Nothing Special   »   [go: up one dir, main page]

JPH0326831A - Intake system structure of engine - Google Patents

Intake system structure of engine

Info

Publication number
JPH0326831A
JPH0326831A JP16172789A JP16172789A JPH0326831A JP H0326831 A JPH0326831 A JP H0326831A JP 16172789 A JP16172789 A JP 16172789A JP 16172789 A JP16172789 A JP 16172789A JP H0326831 A JPH0326831 A JP H0326831A
Authority
JP
Japan
Prior art keywords
fuel
throttle valve
intake
intake passage
collection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16172789A
Other languages
Japanese (ja)
Inventor
Takanao Yokoyama
横山 高尚
Sho Nakamura
升 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP16172789A priority Critical patent/JPH0326831A/en
Publication of JPH0326831A publication Critical patent/JPH0326831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To improve the deceleration transient characteristics by arranging a fuel feeding device at a position separated from the collection part of the upstream part in an intake passage leading to the collection part of an intake manifold and arranging a throttle valve at a position close to the collection part in the downstream part in the intake passage. CONSTITUTION:The fuel jetted from a fuel feeding device SPI (single point injection) 2 is mixed with the air supplied from an air cleaner 1 and atomized, and a supercharger 3 agitates air and accelerates the atomization of fuel, and the fuel is sufficiently atomized up to the flow to a intake manifold collection part 5a. Further, though the capacity from the SPI 2 to the combustion chamber of an engine body 6 is large, and the adhesion quantity of the jetted fuel onto the inner wall of an intake passage 4 for the jetted fuel becomes large, the fuel adhering onto the downstream side part of a throttle valve 4 which is given with the influence of the negative pressure is little, even if the downstream side of the throttle valve 4 is put into negative pressure state, since the throttle valve 4 is arranged at the position close to the collection part 5a. Therefore, only this slight quantity of fuel is introduced into the combustion chamber, and the generation of overrich state is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多気筒エンジンの吸気系の構造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to the structure of an intake system for a multi-cylinder engine.

[従来の技術] 一般に、多気筒エンジンの吸気系では、吸気マニホルド
集合部に至る吸気通路にスロットルバルブが設けられ、
例えばシングルポイントインジェクション(以下、SP
Iという)やキャブレタのような燃料供給装置は、通常
スロットルバルブの上流側に配設される。特に、燃料O
(給装置は、スロットルバルブに近い上流部分に設けら
れ、スロットルバルブに向けて燃料を噴出することで、
燃料の微粒化を促進しうるようになっている。
[Prior Art] Generally, in the intake system of a multi-cylinder engine, a throttle valve is provided in the intake passage leading to the intake manifold gathering part.
For example, single point injection (SP
A fuel supply device such as a fuel pump (referred to as I) or a carburetor is usually arranged upstream of the throttle valve. In particular, fuel O
(The feeding device is installed in the upstream part near the throttle valve, and by injecting fuel toward the throttle valve,
It is designed to promote atomization of fuel.

このような従来のエンジンの吸気系構造では、例えば吸
気系にスーパーチャージャを装備する場合には、通常,
SPIやキャブレタのような燃料供給装置及びスロット
ルバルブをスーパーチャージャの上流側に配置する。
In such a conventional engine intake system structure, for example, when a supercharger is installed in the intake system,
A fuel supply device such as an SPI or a carburetor and a throttle valve are arranged upstream of the supercharger.

[発明が解決しようとする課題コ しかしながら、上述の従来のエンジンの吸気系構造のよ
うに、燃料供給装置及びス口ツ1・ルバルブをスーパー
チャージャの上流側に配置すると、燃料供給装置及びス
ロットルバルブから燃焼室までの容積が大きくなって、
噴射燃料の吸気通路内壁への付着量が多くなる。したが
って、スロットルバルブの下流側における噴射燃料の吸
気通路内壁への付着量も多く、減速時にスロットルバル
ブの下流側が負圧になると、この部分の付着燃料が燃焼
室に吸入されて,燃焼室内がオーバーリッチとなって、
失火等により、減速過渡特性が悪化するという不具合が
ある。
[Problems to be Solved by the Invention] However, if the fuel supply device and throttle valve are placed upstream of the supercharger as in the conventional engine intake system structure described above, the fuel supply device and throttle valve The volume from the combustion chamber to the combustion chamber increases,
The amount of injected fuel adhering to the inner wall of the intake passage increases. Therefore, there is a large amount of injected fuel adhering to the inner wall of the intake passage downstream of the throttle valve, and when the downstream side of the throttle valve becomes negative pressure during deceleration, the adhering fuel in this area is sucked into the combustion chamber, causing overflow in the combustion chamber. Become rich,
There is a problem in that deceleration transient characteristics deteriorate due to misfire or the like.

