JPH03267128A - Porous hollow fiber - Google Patents
Porous hollow fiberInfo
- Publication number
- JPH03267128A JPH03267128A JP6457690A JP6457690A JPH03267128A JP H03267128 A JPH03267128 A JP H03267128A JP 6457690 A JP6457690 A JP 6457690A JP 6457690 A JP6457690 A JP 6457690A JP H03267128 A JPH03267128 A JP H03267128A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- porous hollow
- dense layer
- porous
- hollow fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 84
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000011148 porous material Substances 0.000 claims abstract description 29
- 229920001477 hydrophilic polymer Polymers 0.000 claims abstract description 22
- 229920001600 hydrophobic polymer Polymers 0.000 claims abstract description 7
- 238000009751 slip forming Methods 0.000 claims abstract description 3
- 230000035699 permeability Effects 0.000 abstract description 15
- 229920002492 poly(sulfone) Polymers 0.000 abstract description 15
- 229920000036 polyvinylpyrrolidone Polymers 0.000 abstract description 8
- 239000001267 polyvinylpyrrolidone Substances 0.000 abstract description 8
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 abstract description 8
- 238000000926 separation method Methods 0.000 abstract description 6
- 230000004907 flux Effects 0.000 abstract description 2
- 238000009987 spinning Methods 0.000 description 17
- 239000012528 membrane Substances 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000011550 stock solution Substances 0.000 description 6
- 238000005345 coagulation Methods 0.000 description 5
- 230000015271 coagulation Effects 0.000 description 5
- 238000011085 pressure filtration Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は多孔性中空糸、*に高い透水性と優れ次発画性
を有し、かつ親水性に優れた多孔性中空糸に関するもの
である。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a porous hollow fiber, which has high water permeability, excellent printability, and excellent hydrophilicity. be.
(従来の技術)
近年1分離操作において選択透過性を有する中空糸音用
いた捗術の進展にめざましく、各種の分野におい1実用
化さnている。かかる中空糸の素材とし、て、セルロー
ス系、ポリアミド系、ポリアク+1ルニト1jル系、ホ
l+ビニルアルコール系、ホリスルホン系等の樹脂が使
用されている。中でもポリスルホン系樹脂に、耐熱性、
耐酸性、耐アん力+1性、耐酸化剤性等の物理的及び化
学的性質に漫1.1念爬膜が容易な点から、各種用途に
おいて使用さね、ている。(Prior Art) In recent years, techniques using hollow fibers having selective permeability in separation operations have made remarkable progress, and have been put into practical use in various fields. As materials for such hollow fibers, resins such as cellulose, polyamide, polyac+1 lnitol, hol+vinyl alcohol, and phorisulfone are used. Among them, polysulfone resin has heat resistance,
Due to its physical and chemical properties such as acid resistance, resistance to unloading +1, and resistance to oxidizing agents, it is used in a variety of applications because it is easy to apply.
しで・し、ポリスルホン系樹脂のような疎水性高分子か
らなる中空糸の人魚として、中空糸を乾燥させると透過
速度が著[7〈減少することが挙げられる。この欠点全
解決する方法として1例えば特開昭58−104940
号公報や特開昭61−93801号公報には膜中に親水
性のポリビニルピロリドンを含有させてポリスルホン膜
を親水化させることが記載されている。また、%開昭6
1−2383 (16号公報及び時開1@61−238
834号公報にはポリスルホン樹脂、ポリビニルピロリ
ドン、jlll剤。However, when the hollow fiber is made of a hydrophobic polymer such as polysulfone resin, the permeation rate decreases significantly when the hollow fiber is dried. As a method to solve all of these drawbacks, for example, Japanese Patent Application Laid-Open No. 58-104940
No. 61-93801 discloses that a polysulfone membrane is rendered hydrophilic by incorporating hydrophilic polyvinylpyrrolidone into the membrane. Also, % Kaisho 6
1-2383 (Publication No. 16 and Jikai 1@61-238
No. 834 discloses polysulfone resin, polyvinylpyrrolidone, and JLL agent.
溶媒より構成される紡糸原液を使用して、膜の両表面に
平均孔径が500Å以上の細孔會有する透水性の高い親
水化ポリスルホン膜が記載されている0
(発明か解決しようとする課題)
しかしながら前者のポリスルホン膜は孔径Q、001〜
0.05μmの微小な細孔を有するスギン層をもつ膜で
あるため透水性が極め1低いという問題があつto
また後者のポリスルホン膜は膜表面の微細孔が平均50
0Å以上であるため、透水性は高いが。A hydrophilized polysulfone membrane with high water permeability and having pores with an average pore size of 500 Å or more on both surfaces of the membrane is described using a spinning dope composed of a solvent.0 (Problem to be solved by the invention) However, the former polysulfone membrane has a pore size Q of 001~
Since the membrane has a swine layer with minute pores of 0.05 μm, there is a problem of extremely low water permeability.The latter polysulfone membrane has an average of 50 micropores on the membrane surface.
Since it is 0 Å or more, it has high water permeability.
分画性が大S<濾過によるFLUXの低下が大きいとい
う問題があつ之C
し念かつて1本発明の目的は高い透水性と優れた分画性
含有し、使用時におけるFLUXの低下が少ない親水性
を有する多孔性中空糸を提供することにある。However, the purpose of the present invention is to provide a hydrophilic material with high water permeability and excellent fractionability, and with a small decrease in FLUX during use. An object of the present invention is to provide a porous hollow fiber having properties.
