板表面に塗布した後
、露光・現像・リンスを行い、ウェハー上にエツチング
用レジストパターンを形成した。(3) Formation of etching pattern After applying a negative photoresist (TOKYO OHKA OMR-83 (product name), viscosity 60 cP) to the rough substrate surface, exposure, development, and rinsing are performed to form the etching pattern on the wafer. A resist pattern was formed.
(4)レジスト塗布
基板裏面にも上記工程で使用したものと同じネガ型フォ
トレジストを塗布した後、150℃で30分間に渡って
ベークした。(4) Resist coating After coating the same negative photoresist as that used in the above step on the back surface of the substrate, it was baked at 150° C. for 30 minutes.
(5)SiO□膜のエツチング
50%フッ化水素酸:40%フッ化アンモニウム1:6
水溶液にウェハーを浸漬し、フォトレジストが被覆され
ていない露出部分の8102をエツチングにより除去し
た。引き続いて硫酸/過酸化水素水(2: 1)溶液に
よりレジストを除去した。(5) Etching of SiO□ film 50% hydrofluoric acid: 40% ammonium fluoride 1:6
The wafer was immersed in an aqueous solution, and exposed portions 8102 not covered with photoresist were removed by etching. Subsequently, the resist was removed using a sulfuric acid/hydrogen peroxide solution (2:1).
(6)Siの異方性エツチング
80℃の35%水酸化カリウム水溶液中にてシリコンの
異方性エツチングを行った。エツチングは穴が貫通する
まで続行した。エツチング完了後、ウェハーを純水で洗
浄した。(6) Anisotropic etching of Si Anisotropic etching of silicon was performed in a 35% potassium hydroxide aqueous solution at 80°C. Etching continued until the hole was through. After etching was completed, the wafer was washed with pure water.
(9)
(10)
この異方性エツチングの完了後、エツチング時に使用し
た5102膜を除去した。これは、5と同様ニ50%フ
ッ化水素酸:40%フッ化アンモニウム1:6水溶液中
で行った。(9) (10) After completing this anisotropic etching, the 5102 film used during etching was removed. This was carried out in a 1:6 aqueous solution of 50% hydrofluoric acid: 40% ammonium fluoride as in 5.
感応部の穴はこのようにして形成するが、電解液を注入
する穴もこのようにして形成する。これは、感応細穴の
形成前に行うのが好ましい。The hole for the sensitive part is formed in this way, and the hole for injecting the electrolyte is also formed in this way. Preferably, this is done before forming the sensitive pores.
(7)クロムおよび金薄膜の形成
2で5in2膜を形成した基板の1枚の片面に、クロム
薄膜(400人、金と基板の密着用)に引き続き、金薄
膜(4000A )を真空蒸着により形成した。(7) Formation of chromium and gold thin film On one side of the substrate on which the 5in2 film was formed in step 2, a chromium thin film (400 people, for adhesion between the gold and the substrate) was followed by a gold thin film (4000A) by vacuum evaporation. did.
(8)電極形成用レジストパターンの形成ポジ型フォト
レジスト (東京応化製0FPR−800(商品名)、
粘度20 cP)を使用して、ウェハーの金薄膜上に電
極形成用レジストパターンを形成した。(8) Formation of resist pattern for electrode formation Positive photoresist (TOKYO OHKA 0FPR-800 (product name),
A resist pattern for electrode formation was formed on the gold thin film of the wafer using a resist film having a viscosity of 20 cP.
(9)金ふよびクロムのエツチング
レジストパターンが形成された基板を以下の■■の金お
よびクロム用エツチング液にこの順に浸漬し、露出した
金およびクロムの部分をエツチングにより除去した。さ
らに、純水にて洗浄後、アセトンによりレジストを除去
した。(9) Gold and chromium etching The substrate on which the resist pattern was formed was immersed in the following gold and chromium etching solutions in this order, and the exposed gold and chromium portions were removed by etching. Furthermore, after washing with pure water, the resist was removed with acetone.
■ 金エツチング液:4gKIおよび1gI2を40誦
の水に溶かしたもの
■ クロムエツチング液: 0.5 gNaOHおよび
1g K3Fe (CN) eを4顎の水に溶かしたも
の金電極の形成された状態を第3図(b)に示す。■ Gold etching solution: 4 g KI and 1 g I2 dissolved in 40 g of water. ■ Chrome etching solution: 0.5 g NaOH and 1 g K3Fe (CN) e dissolved in 4 g of water. It is shown in FIG. 3(b).
(10)ガス透過性膜の形成
(6)のエツチングの完了した基板の穴の開けられた面
に、シリコーンフェス(信越シリコーン製、KR−28
2)を塗布。150℃テヘーキング30分。(10) Formation of a gas permeable film Apply a silicone face (manufactured by Shin-Etsu Silicone, KR-28
Apply 2). Shake at 150℃ for 30 minutes.