なお、第2図(a)〜(e)はそれぞれこのような減速
時における各種特性(時間変化)の実験結果の例を示す
グラフであって、第2図(a)はスーパーチャージャ出
力圧(S/C (ILIT P) .第2図(b)は空
燃比(A/F) .第2図(c)は出力トルク(TOR
QU[ミ)、第2図(d)は吸気流速パラメータとして
のカルマン渦発生周波数(KARMAN)、第2図(e
)はスロットル開度(rps)であり、第2図(b)中
の計測不能領域は、燃料が極めてオーバーリッチ・で計
測できなかった部分である4図示するように、スロツ1
−ル開度を絞ると,吸気流速(流量)及びスーパーチャ
ージャ出カ圧(吸気圧)が減少して、空燃比のオーバー
リッチ化及び大きな減速ショック(トルクの急減)を招
くことがわかる。
Note that FIGS. 2(a) to (e) are graphs showing examples of experimental results of various characteristics (time changes) during such deceleration, and FIG. 2(a) shows the supercharger output pressure ( S/C (ILIT P) .Figure 2 (b) shows the air-fuel ratio (A/F) .Figure 2 (c) shows the output torque (TOR
QU [mi], Figure 2 (d) shows the Karman vortex generation frequency (KARMAN) as an intake flow rate parameter, Figure 2 (e
) is the throttle opening (rps), and the unmeasurable region in Fig. 2(b) is the part where the fuel was extremely overrich and could not be measured.
- It can be seen that when the valve opening is reduced, the intake flow velocity (flow rate) and supercharger output pressure (intake pressure) decrease, leading to an overrich air-fuel ratio and a large deceleration shock (sudden decrease in torque).

また、スーパーチャージャを装備しない場合にも、例え
ば各シリンダへの懲料の分配性の向上のため又はレイア
ウト上の制約のために、燃料供給装置から燃焼室までの
間の距離を長くすると,燃料供給′!A置から燃焼室ま
での容積が大きくなって−」二連の不具合が生じやすい
Also, even if a supercharger is not installed, increasing the distance between the fuel supply system and the combustion chamber, for example to improve the distribution of fuel to each cylinder or due to layout constraints, can increase the fuel consumption. supply'! The volume from the A position to the combustion chamber becomes large, making it easy for two series of problems to occur.

本発明は,このような課題に鑑みて案出されたもので,
m料供給装置から燃焼室までの容積が大きい吸気系にお
いても,減速過渡特性を良クIにできるようにした、エ
ンジンの吸気系構造を提供することを目的とする。
The present invention was devised in view of these problems.
It is an object of the present invention to provide an intake system structure for an engine that allows good deceleration transient characteristics to be achieved even in an intake system with a large volume from a fuel supply device to a combustion chamber.

[課題を解決するための手段] このため、本発明のエンジンの吸気系構造は、多気筒エ
ンジンの吸気系において,吸気マニホルドの集合部に至
る吸気通路内の上流部分の該集合部からIm隔した位置
に燃料供給装置が配設され、該吸気通路内の下流部分の
該集合部に接近した位置又は該集合部内にスロットルバ
ルブが配設されていることを特徴としている。
[Means for Solving the Problems] Therefore, in the intake system structure of the engine of the present invention, in the intake system of a multi-cylinder engine, the upstream portion of the intake passage leading to the gathering portion of the intake manifold is spaced Im apart from the gathering portion. The present invention is characterized in that a fuel supply device is disposed at a position in the downstream portion of the intake passage, and a throttle valve is disposed at a position close to or within the convergence portion in the downstream portion of the intake passage.

〔作 用] 上述の本発明のエンジンの吸気系構造では、吸気通路内
の」二流部分に吸気マニホルドの集合部から1隔して燃
料供給装置が配設されているので、燃料が該吸気通路内
を流れる間に均−に混合して各シリンダへの燃料の分配
性が向一ヒする。この−方で,燃料倣給装置から燃焼室
までの容積が大きくなるので、噴射燃料の吸気通路内壁
への付着量が多くなるが、吸気マニホルドの集合部に接
近した位置又は該集合部内にスロッ1−ルバルブが配設
されているので、該スロットルバルブの下流側での付.
着燃料は僅かなものになり、減速時に、該スロノl・ル
バルブの下流側か負圧になっても、燃焼室にはこの僅か
な付着燃料しか吸入されないようになり、燃焼室内のオ
ーバーリッチ化が防止される。
[Function] In the intake system structure of the engine of the present invention described above, since the fuel supply device is disposed in the second-flow part of the intake passage one space apart from the gathering part of the intake manifold, the fuel is supplied to the intake passage. The fuel is evenly mixed while flowing through the cylinders, and the distribution of fuel to each cylinder is improved. In this method, the volume from the fuel feeder to the combustion chamber becomes larger, so the amount of injected fuel that adheres to the inner wall of the intake passage increases; Since a 1-throttle valve is installed, it is necessary to install the throttle valve downstream of the throttle valve.
The amount of fuel deposited becomes small, and even if the downstream side of the throttle valve becomes negative pressure during deceleration, only this small amount of deposited fuel will be sucked into the combustion chamber, causing over-richness in the combustion chamber. is prevented.