(&l@を解決するための手段)
本発明は、#水性高分子に対して0.5〜10%の親水
性高分子全含有し念多孔性中空糸でろって。(Means for Solving &l@) The present invention uses ultra-porous hollow fibers containing 0.5 to 10% of hydrophilic polymers based on #aqueous polymers.
該多孔性中空糸は内表面にスリット孔微細孔を開孔率1
0〜50%の割合で有する、厚さ0.5〜5μmの緻密
層と、該緻密層に一体に連続して形成さn次組状組織と
からなる多孔構造であり、かつ外表面は該網状組織の一
部が開孔してできた最大孔径0.5〜5μmの孔を有し
、25℃における純水透過速度が1OUtljl/n?
・hr・Kg/cm2以上であることを特徴とする多孔
性中空糸である。The porous hollow fiber has slit holes on the inner surface with a porosity of 1.
It has a porous structure consisting of a dense layer with a thickness of 0.5 to 5 μm in a proportion of 0 to 50%, and an n-order texture formed integrally and continuously to the dense layer, and the outer surface is It has pores with a maximum pore diameter of 0.5 to 5 μm formed by opening a part of the network, and the pure water permeation rate at 25° C. is 1 OUTljl/n?
- It is a porous hollow fiber characterized in that it is hr·Kg/cm2 or more.
不発明の中空糸には、内表面に中空糸の長さ方向に細長
く存在するスリット状の微細孔を有する。The uninvented hollow fiber has slit-like micropores that are elongated in the length direction of the hollow fiber on the inner surface.
0(〜 を
厚さに448mの緻密層か形成さnている。かかるスリ
ット状微細孔の平均幅に、通常500Å以下であるが、
高い分画性を有するために、特に100〜300人が好
適であるO平均幅とは微細孔の短径の平均値であり、走
査型電子顕微鏡写真により測定さnる。この微細孔の長
さに通常スリット幅の3倍以上、好ましくil 0倍以
上である。A dense layer with a thickness of 448 m is formed.The average width of such slit-like micropores is usually 500 Å or less, but
In order to have high fractionability, the O average width is particularly preferably 100 to 300. The O average width is the average value of the short diameter of the micropores, and is measured by a scanning electron micrograph. The length of this micropore is usually 3 times or more the slit width, preferably il 0 times or more.
また中空糸内表面における微細孔の分布密度はできるだ
け均一で、かつ高い万か好ましい。優れ次発画性、耐圧
性を付与させるためには、微細孔の幅もできるだけ均一
であることか好ましい。このスリット状微細孔の開孔率
に通常lO〜50チである。本発明でいう開孔率とに、
内表面に開孔している微細孔の全孔面積の外表面積に対
する割合を百分率で示し念ものである。開孔率が10嘩
未満であると透水性が低(,513%を越えると表面強
度か小さくなって中空糸の取扱が悪くなる。特に開孔率
が10〜30%であると中空糸の透過性能と機械的強度
のバランスがとれて好ましい。It is also preferable that the distribution density of the micropores on the inner surface of the hollow fiber be as uniform as possible and as high as possible. In order to provide excellent subsequent image development and pressure resistance, it is preferable that the width of the micropores be as uniform as possible. The porosity of these slit-like micropores is usually 10 to 50. The porosity referred to in the present invention is
It indicates the ratio of the total pore area of the micropores opened on the inner surface to the outer surface area as a percentage. If the porosity is less than 10%, the water permeability will be low (and if it exceeds 513%, the surface strength will be low, making it difficult to handle the hollow fibers. In particular, if the porosity is 10 to 30%, the hollow fibers will have poor water permeability. It is preferable because it has a good balance between permeation performance and mechanical strength.
ま念、不発明の中空糸は内表面に形成され定量密層に一
体に網状組織の多孔構造が連続して形成され、かつ外表
面に該網状組織の一部が開孔してできt最大孔径0.1
〜5μmの孔を有している。かかる中空糸内部に形成さ
れた網状組織は、平均1〜5μmの多数の連続孔を有し
、かつ10 #m以上の巨大空洞框存在しない。このた
め、長期間の使用時における圧密化性が優れ、さらには
強度も優れている。外表面の孔の形状や開孔率は特に制
限はないが1通常円形、楕円形が好ましく、ま几開孔率
は内表面と同程度の10〜50−か好ましい。By the way, the uninvented hollow fiber is formed on the inner surface, and a porous structure of a network structure is continuously formed in a dense layer, and a part of the network structure is opened on the outer surface, resulting in a maximum Pore diameter 0.1
It has pores of ~5 μm. The network formed inside such hollow fibers has a large number of continuous pores with an average size of 1 to 5 μm, and there are no giant hollow frames of 10 #m or more. Therefore, it has excellent compactability during long-term use and also has excellent strength. The shape and porosity of the pores on the outer surface are not particularly limited, but are usually circular or elliptical, and the pore size is preferably 10 to 50, which is about the same as that of the inner surface.