この状態では、このフェスは完全に乾燥せず、まだ、べ
たべたした状態にある(第3図(a))。In this state, the fest has not completely dried and is still sticky (FIG. 3(a)).
(11)ウェハーの張り合わせ
電極3a、3bの形成された基板1と穴が形成された基
板1を張り合わせる。張り合わせた後、ベーキングを2
50℃2時間実施した。(11) Laminating wafers The substrate 1 on which the electrodes 3a and 3b are formed and the substrate 1 on which the holes are formed are bonded together. After pasting, bake 2 times.
The test was carried out at 50°C for 2 hours.
(12)基板裏面に疎水性絶縁膜7 (信越シリコーン
製、B5−1001)を形成する。(12) Form a hydrophobic insulating film 7 (manufactured by Shin-Etsu Silicone, B5-1001) on the back surface of the substrate.
(13)基板の切り出し
く11)
(12)
基板1上に多数形成された酸素電極をチップ状に切り出
した。(13) Cutting out the substrate 11) (12) A large number of oxygen electrodes formed on the substrate 1 were cut into chips.
(14)小型酸素電極本体を0゜IMKCI中に浸漬し
た状態で、この電解液をまるごと減圧し、小型酸素電極
感応部に電解液6を導入する。この工程の後、実際に機
能する小型酸素電極が得られる(第3図(C))。(14) With the small oxygen electrode main body immersed in 0° IMKCI, the entire electrolyte is depressurized and the electrolyte 6 is introduced into the small oxygen electrode sensitive part. After this step, a miniature oxygen electrode that actually functions is obtained (FIG. 3(C)).
このようにして完成した小型酸素電極は感応部を例えば
緩衝液中に浸漬、一定電圧をカソードアノード間に印加
した状態で、カソードから発生する酸素の還元電流を測
定する。The small oxygen electrode thus completed is immersed in a buffer solution, for example, and a constant voltage is applied between the cathode and the anode to measure the reduction current of oxygen generated from the cathode.
本発明方法によれば、プロセスから電解質層の形成工程
がなくなるため、ウェハー状で最初から最後まで一括し
て作製が行える利点がある。また、電解質層を含まない
乾燥状態で保存が可能なため、ガス透過性膜の劣化が起
こりにくく、長期の保存が可能になる。According to the method of the present invention, since the step of forming an electrolyte layer is eliminated from the process, there is an advantage that a wafer can be manufactured all at once from beginning to end. Furthermore, since it can be stored in a dry state without an electrolyte layer, the gas permeable membrane is less prone to deterioration and can be stored for a long time.
第1図は、本発明による小型酸素電極の好ましい一例を
示した斜視図、
第2図は、第1図の電極の線分■−■に沿った断面図、
そして
第3図(a)〜(C)は、第1図および第2図に示した
小型酸素電極の製造プロセスの後半を順を追って示した
断面図である。
1・・・シリコン基板、 2・・・絶縁膜、3a・3
b・・・電極、 5・・・穴(溝)、6・・・電解液
、 7・・・疎水性絶縁膜、訃・・電解液を入
れる穴、
10・・・ガス透過性膜である。
(13)
(14)
第2図
1・・・シリコン基板
2・・・絶縁膜
3a、3b・・・電極(カソード、 7ノート)5・・
・穴(溝)
6・・・電解液
7・・・疎水性絶縁膜
8・・・電解液を入れる穴
10・・・ガス透過性膜FIG. 1 is a perspective view showing a preferred example of a small-sized oxygen electrode according to the present invention, FIG. 2 is a cross-sectional view of the electrode in FIG.
FIGS. 3(a) to 3(C) are sectional views sequentially showing the latter half of the manufacturing process of the small-sized oxygen electrode shown in FIGS. 1 and 2. 1... Silicon substrate, 2... Insulating film, 3a.3
b...electrode, 5...hole (groove), 6...electrolyte, 7...hydrophobic insulating film, 5...hole to put electrolyte in, 10...gas permeable membrane . (13) (14) Fig. 2 1... Silicon substrate 2... Insulating film 3a, 3b... Electrode (cathode, 7 notes) 5...