[実施例〕 以ト、図面により本発明の一実施例としてのエンジンの
吸気系構造について説明すると、第1図はその模式的な
構或図である。
[Embodiment] Hereinafter, the structure of an engine intake system as an embodiment of the present invention will be explained with reference to the drawings. FIG. 1 is a schematic diagram of the structure.

本吸気系構造は、多気筒エンジンに設けられており、ス
ーパーチャージャをそなえている。
This intake system structure is installed in a multi-cylinder engine and is equipped with a supercharger.

この吸気系構造は、第1図に示すように、吸気マニホル
ド5の集合部5aに至る吸気流路14には、その上流側
から、エアクリーナ1,燃料供給装置としてのシングル
ポイン1〜インジエクション(SPI)2,スーパーチ
ャージャ3,スロットルバルブ4が順番に配設されてい
る。
As shown in FIG. 1, this intake system structure includes an air cleaner 1, a single point 1 as a fuel supply device, an injection passage 14, and an air cleaner 1, a single point 1 as a fuel supply system, (SPI) 2, supercharger 3, and throttle valve 4 are arranged in this order.

つまり、SPI2は、吸気通路14内のスーパーチャー
ジャ3よりも上流部分の吸気マニホルト集合部5aから
離隔した位置に設けられている。
In other words, the SPI 2 is provided at a position upstream of the supercharger 3 in the intake passage 14 and away from the intake manifold gathering portion 5a.

また、スロットルバルブ4は、吸気通路14内のスーパ
ーチャージャ3よりも下流部分の吸気マニホルド集合部
5aに接近した位置に設けられている。
Further, the throttle valve 4 is provided in the intake passage 14 at a position downstream of the supercharger 3 and closer to the intake manifold gathering portion 5a.

なお、符号6はエンジン本体、7はIJIE気マニホル
ド、8はスーパーチャージャ3と並列に設けられたバイ
パス通路、9はスーパーチャージャ3の停止時に開放す
るバイパスバルブである。
The reference numeral 6 is the engine body, 7 is the IJIE air manifold, 8 is a bypass passage provided in parallel with the supercharger 3, and 9 is a bypass valve that is opened when the supercharger 3 is stopped.

本発明の一実施例ヒしてのエンジンの吸気系構造は、上
述のごとく構成されているので.SI1I2から燃料が
噴出されると、この燃料は、エアクリーナ1を通じて供
給された空気に混合され霧化する.ここでは、スロット
ルバルブ4がSPI2の噴出口の近くにないのでスロッ
トルバルブ4による微粒化促進は期待でき々いが、吸気
通路14内で過給を行なうスーパーチャージャ3が、過
給に伴って吸気を撹拌して燃料の微粒化を促進しするの
で、燃料は、SPI2から吸気マニホルド集合部5aに
至るまでの吸気通路14内で、十分に微粒化され、エン
ジン6の各気簡の吸気マニホルド5へ均等に分配されて
,例えば加速時の良好な過渡特性が確保される。
The structure of the intake system of an engine according to an embodiment of the present invention is constructed as described above. When fuel is injected from SI1I2, this fuel is mixed with the air supplied through the air cleaner 1 and atomized. Here, since the throttle valve 4 is not near the spout of the SPI 2, we cannot expect the throttle valve 4 to promote atomization, but the supercharger 3, which performs supercharging in the intake passage 14, Since the fuel is agitated to promote atomization of the fuel, the fuel is sufficiently atomized in the intake passage 14 from the SPI 2 to the intake manifold gathering part 5a, and the fuel is thoroughly atomized in the intake manifold 5 of each air in the engine 6. This ensures good transient characteristics, for example during acceleration.