外表面の孔径が5μm以上になると耐圧性の点で問題に
なるばかりでになく、外圧でP通し几4h会に膜内部に
残留物が堆積し易くなって透過速度の低下が早く、ま几
薬洗や逆洗による膜の再生が十分性われないという傾向
がろり好1しくない。逆に最大孔径が0.1μmより小
さくなると透水性が小さくなり好1しくない。If the pore diameter on the outer surface is 5 μm or more, not only will it be a problem in terms of pressure resistance, but also residues will easily accumulate inside the membrane when P is passed through the membrane due to external pressure, resulting in a rapid decrease in the permeation rate. There is an undesirable tendency that the membrane is not regenerated sufficiently by chemical washing or backwashing. On the other hand, if the maximum pore diameter is smaller than 0.1 μm, water permeability decreases, which is not preferable.
本発明の中空糸は内表面にスリット孔微細孔を有する緻
密層と網状組織からなる多孔構造で構成されている。そ
して緻密層の厚みが0.5〜5μmと薄いため1例えば
、135人の粒子を90%以上阻止するにもかかわらず
、25℃の純水透過速度が100 OA/d−hr−K
Ii/cIA以上と高い透水性t 示す。ま九実際に水
t−FmL、た場合、外圧濾過でに。The hollow fiber of the present invention has a porous structure consisting of a dense layer having microscopic slit holes on the inner surface and a network structure. And because the thickness of the dense layer is as thin as 0.5 to 5 μm, the pure water permeation rate at 25°C is 100 OA/d-hr-K, even though it blocks more than 90% of the particles of 135 people.
Shows high water permeability t of Ii/cIA or higher. If you actually use t-FmL of water, use external pressure filtration.
外表面でサブばクロンオーダー以上の粒子を補捉し中空
糸壁、ま念は内表面の緻密層で溶解ポリマー等のサブミ
クロン以下の物質を補捉する。すなわち外表面及び中空
糸壁がプレフィルタ−的な役割を来比すため、透過速度
の低下が少なく高い透過速度を維持することができる。The outer surface traps particles of submicron order or larger, while the hollow fiber walls and the dense layer on the inner surface trap submicron particles such as dissolved polymers. That is, since the outer surface and the hollow fiber wall play the role of a pre-filter, the permeation rate decreases little and a high permeation rate can be maintained.
逆に内圧濾過では、内表面に緻密層を有している念めク
ロス70一方式の濾過に有効であり、中空糸を透過した
物質aIP空糸壁で留まりにくい几め汚染さ九にくい。On the other hand, internal pressure filtration is effective for one-way filtration using a cloth 70 that has a dense layer on the inner surface, and the material aIP that has passed through the hollow fibers is difficult to retain on the hollow fiber walls, making it difficult to cause contamination.
まt本発明の中空糸に、緻密層と多孔構造が一体化して
おり、コーティング法などで得られる複合中空糸のよう
に緻密層のピンホールや緻密層と支持層との剥離の問題
r11つたくない。Also, the hollow fiber of the present invention has a dense layer and a porous structure integrated, and unlike composite hollow fibers obtained by coating methods, there are 11 problems such as pinholes in the dense layer and peeling between the dense layer and the support layer. I don't want to.
さらに、不発明の中空糸は疎水性高分子に対して05〜
ILN&の親水性高分子を含有する。その念め、親水性
に優れ、タンパク等の吸着が少なぐ。Furthermore, the uninvented hollow fiber has 05~
Contains ILN& hydrophilic polymer. To this end, it has excellent hydrophilicity and adsorption of proteins, etc. is small.
P21!による透過性能の低下が小さい。また、乾燥に
よって実質的な透水性の低下や中空糸の寸法変化がなく
、完全なドライ中空糸を作製することができる0こ′n
は、中空糸の取り扱い、モジュール化、モジュールの輸
送等多数の面で有利でるり、作業性や生産性を向上させ
ることかできる。P21! The decrease in permeation performance due to In addition, there is no substantial drop in water permeability or dimensional change of the hollow fibers due to drying, making it possible to produce completely dry hollow fibers.
This method is advantageous in many aspects such as handling of hollow fibers, modularization, and transportation of modules, and can improve workability and productivity.
次に1本発明の多孔性中空糸の襄遣方法について説明す
る。Next, a method for wrapping porous hollow fibers according to the present invention will be explained.
本発明の中空糸を製造する之めの紡糸原液は、疎水性高
分子、親水性高分子、微孔形成剤及びこfら乞溶鱗する
極性浴IMから構成さ几る。The spinning dope for producing the hollow fibers of the present invention is composed of a hydrophobic polymer, a hydrophilic polymer, a pore-forming agent, and a polar bath IM in which they are mixed.
疎水性高分子に、飼えば、ポリス/L、ホン、ポリニー
デルスルホン、ポ1ノフン化ビニリデン、ポリエチレン
、塩化ビニル等か挙げられる。中でもポリスルホンやポ
リエーテルスルホンi耐熱性、 耐薬品性、耐酸化剤性
1強度に優れ、し211為も分子間凝集力か強いために
紡糸か容易で好適である。Examples of hydrophobic polymers include poly/L, phon, polyneedle sulfone, polyvinylidene fluoride, polyethylene, and vinyl chloride. Among these, polysulfone and polyethersulfone are suitable because they have excellent heat resistance, chemical resistance, and oxidizing agent resistance, and they are also easy to spin due to their strong intermolecular cohesive force.
親水性高分子に1例えばホリピニルビロリドン。One example of a hydrophilic polymer is folipinylpyrrolidone.