・Hole (groove) 6... Electrolyte 7... Hydrophobic insulating film 8... Hole for inserting electrolyte 10... Gas permeable membrane
Claims (1)
れた電解質収容溝と、該電解質収容溝面に形成されたガ
ス透過性膜とからなる電解質収容部と;平板基板上に絶
縁膜を介して形成され、且つそれぞれの一部が前記溝内
に延在する複数の電極とからなる電極形成部と;を張り
合わせてなることを特徴とする小型酸素電極。 2、基板上に異方性エッチングによって電解質収容溝を
形成し、前記電解質収容溝形成面にガス透過性膜を形成
することによって電解液収容部を形成し、平板基板上に
絶縁膜を介して複数の電極を形成することによって電極
形成部を形成し、前記電解質収容部と前記電極形成部と
を該電極のそれぞれの一部が前記溝内に延在するように
張り合せることを特徴とする小型酸素電極の製造方法。[Claims] 1. An electrolyte storage section consisting of a substrate, an electrolyte storage groove formed on the substrate by anisotropic etching, and a gas permeable membrane formed on the surface of the electrolyte storage groove; a flat plate; 1. A small oxygen electrode, comprising: an electrode forming section formed on a substrate with an insulating film interposed therebetween, and consisting of a plurality of electrodes, each of which partially extends into the groove. 2. Form an electrolyte storage groove on the substrate by anisotropic etching, form an electrolyte storage part by forming a gas permeable film on the surface where the electrolyte storage groove is formed, and form an electrolyte storage part on the flat substrate through an insulating film. The electrode forming part is formed by forming a plurality of electrodes, and the electrolyte accommodating part and the electrode forming part are pasted together so that a part of each electrode extends into the groove. A method for manufacturing a small oxygen electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2067302A JP2838901B2 (en) | 1990-03-19 | 1990-03-19 | Small oxygen electrode and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2067302A JP2838901B2 (en) | 1990-03-19 | 1990-03-19 | Small oxygen electrode and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03269254A true JPH03269254A (en) | 1991-11-29 |
JP2838901B2 JP2838901B2 (en) | 1998-12-16 |
Family
ID=13341078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2067302A Expired - Lifetime JP2838901B2 (en) | 1990-03-19 | 1990-03-19 | Small oxygen electrode and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2838901B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019529947A (en) * | 2016-08-30 | 2019-10-17 | アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー | Electrochemical sensor and method for forming electrochemical sensor |
US11022579B2 (en) | 2018-02-05 | 2021-06-01 | Analog Devices International Unlimited Company | Retaining cap |
US11268927B2 (en) | 2016-08-30 | 2022-03-08 | Analog Devices International Unlimited Company | Electrochemical sensor, and a method of forming an electrochemical sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6488245A (en) * | 1987-07-15 | 1989-04-03 | Stanford Res Inst Int | Ready response microsensor for gaseous and vaporous object |
JPH0227254A (en) * | 1988-07-18 | 1990-01-30 | Fujitsu Ltd | Small-sized oxygen electrode |
-
1990
- 1990-03-19 JP JP2067302A patent/JP2838901B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6488245A (en) * | 1987-07-15 | 1989-04-03 | Stanford Res Inst Int | Ready response microsensor for gaseous and vaporous object |
JPH0227254A (en) * | 1988-07-18 | 1990-01-30 | Fujitsu Ltd | Small-sized oxygen electrode |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019529947A (en) * | 2016-08-30 | 2019-10-17 | アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー | Electrochemical sensor and method for forming electrochemical sensor |
US11268927B2 (en) | 2016-08-30 | 2022-03-08 | Analog Devices International Unlimited Company | Electrochemical sensor, and a method of forming an electrochemical sensor |
US11022579B2 (en) | 2018-02-05 | 2021-06-01 | Analog Devices International Unlimited Company | Retaining cap |
US11959876B2 (en) | 2018-02-05 | 2024-04-16 | Analog Devices International Unlimited Company | Retaining cap |
Also Published As
Publication number | Publication date |
---|---|
JP2838901B2 (en) | 1998-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5431806A (en) | Oxygen electrode and temperature sensor | |
KR960013687B1 (en) | Miniaurized oxygen electrode and production process | |
US5417837A (en) | Small glass electrode | |
JPH03269254A (en) | Small-sized oxygen electrode and manufacture thereof | |
US5837113A (en) | Small glass electrode | |
JPS63238548A (en) | Oxygen electrode and its preparation | |
JP2844381B2 (en) | Oxygen electrode and method for producing the same | |
JPH02236154A (en) | Preparation of small-sized oxygen electrode | |
JP2530689B2 (en) | Small oxygen electrode | |
JP2650552B2 (en) | Electrolytic composition for screen printing, small-sized oxygen electrode using the same, and method for producing the same | |
JP2767868B2 (en) | Small oxygen electrode | |
JP2743535B2 (en) | Integrated sensor and manufacturing method thereof | |
JP2530690B2 (en) | Small oxygen electrode | |
JPH04125462A (en) | Oxygen electrode | |
JPH09182738A (en) | Oxygen electrode and manufacture thereof | |
JP2767614B2 (en) | Manufacturing method of small oxygen electrode | |
JP3052410B2 (en) | Method for manufacturing solid electrolyte gas sensor | |
JP2661240B2 (en) | Small L-lysine sensor and method of manufacturing the same | |
JPH06281617A (en) | Small-sized glass electrode and its manufacture | |
JPH0843345A (en) | Small-sized oxygen electrode | |
JPS63238549A (en) | Microbiosensor | |
JPH02228549A (en) | Small oxygen electrode and its making method | |
JP2943281B2 (en) | Small oxygen electrode and its manufacturing method | |
JPH0599883A (en) | Small-sized glass electrode | |
JPH04213048A (en) | Compact glass electrode and manufacture thereof |