また、SPI2が上流に設けられていると共に吸気通路
14の途中にスーパーチャージャ3が設けられているの
で、SPI2からエンジン本体6の燃焼室までの容積が
大きくなり、噴射燃料の吸気通路14内壁への付着量の
合計が多くなるが、スロットルバルブ4が吸気マニホル
ド集合部5aに接近した位置に配設されているので、減
速時に、スロットルバルブ4の下流側が負圧になっても
、この負圧影響を受けるスロットルバルブ4の下流側の
部分には、付着した燃料は僅かなものであり、燃焼室に
はこの僅かな付着燃料しか吸入されない。
In addition, since the SPI 2 is provided upstream and the supercharger 3 is provided in the middle of the intake passage 14, the volume from the SPI 2 to the combustion chamber of the engine body 6 becomes large, and the injected fuel flows to the inner wall of the intake passage 14. However, since the throttle valve 4 is located close to the intake manifold gathering portion 5a, even if the downstream side of the throttle valve 4 becomes negative pressure during deceleration, this negative pressure will be removed. Only a small amount of fuel adheres to the affected downstream portion of the throttle valve 4, and only this small amount of adhered fuel is sucked into the combustion chamber.

したがって、燃焼室内のオーバーリッチ化が防止されて
減速過渡特性が向上するのである。
Therefore, over-richness in the combustion chamber is prevented and the deceleration transient characteristics are improved.

なお、この実施例では、撚料供給装置としてシングルポ
イントインジェクション(SPI)2をそなえたが、燃
料供給装置としてはキャブレタでもよい。
In this embodiment, a single point injection (SPI) 2 is provided as the twisting material supply device, but a carburetor may be used as the fuel supply device.

また,スロットルバルブ4を集合部5a内の人口部分等
に設けるようにしてもよい。
Further, the throttle valve 4 may be provided at an artificial part within the gathering portion 5a.

さらに、この実施例の吸気系には、スーパーチャージャ
3がそなえられているが、スーパーチャージャを装備し
ない場合にも,各シリンダへの燃料分配性の向上やレイ
アウト上の理由などによってで燃料供給装置(例えばS
PI)から燃焼室までの間の距離を長く設定した場合に
は、スロットルバルブ4を吸気マニホルド集合部5aに
接近した位置又は集合部5a内に設けることによって、
上述と同様に減速過渡特性が向上する。
Furthermore, although the intake system of this embodiment is equipped with a supercharger 3, even if a supercharger is not installed, a fuel supply system may be installed to improve fuel distribution to each cylinder or for layout reasons. (For example, S
When the distance between the PI) and the combustion chamber is set to be long, the throttle valve 4 may be provided at a position close to the intake manifold collecting part 5a or within the collecting part 5a.
Similarly to the above, the deceleration transient characteristics are improved.

[発明の効果] 以上詳述したように、本発明のエンジンの吸気系構造に
よれば,多気筒エンジンの吸気系において、吸気マニホ
ルドの集合部に至る吸気通路内の上流部分の該集合部か
ら離隔した位置に燃料供給装置が配設され、該吸気通路
内の下流部分の該集合部に接近した位置又は該集合部内
にスロットルバルブが配設されるという構戊により、燃
料供給装置から燃焼室までの容積が大きい吸気系におい
ても,減速過渡特性を良好にできるようにむり,特に、
吸気系にスーパーチャージャをそなえた場合には,減速
過渡特性の改善効果が著しい。
[Effects of the Invention] As detailed above, according to the engine intake system structure of the present invention, in the intake system of a multi-cylinder engine, the air flow from the upstream portion of the intake passage leading to the gathering portion of the intake manifold. A fuel supply device is disposed at a separate position, and a throttle valve is disposed at a position close to the gathering portion in the downstream portion of the intake passage or within the gathering portion. Even in an intake system with a large volume, it is difficult to achieve good deceleration transient characteristics.
When the intake system is equipped with a supercharger, the deceleration transient characteristics are significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としてのエンジンの吸気系構
造を示す模式的な構成図であり,第2図(a)〜(8.
)はそれぞれ従来の吸気系構造の問題点を示すグラフで
あり、第2図(a)はスーパーチャージャ出力圧特性の
グラフ、第2図(b)は空燃比特性のグラフ、第2図(
c)は出力1・ルク特性のグラフ、第2図(d)は吸気
流速特性のグラフ,第2図(e)はスロットル開度特性
のグラフである。 1・・一二アクリーナ、2・一燃料供給装置としてのシ
ングルポイントインジェクション(SPI).3・一・
スーパーチャージャ、4・一・スロットルバルブ、5一
吸気マニホルド、5a−・・吸気マニホルドの集合部、
6−エンジン本体、7・・一排気マニホルド、8−・バ
イパス通路−L−・・バイパスバルブ、14・・・吸気
流路。
FIG. 1 is a schematic configuration diagram showing the structure of an intake system of an engine as an embodiment of the present invention, and FIG. 2(a) to (8.
) are graphs showing the problems of the conventional intake system structure, respectively. Fig. 2 (a) is a graph of supercharger output pressure characteristics, Fig. 2 (b) is a graph of air-fuel ratio characteristics, and Fig. 2 (
c) is a graph of output 1/lux characteristics, FIG. 2(d) is a graph of intake flow rate characteristics, and FIG. 2(e) is a graph of throttle opening characteristics. 1.12 Acleaner, 2.1 Single Point Injection (SPI) as a fuel supply system. 3.1.
Supercharger, 4.1. Throttle valve, 5. Intake manifold, 5a--Intake manifold gathering part,
6-Engine body, 7.. Exhaust manifold, 8.. Bypass passage-L-.. Bypass valve, 14.. Intake flow path.