平均分子!20,000以上のポリエチレングリコール
、ポリビニルアルコール、エチレン−ビニルアルコール
共重会体咎やこれらの変性ポリマーか挙げらnるか、こ
nらに限定されるものでにない。Average molecule! Examples include, but are not limited to, polyethylene glycol, polyvinyl alcohol, ethylene-vinyl alcohol copolymers, and modified polymers thereof.
九だし、#水性高分子と溶媒中での相溶性が潰れている
ものが望ましく、1几ポリビニルピロ11トン等の水浴
性高分子の場合は架橋等で容易に不溶化できるものが望
ましい。親水性高分子の添加量は高分子量であるほど少
なく1丁ひ。特に水溶性高分子の場曾は中空糸中に残存
しりすぐ、水洗。It is desirable that the polymer has good compatibility with the aqueous polymer in the solvent, and in the case of a water-bathable polymer such as polyvinyl pyro 11 tons per liter, one that can be easily made insolubilized by crosslinking or the like is preferable. The higher the molecular weight, the smaller the amount of hydrophilic polymer added. Particularly when using water-soluble polymers, if any residue remains in the hollow fibers, wash them with water.
熱水処理中や中空糸を使用時に溶出も少なくなるため好
ましい。これら親水性高分子の種類は、製造プロセス、
使用する用途における適合性等を考朦にいnて選択する
ことができる。This is preferable because it reduces elution during hot water treatment or when using hollow fibers. These types of hydrophilic polymers are manufactured by
It can be selected by considering suitability for the intended use.
本発明の中空糸にミクロ相分離によって微孔が形成され
るが、微孔形成剤はそのばクロ相分離を起こしやすくす
る目的で添加さnる。従来より。Micropores are formed in the hollow fibers of the present invention by microphase separation, and a pore-forming agent is added for the purpose of facilitating the occurrence of microphase separation. than before.
微孔形成剤とし1メタノール、エタノール等ノフルコー
ル類、エチレングリコール、フロピレングツコール、平
均分子量400〜20.UOUの低分子量のボ11エチ
レングリコール等のグリコール類。As a micropore forming agent, 1 methanol, ethanol, etc., noflucols, ethylene glycol, phlopylene glycol, average molecular weight 400-20. Glycols such as UOU's low molecular weight Bo-11 ethylene glycol.
Liα・ZnO2等の無機塩類、水等多数用いられてお
り、不発明に訃いても上記微孔形成剤が使用できる。微
孔形成剤の添加量は紡糸原液が均一透明を保つ範囲内に
抑える必要があるが、微孔形成剤が孔の核となると推定
される之めに添加tはできるだけ多い方が望ましい。中
でも分子量400〜20.000の低分子量のポリエチ
レングリコールは紡糸原液への添加量を多くすることが
できるため好適でおる。この低分子量のボ11エチレン
グリコールに微細孔形成に優れ、かつ紡糸原液の増粘効
果を有している念め紡糸の安定性を向上させる利点がめ
る0
極性溶媒は、疎水性高分子、親水性高分子お上び微孔形
成剤を溶解するものでみれば特に制限はなく1例えは、
N、N−ジメチルホルム了ばド、ジメナルアセトアεド
、N−メ+ルビロ11トン、ジメ千ルスルホキシド等が
挙げられる。Many inorganic salts such as Liα and ZnO2, water, etc. are used, and the above-mentioned pore-forming agents can be used even if they are not inventive. The amount of the pore-forming agent added must be kept within a range that allows the spinning dope to remain uniform and transparent, but it is desirable to add as much t as possible since the pore-forming agent is presumed to become the core of the pores. Among them, polyethylene glycol with a low molecular weight of 400 to 20,000 is preferred because it can be added in a large amount to the spinning dope. This low molecular weight Bo-11 ethylene glycol has excellent micropore formation and has the effect of thickening the spinning dope, which has the advantage of improving the stability of spinning. There is no particular restriction as long as it dissolves the polymer and the pore-forming agent, and one example is:
Examples thereof include N,N-dimethylformide, dimenalacetate, N-metal+ruviro 11ton, and dimenethyl sulfoxide.
こnら411[類の組成はそれぞれ任意の割合で選択す
ることかできるか、本発明の中空糸を製造するためには
、紡糸原液をある一定の温度以下で相分離を起こす(低
温孔分離型)、あるいにある−定温度以上で相分離を起
こす(高温相分離型)ように調製することか好ましい。Can the compositions of these 411 [classes] be selected in arbitrary proportions? In order to produce the hollow fibers of the present invention, phase separation of the spinning dope is carried out below a certain temperature (low-temperature pore separation). It is preferable to prepare the material so that phase separation occurs above a certain temperature (high-temperature phase separation type).
本発明の中空糸a、上記の紡糸原液全使用し、公知の乾
湿式法によって製造される。紡糸原液とともにノズル中
心部より吐出される内部凝固液は。The hollow fiber a of the present invention is produced using the above-mentioned spinning dope by a known dry-wet method. The internal coagulating liquid is discharged from the center of the nozzle along with the spinning dope.
水、水と極性溶媒の混合液、アルコール類、グリコール
類等の単独、あるいaそnらの2種類以上の混付物など
が使用さ九る。この内部凝固液の組成を変えることによ
り内表面の微細孔の形状、平均孔径、開孔率および緻密
層の厚み等の中空糸内表面近傍の構造が制御さnる。Water, a mixture of water and a polar solvent, alcohols, glycols, etc. alone, or a mixture of two or more of them are used. By changing the composition of this internal coagulation liquid, the structure near the inner surface of the hollow fiber, such as the shape of the micropores on the inner surface, the average pore diameter, the porosity, and the thickness of the dense layer, can be controlled.
一内表面にスリット状微細孔を形成させる定めには、通
常内部凝固液として水、または水と溶媒の混合液か便用
さnる。かかる内部凝固液の濃度(溶媒/水)riO/
100〜85/15が好ましい。To form slit-like micropores on the inner surface, water or a mixture of water and a solvent is usually used as the internal coagulation liquid. The concentration of such internal coagulation liquid (solvent/water) riO/
100 to 85/15 is preferred.
溶媒/水の比率が41J/b U〜75/25であれば
紡糸性と膜性MEのバランスの点で特に好ましい。A solvent/water ratio of 41 J/b U to 75/25 is particularly preferable from the viewpoint of balance between spinnability and membrane ME.
ノズルより吐出さnた紡糸原液は、気中(ドライゾーン
)を走行したのちに、水を主成分とする外部凝固液中に
浸漬さnる。本発明でにこのドライゾーンの長さ、ドラ
イゾーン中の雰囲気温度や温度を変化させることにより
、ドライゾーン中に存在する微量の水分量を調節して、
外表面の孔構造の制御を行う。このドライゾーンの長さ
に紡糸安定性と中空糸性能のバランスの点で0.1〜2
00cM1通常1〜5UtMが適当である01几、ドラ
イゾーンの雰囲気は湿度が高いほど大きな孔が形成さ九
やすく、開孔率も多くなる。The spinning stock solution discharged from the nozzle travels in the air (dry zone) and then is immersed in an external coagulation liquid containing water as a main component. In the present invention, by changing the length of this dry zone, the atmospheric temperature in the dry zone, and the temperature, the trace amount of moisture present in the dry zone can be adjusted.
Controls the pore structure of the outer surface. In terms of the balance between spinning stability and hollow fiber performance, the length of this dry zone is 0.1 to 2.
Normally, 1 to 5 UtM is suitable.The higher the humidity of the dry zone atmosphere, the easier it is to form large pores, and the higher the porosity.
凝固液で製膜した中空糸に、次いで、溶媒や微孔形成剤
を抽出する之めに水洗される。ま次、必要に応じて、微
孔形成剤の抽出や中空糸の耐圧性を向上させる几めに、
水を主成分とし几浴中で湿熱処理される。親水性高分子
として水溶性高分子を用い念場合は、中空糸中に過剰に
残存する親水性高分子の抽出も水洗f湿熱処理で同時に
行うことができる。念だし、この抽出効果は親水性高分
子の種類や分子量によって異なるために、場合によって
は別の抽出操作を行ない、最終的に中空糸に残存させる
親水性高分子量を調節することが好ましい。通常中空糸
中に残存する親水性高分子が使用中に溶出することにほ
とんどないが医遼用途等の特殊な用途によってに、親水
性高分子を物理約1たは化学的に不溶化させて、親水性
高分子の溶出を完全に防止しておくことが好ましい。こ
の親水性高分子の定量は1重量法千元素分析等の適当な
手段で容易に行うことができる。The hollow fibers formed with the coagulating liquid are then washed with water to extract the solvent and pore-forming agent. Next, if necessary, to extract the micropore-forming agent and improve the pressure resistance of the hollow fiber,
The main component is water and is treated with moist heat in a warm bath. If a water-soluble polymer is used as the hydrophilic polymer, the hydrophilic polymer remaining in excess in the hollow fibers can be extracted at the same time by water washing and moist heat treatment. However, since this extraction effect differs depending on the type and molecular weight of the hydrophilic polymer, it is preferable to perform another extraction operation in some cases to adjust the final hydrophilic polymer weight remaining in the hollow fibers. Normally, the hydrophilic polymer remaining in the hollow fiber rarely elutes during use, but for special uses such as medical and medical applications, the hydrophilic polymer is physically or chemically insolubilized. It is preferable to completely prevent elution of the hydrophilic polymer. Quantification of this hydrophilic polymer can be easily carried out by suitable means such as 1-weight method 1,000-element analysis.
上記の方法で得られt中9糸は、R水性高分子に対して
0.5〜l (1%の親水性高分子を含有する。The t-9 yarn obtained by the above method contains 0.5 to 1% hydrophilic polymer relative to the R aqueous polymer.
親水性高分子の含有量が10−を越えると、疎水性高分
子の持つ特性を親水性高分子が阻害してし1う可能性が
あり、ま友0.5%未満では親水効果會得ることかでき
ない。親水性高分子の含有量は。If the content of the hydrophilic polymer exceeds 10%, the hydrophilic polymer may inhibit the properties of the hydrophobic polymer, and if it is less than 0.5%, there is no hydrophilic effect. I can't do anything. What is the content of hydrophilic polymer?
中空糸に親水性を与えることができる最少の量が好まし
い。1之、中空糸中の親水性高分子の分散状態にrL特
に制限がないが、中空糸に親水性を与えるためにできる
だけ均一に分散させることが好ましい。The smallest amount that can impart hydrophilic properties to the hollow fibers is preferred. 1. Although there is no particular restriction on the dispersion state of the hydrophilic polymer in the hollow fibers, it is preferable to disperse them as uniformly as possible in order to impart hydrophilicity to the hollow fibers.