Claims (1)

【特許請求の範囲】[Claims] 多気筒エンジンの吸気系において、吸気マニホルドの集
合部に至る吸気通路内の上流部分の該集合部から離隔し
た位置に燃料供給装置が配設され、該吸気通路内の下流
部分の該集合部に接近した位置又は該集合部内にスロッ
トルバルブが配設されていることを特徴とする、エンジ
ンの吸気系構造。
In an intake system of a multi-cylinder engine, a fuel supply device is disposed at a position in an upstream portion of an intake passage leading to a gathering portion of an intake manifold at a position separated from the gathering portion, and a fuel supply device is provided at a position separated from the gathering portion in a downstream portion of the intake passage. An intake system structure for an engine, characterized in that a throttle valve is disposed in a close position or in the gathering part.
JP16172789A 1989-06-23 1989-06-23 Intake system structure of engine Pending JPH0326831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16172789A JPH0326831A (en) 1989-06-23 1989-06-23 Intake system structure of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16172789A JPH0326831A (en) 1989-06-23 1989-06-23 Intake system structure of engine

Publications (1)

Publication Number Publication Date
JPH0326831A true JPH0326831A (en) 1991-02-05

Family

ID=15740740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16172789A Pending JPH0326831A (en) 1989-06-23 1989-06-23 Intake system structure of engine

Country Status (1)

Country Link
JP (1) JPH0326831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489498A (en) * 1993-01-20 1996-02-06 Canon Kabushiki Kaisha Toner for developing electrostatic image and method of manufacturing resin composition
US5962176A (en) * 1993-12-24 1999-10-05 Canon Kabushiki Kaisha Toner for developing electrostatic image, image forming method and process-cartridge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489498A (en) * 1993-01-20 1996-02-06 Canon Kabushiki Kaisha Toner for developing electrostatic image and method of manufacturing resin composition
US5854365A (en) * 1993-01-20 1998-12-29 Canon Kabushiki Kaisha Toner for developing electrostatic image and method of manufacturing resin composition
US5962176A (en) * 1993-12-24 1999-10-05 Canon Kabushiki Kaisha Toner for developing electrostatic image, image forming method and process-cartridge

Similar Documents

Publication Publication Date Title
JPS61226555A (en) Fuel injector/feeder associated with atomizer
JPH02277919A (en) Suction device of multi-cylinder engine
JPS5840647B2 (en) Internal combustion engine intake system
JPH0326831A (en) Intake system structure of engine
JPH03121263A (en) Fuel supply device for air-fuel injection type two-cycle engine
JPS5996363U (en) Fuel injection engine throttle body structure
JPS63201336A (en) Multiple throttle type internal combustion engine
JPH0450428Y2 (en)
JPS603341Y2 (en) Internal combustion engine mixture supply system
JP2960941B2 (en) Engine fuel control device
JPS5877162A (en) Injection valve of electronically controlled fuel injection internal-combustion engine
JPS5512262A (en) Fuel injection type multi-cylinder internal-combustion engine
JPH0444847Y2 (en)
JPS6137816Y2 (en)
JPH0291419A (en) Suction system for internal combustion engine
JPS6019966Y2 (en) Intake system for multi-cylinder engines
JPH04143416A (en) Intake system for engine
JPS61244825A (en) Intake device of multi cylinder engine
JPS57153961A (en) Air assist device in electronically controlled fuel injection internal combustion engine
JPS6233090Y2 (en)
JPS62189361A (en) Fuel feeding device
JP2510100Y2 (en) Internal combustion engine intake system
JPS5840655B2 (en) Multi-cylinder engine fuel distribution system
JPH0558866U (en) Variable venturi vaporizer
JPS60192868A (en) Fuel feeding apparatus