(実施例)
以下実施例により本発明を更に具体的に説明する。なお
、純水透過速度および分画性の測定は以下の方法で行う
念。(Example) The present invention will be explained in more detail with reference to Examples below. Please note that the pure water permeation rate and fractionability are measured using the following method.
(1)純水透過速度
25本の中空糸で有効長20owの外圧濾過型のラボモ
ジュールを作製し、25℃の純水を濾過圧I Kg /
crAで中空光外部に供給し、一定時間後に中空糸を
透過した純水の量を測定した。(1) Pure water permeation rate An external pressure filtration type laboratory module with an effective length of 20 ow was made using 25 hollow fibers, and pure water at 25°C was filtered at a filtration pressure of I kg/
The crA was supplied to the outside of the hollow fiber, and the amount of pure water that had passed through the hollow fiber after a certain period of time was measured.
(11)分画性
測定液とし1135人のコロイダルシリカ(触媒化成工
業 5I−30)の1%分散液”kA裂し、濾過圧Q、
5Ky/J、循環線if、 0.3 m / 9eCテ
外圧濾過を行い、採取し几透過液と測定液の蒸発残置の
重量を測定し除去率を算出した。(11) A 1% dispersion of colloidal silica (catalysts and chemical industry 5I-30) of 1135 people was used as the fractionation measurement liquid.
External pressure filtration was performed at 5 Ky/J, circulation line if, 0.3 m/9 eC, and the weight of the permeated liquid and the evaporated residue of the measured liquid was measured to calculate the removal rate.
実施例1
ポリスルホン樹脂(アモコ社gUDEL P−17UI
J)19重量部、平均分子量120万のポリビニルピロ
リドン(GAF社製に−90)1.9重量部、平均分子
量600のポリエチレングリコール(三洋化成社製PE
G#600)30.4重量部、ジメチルホルムアミド4
8.7重量部を120℃で6時間加熱溶解し穴。この紡
糸原液は75℃以上と29℃以下で相分1111をおこ
す原液であった。この紡糸原液を45℃に保ち、2重環
状ノズルより内部凝固液として同じ温度に保ったジメチ
ルホルム了ミド/水(70/3(J)11:同時に吐出
させ、長さ10 cM。Example 1 Polysulfone resin (Amoco gUDEL P-17UI
J) 19 parts by weight, polyvinylpyrrolidone (manufactured by GAF -90, with an average molecular weight of 1.2 million), 1.9 parts by weight, polyethylene glycol (manufactured by Sanyo Chemical Co., Ltd., PE) with an average molecular weight of 600;
G#600) 30.4 parts by weight, dimethylformamide 4
8.7 parts by weight was heated and dissolved at 120°C for 6 hours to form a hole. This spinning dope had a phase fraction of 1111 at temperatures above 75°C and below 29°C. This spinning stock solution was kept at 45° C., and dimethylformamide/water (70/3 (J) 11: 11:1:1:1:1:2) was simultaneously discharged from a double annular nozzle as an internal coagulation liquid, and the length was 10 cM.
雰囲気温度55℃、雰囲気相対湿度85チのドライゾー
ンを通しt後に、55℃の水に浸漬させて外径0.6■
、内径0.4■の中空糸を得念。この中空糸を90℃の
温水で2時間湿熱処理を行ない。After passing through a dry zone with an ambient temperature of 55°C and an atmospheric relative humidity of 85°C, it was immersed in water at 55°C with an outer diameter of 0.6 cm.
, a hollow fiber with an inner diameter of 0.4 mm was carefully designed. This hollow fiber was subjected to a moist heat treatment with warm water at 90° C. for 2 hours.
洗浄し几のちに、60℃で8時間乾燥させ念。得られ友
中空糸の純水透過速度は、1900j/−・hr−V4
/clA、 135人のコロイダルシリカの除去率は
95%であった。走査型電子顕微鏡写真から求め友内表
面に設けられ念スリットの平均幅は250人、開孔率は
15s、緻密層の厚さは1. Opm、外表面の最大孔
径は1.0μm、中空糸壁は平均孔1 、amの網状多
孔構造でめつ之。ま念1元素分析で中空糸中のポリビニ
ルピロリドン量を測定したところ、ポリスルホンに対し
て4.2%であつ友。この中空糸に通水し穴のちに再乾
燥して透水性を再度測定したところ透水性の変化はみら
れなかった。この中空糸の走査型電子顕微鏡による写真
を第1図〜第5図に示す。第1図は中空糸の外表面、第
2図は内表面、第3図は外表面側の断面、第4図はほぼ
中央部の断面及び第5図は内表面側の断面を示している
。After washing, dry at 60℃ for 8 hours. The pure water permeation rate of the obtained hollow fiber is 1900j/-・hr-V4
/clA, the removal rate of colloidal silica for 135 people was 95%. As determined from scanning electron micrographs, the average width of the slits provided on the inner surface is 250 mm, the aperture ratio is 15 s, and the thickness of the dense layer is 1.5 mm. The maximum pore diameter on the outer surface is 1.0 μm, and the hollow fiber wall has a network-like porous structure with an average pore size of 1.0 μm. When we measured the amount of polyvinylpyrrolidone in the hollow fiber using single-element analysis, it was found to be 4.2% based on polysulfone. When water was passed through the hollow fibers, the fibers were re-dried after the holes were made, and the water permeability was measured again, no change in water permeability was observed. Photographs of this hollow fiber taken with a scanning electron microscope are shown in FIGS. 1 to 5. Figure 1 shows the outer surface of the hollow fiber, Figure 2 shows the inner surface, Figure 3 shows the cross section of the outer surface, Figure 4 shows the cross section of the approximately central part, and Figure 5 shows the cross section of the inner surface. .
実施例2〜4
実施例1と同一のポリスルホン樹脂、ポリビニルピロリ
ドン及びポリエチレングリコールを使用して紡糸原液の
組成や紡糸条件を変え1中空糸を作製し、得られた中空
糸の純水透過速度及び135人のコロ
イダルン
力の除去率全表−
に示す。Examples 2 to 4 Using the same polysulfone resin, polyvinylpyrrolidone, and polyethylene glycol as in Example 1, hollow fibers were produced by changing the composition of the spinning stock solution and spinning conditions, and the pure water permeation rate and The complete table of removal rates of colloidal force for 135 people is shown in the table below.
以下介白
実施fl15
実施例1と同一のポリスルホン18重量部、ポリビニル
ピロリドン2重量部と、無水塩化11チウム1its、
ジメチルホルムアミド79重量部を60℃で8時間加熱
溶解し紡糸原液とした。この原液は45℃で相分離する
高温分離型の原液であつ几。実施例1と同径の紡糸条件
により中空糸を作製し、得らfL念中空糸の純水透過速
度と135人ノコロイダルシ11力の除去率全測定し友
ところ。The following procedure was carried out fl15: 18 parts by weight of the same polysulfone as in Example 1, 2 parts by weight of polyvinylpyrrolidone, 1 nits of anhydrous 11thium chloride,
79 parts by weight of dimethylformamide was heated and dissolved at 60° C. for 8 hours to obtain a spinning stock solution. This stock solution is a high temperature separation type stock solution that undergoes phase separation at 45℃. Hollow fibers were prepared under the same spinning conditions as in Example 1, and the pure water permeation rate and removal rate of 135 human nocoloidal fibers of the obtained hollow fibers were measured.
それぞれ1 h U (+ l/rn”−hr−に4/
crA、 97 % テriツ几。走査型電子顕微鏡
写真から求め念内表面のスリットの平均幅は150人、
ス11ットの開孔率は131緻密層の厚さは2,5μm
、外表面に設けられ几多数の孔の最大孔径は1.5μm
であり、中空糸壁は平均孔径1μmの網状多孔構造であ
った。ま几。1 h U (+ l/rn”-hr- to 4/
crA, 97% complete. The average width of the slits on the surface was determined from scanning electron micrographs.
The porosity of S11t is 131, and the thickness of the dense layer is 2.5 μm.
, the maximum pore diameter of the numerous pores provided on the outer surface is 1.5 μm.
The hollow fiber wall had a network porous structure with an average pore diameter of 1 μm. Well done.
元素分析により中空糸中のポリビニルピロリドン量を測
定したところポリスルホンに対して4.6 %であった
。The amount of polyvinylpyrrolidone in the hollow fibers was measured by elemental analysis and was found to be 4.6% based on polysulfone.
比較fill
ドライゾーンi0傭(湿式紡糸)とし念以外は実施例1
と同一条件で中空糸を製造し念。この中空糸の純水透過
速度は250j/ぜ°hr−陽/−であったc、また走
査型電子顕微鏡写真を観察し文結果。Comparison fill Example 1 except for dry zone i0 (wet spinning) and
The hollow fibers were manufactured under the same conditions as above. The pure water permeation rate of this hollow fiber was 250J/Zhr-positive/-c, and the results were obtained by observing scanning electron micrographs.
中空糸の外表面には孔径(1,1μm以上の孔は存在し
ておらず、1九中空糸の内表面と外表面の両方に緻密層
が認められ几。There were no pores larger than 1.1 μm on the outer surface of the hollow fiber, and a dense layer was observed on both the inner and outer surfaces of the hollow fiber.
実施例6
実施例1および比較例1で得られ念中空糸を使用して、
有効膜面積l−の外圧濾過型モジュールを作製しftQ
かかる2種類のモジュールを用いて水道水t−濾過圧0
.5 Kg/−で外圧全−過を行ない透過速度が半減し
たときの濾過量を測定し皮ところ、比較例1で得られた
中空糸を収容したモジュールでは一過量が30ピであっ
たのに対して、実施例1で得らft7を中空糸を収容し
たモジュールは65−であった。Example 6 Using the hollow fibers obtained in Example 1 and Comparative Example 1,
An external pressure filtration module with an effective membrane area l- was fabricated and ftQ
Using these two types of modules, tap water t-filtration pressure 0
.. The amount of filtration was measured when the permeation rate was halved by performing full filtration under an external pressure of 5 Kg/-.However, in the module containing the hollow fibers obtained in Comparative Example 1, the amount of filtration was 30 pi. On the other hand, the module containing ft7 hollow fibers obtained in Example 1 was 65-.
(発明の効果)
本発明の多孔性中空糸は、特定の構造を有しているため
透水性と、分画性、耐汚染性に優れ、しかも親水性であ
る之め、長期間の使用に適しており、経済的でめる0そ
のため、工業用途や血液。(Effect of the invention) The porous hollow fiber of the present invention has a specific structure and has excellent water permeability, fractionation property, and stain resistance, and is hydrophilic, so it can be used for a long period of time. Therefore, it is suitable and economical for industrial and blood applications.
腹水PA等のメディカル用途等の幅広い分野に適用する
ことができる0Can be applied to a wide range of fields such as ascites PA and other medical applications.
第1図〜第3図は実施例1において得られたポリスルホ
ン中空糸の走査型電子顕微鏡写真であり。
第1図は中空糸の外表面の構造(倍率5,000)。
第2図は中空糸の内表面の構造(倍率s、ooo)。
第3図は中空糸の外表面側の断面構造(倍率5,000
)。
第4図は中空糸の内部(はぼ中央部)の禰fE(倍@s
、0oo)および第5図は中空糸の内表面間の断面構造
(倍率s、ooo)を示す。1 to 3 are scanning electron micrographs of the polysulfone hollow fibers obtained in Example 1. Figure 1 shows the structure of the outer surface of the hollow fiber (magnification: 5,000). Figure 2 shows the structure of the inner surface of the hollow fiber (magnification s, ooo). Figure 3 shows the cross-sectional structure of the outer surface of the hollow fiber (magnification: 5,000
). Figure 4 shows the inside of the hollow fiber (center of the fiber).
, 0oo) and FIG. 5 show the cross-sectional structure (magnification s, ooo) between the inner surfaces of the hollow fibers.
Claims (1)
を含有した多孔性中空糸であつて、該多孔性中空糸は内
表面にスリット状微細孔を開孔率10〜50%の割合で
有する、厚さ0.5〜5μmの緻密層と、該緻密層に一
体に連続して形成された網状組織とからなる多孔構造で
あり、かつ外表面は該網状組織の一部が開孔してできた
最大孔径0.5〜5μmの孔を有し、25℃における純
水透過速度が1000l/m^2・hr・Kg/cm^
2以上であることを特徴とする多孔性中空糸。A porous hollow fiber containing 0.5 to 10% of a hydrophilic polymer to a hydrophobic polymer, the porous hollow fiber having a slit-like micropore opening rate of 10 to 50% on the inner surface. It has a porous structure consisting of a dense layer with a thickness of 0.5 to 5 μm and a network structure integrally and continuously formed in the dense layer, and the outer surface has a part of the network structure. It has pores with a maximum pore diameter of 0.5 to 5 μm, and the pure water permeation rate at 25°C is 1000 l/m^2・hr・Kg/cm^
A porous hollow fiber characterized by having a porous hollow fiber of 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6457690A JP2899348B2 (en) | 1990-03-14 | 1990-03-14 | Porous hollow fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6457690A JP2899348B2 (en) | 1990-03-14 | 1990-03-14 | Porous hollow fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03267128A true JPH03267128A (en) | 1991-11-28 |
JP2899348B2 JP2899348B2 (en) | 1999-06-02 |
Family
ID=13262199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6457690A Expired - Fee Related JP2899348B2 (en) | 1990-03-14 | 1990-03-14 | Porous hollow fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2899348B2 (en) |
-
1990
- 1990-03-14 JP JP6457690A patent/JP2899348B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2899348B2 (en) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4221154B2 (en) | Method for producing highly porous polyvinylidene difluoride film | |
JP4294730B2 (en) | Highly porous polyvinylidene difluoride membrane | |
WO1995033549A1 (en) | Porous polysulfone membrane and process for producing the same | |
JPH02302449A (en) | Preparation of microporous film | |
JPS6356802B2 (en) | ||
JPS61283305A (en) | Porous hollow yarn membrane | |
JP2899352B2 (en) | Porous hollow fiber membrane | |
KR100557264B1 (en) | Hollow fiber membrane and process for producing the same | |
JP3216910B2 (en) | Porous hollow fiber membrane | |
JP2899347B2 (en) | Porous hollow fiber membrane | |
JPS60246812A (en) | Hollow polysulfone based resin fiber | |
JPS6397202A (en) | Polyether sulfone resin semipermeable membrane and its production | |
JPS61164602A (en) | Hllow yarn membrane made of polysulfone resin and its preparation | |
JPH10180058A (en) | Hollow fiber membrane | |
JPH03267128A (en) | Porous hollow fiber | |
JP2528893B2 (en) | Method for producing polysulfone hollow fiber membrane | |
JP2882658B2 (en) | Method for producing polysulfone-based semipermeable membrane | |
JPH11217459A (en) | Method for producing porous membrane | |
JP3422657B2 (en) | Hollow fiber membrane for dehumidification | |
JPS59228016A (en) | Hollow yarn membrane of aromatic polysulfone | |
JP2005058906A (en) | Porous polymer membrane, blood purification device and production method for porous polymer membrane | |
JP2868558B2 (en) | Manufacturing method of high-strength, high-flux polysulfone hollow fiber membrane | |
JP3250808B2 (en) | Polysulfone porous membrane and method for producing the same | |
JPH09253463A (en) | Manufacture of polysulfone type ultrafiltration film | |
JP4386607B2 (en) | Polysulfone blood purification membrane production method and polysulfone blood purification membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |