JPH03257346A - Apparatus for measuring reaction - Google Patents
Apparatus for measuring reactionInfo
- Publication number
- JPH03257346A JPH03257346A JP5746190A JP5746190A JPH03257346A JP H03257346 A JPH03257346 A JP H03257346A JP 5746190 A JP5746190 A JP 5746190A JP 5746190 A JP5746190 A JP 5746190A JP H03257346 A JPH03257346 A JP H03257346A
- Authority
- JP
- Japan
- Prior art keywords
- measuring device
- circuit
- vibrators
- reaction
- oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 42
- 230000010355 oscillation Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 9
- 238000009499 grossing Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 16
- 239000000126 substance Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 239000010453 quartz Substances 0.000 abstract description 3
- 238000004062 sedimentation Methods 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 238000001179 sorption measurement Methods 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 description 19
- 239000000523 sample Substances 0.000 description 19
- 238000001879 gelation Methods 0.000 description 6
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 3
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 3
- 108010014173 Factor X Proteins 0.000 description 3
- 239000003114 blood coagulation factor Substances 0.000 description 3
- 229940019700 blood coagulation factors Drugs 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical class CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 1
- 241001529572 Chaceon affinis Species 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 108010074864 Factor XI Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003918 blood extract Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000012525 endotoxin sample Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、化学、物理化学、生化学および食品、医療
、化学工業分野における反応計測を行う装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for measuring reactions in the fields of chemistry, physical chemistry, biochemistry, food, medicine, and chemical industry.
(発明の概要)
この発明の反応計測装置は、片面に液体が接するように
した圧電振動子、特に水晶振動子を複数同時に使用し、
複数の液体の反応を同時に計測する装置である。この装
置は、複数個の試料用セルの付いた圧電振動子とこれと
同数の発振回路と振幅検出回路、A/D変換回路、デー
タ処理制御装置および恒温器より構成されている。(Summary of the Invention) The reaction measuring device of the present invention simultaneously uses a plurality of piezoelectric oscillators, particularly quartz oscillators, each of which is in contact with a liquid on one side.
This is a device that measures reactions of multiple liquids simultaneously. This device consists of a piezoelectric vibrator with a plurality of sample cells, the same number of oscillation circuits and amplitude detection circuits, an A/D conversion circuit, a data processing control device, and a thermostat.
この反応計測装置は、圧電振動子の共振抵抗変化から、
液体の粘性変化や圧電振動子表面への吸着反応、沈降反
応などを計測するものである。本装置において、複数の
圧電振動子それぞれに発振回路が接続されており、その
出力信号は、振幅検出回路で直流信号に変換され、A/
D変換回路を介してデータ処理装置に送られる。本装置
は、高速のA/D変換によって、従来の発振周波数を測
定する方法に比べ、測定の間隔が、きわめて速くなるよ
うにしたものである。信号を順次切り替えることによっ
て、複数の試料の同時測定が可能である。This reaction measurement device detects changes in the resonance resistance of a piezoelectric vibrator.
It measures changes in liquid viscosity, adsorption reactions on the piezoelectric vibrator surface, sedimentation reactions, etc. In this device, an oscillation circuit is connected to each of the plurality of piezoelectric vibrators, and the output signal is converted into a DC signal by an amplitude detection circuit.
The data is sent to the data processing device via the D conversion circuit. This device uses high-speed A/D conversion to make the measurement interval much faster than the conventional method of measuring oscillation frequency. By sequentially switching the signals, simultaneous measurement of multiple samples is possible.
(従来の技術)
本発明の反応計測の対象としては、粘度変化が最も重要
である。従来、粘度測定には、細管法、回転法などが用
いられてきた、細管法は、試料液体が、細管を落下する
速度から粘度を求めるものである。また、回転法は、試
料液中で円筒状の金属棒を回転させ、せん断応力を求め
ることによって、粘度を求めるものである。また、この
反応がゲル化反応である場合には、試料の濁度を光学的
に測定する方法、機械的な振動を与えゲル化による粘性
変化を検知する方法が取られていた。(Prior Art) The most important target for reaction measurement in the present invention is viscosity change. Conventionally, the capillary method, the rotation method, and the like have been used to measure viscosity.The capillary method determines the viscosity from the speed at which a sample liquid falls through a capillary. In addition, the rotation method is a method for determining viscosity by rotating a cylindrical metal rod in a sample liquid and determining shear stress. If this reaction is a gelation reaction, methods have been used to optically measure the turbidity of the sample, or to apply mechanical vibrations to detect changes in viscosity due to gelation.
(発明が解決しようとする課題)
従来の粘度測定法では、少量の試料では測定できないと
いう問題があり、測定に時間がかかり、反応に伴う変化
を測定することは不可能であった。(Problems to be Solved by the Invention) Conventional viscosity measuring methods have the problem of not being able to measure with a small amount of sample, taking time to measure, and making it impossible to measure changes accompanying reactions.
また、ゲル化反応の測定では、従来の濁度を測定する方
法の場合、着色試料の測定には不向きであり、塩析によ
って大きな誤差を生しるという問題点と光学的測定系を
含むためにシステムが複雑になるという問題点があった
。また、機械的な振動を与える方法では、機械部分があ
るため、測定中は振動などを与えないように取扱いに特
に注意を払う必要があるとともに、小型軽量化が難しい
という問題があった。これらの点に加え、いずれの方法
も、最低0.2ml程度の試料を必要とするという問題
があった。In addition, when measuring gelation reactions, conventional methods for measuring turbidity are not suitable for measuring colored samples, have the problem of large errors caused by salting out, and involve optical measurement systems. The problem was that the system became complicated. Furthermore, in the method of applying mechanical vibrations, since there are mechanical parts, special care must be taken in handling to avoid applying vibrations during measurement, and there are also problems in that it is difficult to reduce the size and weight. In addition to these points, each method has the problem of requiring a sample of at least about 0.2 ml.
本発明者らによって考案された水晶振動子による測定法
は、0.2ml以下の試料を測定することが可能であり
、システムの小型化も可能であるが、これまで、−測定
に要する時間が、発振周波数を指標とする場合、I H
zの精度で測定を行うためには1秒間を要し、反応時間
の速い試料に対しては、測定速度の点で問題があった。The measurement method using a crystal oscillator devised by the present inventors can measure samples of 0.2 ml or less, and the system can be made more compact. , when the oscillation frequency is used as an index, I H
It takes 1 second to perform a measurement with an accuracy of z, which poses a problem in terms of measurement speed for samples that require a fast reaction time.
(課題を解決するための手段)
上記課題を解決するために、本発明は、圧電振動子を検
出素子とし、さらに複数の圧電振動子を用い、同時に複
数の反応計測を行う反応計測装置を提供することを目的
とする。この反応計測装置は、片面に液体が接するよう
にした圧電振動子、特に水晶振動子を複数同時に使用し
、複数の液体の反応を同時に計測するものである。そし
て、この装置は、複数の試料用セルのイ1いた圧電振動
子とこれと同数の発振回路と振幅検出回路、 A/D変
換回路、データ処理制御装置および恒温器より構成され
た。(Means for Solving the Problems) In order to solve the above problems, the present invention provides a reaction measurement device that uses a piezoelectric vibrator as a detection element, further uses a plurality of piezoelectric vibrators, and simultaneously measures a plurality of reactions. The purpose is to This reaction measuring device simultaneously measures the reactions of a plurality of liquids by simultaneously using a plurality of piezoelectric oscillators, particularly quartz oscillators, each of which has one side in contact with a liquid. This device consisted of a plurality of piezoelectric vibrators for sample cells, the same number of oscillation circuits and amplitude detection circuits, an A/D conversion circuit, a data processing control device, and a thermostat.
(作用)
圧電振動子は、圧電効果を利用したデバイスであり、発
振回路と接続することによって、発振させることができ
る。この際、圧電振動子の表面は、微少な振動を起こす
。このため振動子は、表面に物質が接することによって
、この振動に影響が及び、共振抵抗の変化として反映さ
れてくる。共振抵抗が変化することによって、発振して
いる振動子を流れる電流が変化する。この電流は、信号
出力側の端子が抵抗を介して接地されている場合、交流
電圧の振幅の変化として検出できる。この振幅を検出す
ることによって、液体の粘性変化、物質の吸着、沈降に
よる物質堆積の測定を行うことが可能である。(Function) A piezoelectric vibrator is a device that utilizes the piezoelectric effect, and can be caused to oscillate by being connected to an oscillation circuit. At this time, the surface of the piezoelectric vibrator causes minute vibrations. For this reason, when a substance comes into contact with the surface of a vibrator, this vibration is affected, and this is reflected as a change in resonance resistance. By changing the resonant resistance, the current flowing through the oscillating vibrator changes. This current can be detected as a change in the amplitude of the AC voltage if the signal output side terminal is grounded via a resistor. By detecting this amplitude, it is possible to measure changes in liquid viscosity, adsorption of substances, and accumulation of substances due to sedimentation.
この圧電振動子と発振回路を複数個並べ、水晶振動子の
出力側の交流電圧の振幅を検出しこの信号の振幅レベル
をA/D変換器を介してモニタすることによって、反応
のきわめて高速な変化を測定することができる。また、
複数の振動子の信号を切り替えることによって、複数の
反応を同時に高速に測定することができる。By arranging multiple piezoelectric oscillators and oscillation circuits, detecting the amplitude of the AC voltage on the output side of the crystal oscillator, and monitoring the amplitude level of this signal via an A/D converter, extremely fast response can be achieved. Changes can be measured. Also,
By switching the signals of multiple oscillators, multiple reactions can be measured simultaneously and at high speed.
(実施例)
以下、この発明の実施例を図面に基づいて説明する。第
1図は、本発明の反応計測装置の模式図を示したもので
ある。 第1図において、水晶振動子1.1’、 ・
・、1” は、片側が液体に接するようにした試料用セ
ル2,2′、・・、2nが付けられ、恒温器3に接する
ように置かれ、発振回路4.4’、 ・・、4” に
接続されている。発振回路は、振幅検出回路5. 5’
、 ・・5れ゛を介し、信号切り替え回路を内蔵し
たA/D変換回路6に接続され、さらにデータをモニタ
ーするためのマイクロコンピュータ(入出力インタフェ
ースを含む)7に接続され、マイクロコンピュータ7に
は、記録装置8、表示装置9、測定を開始させるための
キースイッチ10が接続されている。また、水晶振動子
と試料用セルとは、体になっており、片側の電極だけが
試料に接する構造に添っている。さらに、水晶振動子は
、装置本体に電気的な接点を介して接続されているが、
装置本体から容易に取り外すことができ、簡単に洗浄を
行うことができる。(Example) Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 shows a schematic diagram of the reaction measuring device of the present invention. In Figure 1, crystal oscillator 1.1', ・
・, 1'' is equipped with sample cells 2, 2', . . . , 2n whose one side is in contact with the liquid, is placed in contact with the thermostat 3, and has oscillation circuits 4, 4', . . . 4” is connected. The oscillation circuit is an amplitude detection circuit 5. 5'
, . . 5 is connected to an A/D conversion circuit 6 with a built-in signal switching circuit, and is further connected to a microcomputer (including an input/output interface) 7 for monitoring data, and is connected to the microcomputer 7 via a is connected to a recording device 8, a display device 9, and a key switch 10 for starting measurement. Further, the crystal oscillator and the sample cell form a body, with only one electrode in contact with the sample. Furthermore, the crystal resonator is connected to the main body of the device through electrical contacts,
It can be easily removed from the main body of the device and can be easily cleaned.
また、本発明は、第2図のように発振回路4゜4゛、・
・、4n゛ と振幅検出回路5の間に信号切り替え回路
11を置く構成も可能である。この場合、振動子と切り
替え回路の間にバンファアンプ12.12’、 ・・
、12”を置くことによって、測定が安定化される。さ
らに、本装置は、発振回路の信号をデータ切り替え器を
介して周波数カウンターに接続し、データ処理装置に接
続する部分を付加することによって、水晶振動子の発振
回路の動作チエツクを容易に行うことができる。Further, the present invention provides an oscillation circuit 4゜4゛, . . .
A configuration in which the signal switching circuit 11 is placed between the amplitude detection circuit 5 and the amplitude detection circuit 5 is also possible. In this case, a banfa amplifier 12.12',...
, 12", the measurement is stabilized. Furthermore, this device connects the signal of the oscillation circuit to the frequency counter via a data switch, and by adding a part to connect to the data processing device. , it is possible to easily check the operation of the oscillation circuit of the crystal resonator.
振幅検出回路は、信号平滑回路または復帰機能付きのピ
ークホールド回路のいずれによっても構成可能であり、
良好に測定に適用できることがわかった。The amplitude detection circuit can be configured with either a signal smoothing circuit or a peak hold circuit with a recovery function,
It was found that the method could be successfully applied to measurements.
一
測定は、試料液体を試料用セル中に入れ、測定開始のス
イッチを入れ、測定を開始した。振幅検出回路から得ら
れる信号を発振レベルとしてコンピューターでモニタし
、データ処理を行った。For one measurement, a sample liquid was placed in a sample cell, a switch was turned on to start measurement, and measurement was started. The signal obtained from the amplitude detection circuit was monitored as an oscillation level by a computer, and data processing was performed.
また、振幅検出回路の信号をアナログレコーダーで記録
し、得られた曲線から凝固時間を算定することもできる
。It is also possible to record the signal from the amplitude detection circuit with an analog recorder and calculate the coagulation time from the obtained curve.
(エンドトキシン分析への応用)
9 M Hz −A Tカット水晶振動子を用い、恒温
器を37℃とした本装置に、エンドトキシン試料0.2
mlと規定量のカブトガニ血液抽出物の凍結乾燥品とを
混合し、試料用セル中に注入し、発振レベルの変化の測
定を行った。この操作を順次複数の水晶振動子について
行い同時にゲル化時間(発振レベルが変化しなくなるま
での時間)の測定を行った。ゲル化時間の算出はデータ
処理部で行い、実際には、発振レベルが反応開始から最
終変化量の90%に低下するまでの時間または発振レベ
ルが始めのレベルから10%低下した時間を取った。2
つの方法で求めたゲル化時間は、エンドトキシン濃度0
.0 OL−4EU/mlの間で濃度に依存して変化す
る事が確かめられた。また、試料量は、20μlでも測
定が可能だった。(Application to endotoxin analysis) An endotoxin sample of 0.2
ml and a specified amount of freeze-dried horseshoe crab blood extract were mixed, injected into a sample cell, and changes in oscillation level were measured. This operation was performed sequentially for a plurality of crystal resonators, and at the same time, the gelation time (the time until the oscillation level stopped changing) was measured. The gelation time was calculated by the data processing unit, and was actually taken as the time from the start of the reaction until the oscillation level decreased to 90% of the final change, or the time when the oscillation level decreased by 10% from the initial level. . 2
The gelation time determined by two methods is
.. It was confirmed that the concentration varied between 0 OL-4 EU/ml. Furthermore, measurement was possible even with a sample amount of 20 μl.
(血液凝固因子の濃度測定)
9MHz−ATカット水晶振動子を用い、恒温器を37
℃とした本装置を用いて血液凝固因子因子の濃度測定を
行った。まず、0.1mlの第■因子欠乏血漿を37℃
でインキュベートし、0゜1mlづつの第■因子測定試
料と活性部分l・リンボブラステン試薬を加え、さらに
37℃で2分間インキュヘードした。次に、O,1ml
の0.025Mの塩化カルシウムを加えただちに試料用
セルに注入し、発振レベルの測定を行った。凝固時間の
算出は、データ処理部で行い、エンドトキシンと同様に
、発振レベルが最終変化量の90%変化するまでの時間
または発振レベルが始めのレベルから10%低下した時
間を取った。2つの方法で求めた凝固時間は、0.05
−0.5単位/mIで、いずれも濃度との間によい直線
関係が確認された。この他の血液凝固因子因子、第XI
因子、第X■因子についても同様に測定が可能であった
。(Measurement of blood coagulation factor concentration) Using a 9 MHz-AT cut crystal oscillator, set the thermostat to 37 MHz.
The concentration of blood coagulation factors was measured using this device at ℃. First, 0.1 ml of factor ■ deficient plasma was added at 37°C.
After incubating at 37°C for 2 minutes, 0°C and 1ml of the factor ① measurement sample and the active moiety Limboblasten reagent were added. Next, O, 1 ml
Immediately after adding 0.025M calcium chloride, it was injected into the sample cell, and the oscillation level was measured. The coagulation time was calculated by the data processing unit, and similarly to endotoxin, the time required for the oscillation level to change by 90% of the final amount of change or the time for the oscillation level to decrease by 10% from the initial level was taken. The clotting time determined by the two methods was 0.05
-0.5 unit/mI, a good linear relationship with the concentration was confirmed in both cases. Other blood coagulation factors, factor XI
It was also possible to measure factor X and factor X in the same way.
また、活性トロンボプラスチン液、0.02M塩化カル
シウムを用いて同様に実験を行ったところ、第■囚子、
第■因子、第■因子、第X因子の測定が可能であった。In addition, when we conducted a similar experiment using activated thromboplastin solution and 0.02M calcium chloride, we found that
It was possible to measure factor ■, factor ■, and factor X.
以上いずれの実施例においても、水晶振動子はIMHz
、−20MHzまで使用可能であった。また、IKHz
−10MHzの圧電セラミックス振動子も使用可能であ
った。また、試料用セル付き圧電振動子は容易に装置か
ら着脱でき、実施例1゜2では、洗浄後再使用すること
も可能であった。In any of the above embodiments, the crystal resonator is IMHz
, -20MHz was possible. Also, IKHz
A -10 MHz piezoelectric ceramic vibrator could also be used. Further, the piezoelectric vibrator with sample cell can be easily attached and detached from the apparatus, and in Examples 1 and 2, it was also possible to reuse it after cleaning.
いずれの実施例においても試料用セルは、コスト面では
使い捨てにすることも可能である。In any of the embodiments, the sample cell can be made disposable in terms of cost.
(発明の効果)
本発明の粘度測定装置によって、反応速度が速く、また
、きわめて少量の液体試料の反応の測定を同時に複数、
測定することができるようになった。また、本装置は機
械的な部分がないので、振動などの影響を受けず、高い
精度で再現性良い測定が可能となるとともに小型軽量化
することが可能であった。(Effects of the Invention) The viscosity measuring device of the present invention has a fast reaction rate and can simultaneously measure multiple reactions of extremely small amounts of liquid samples.
Now it can be measured. Furthermore, since this device does not have any mechanical parts, it is not affected by vibrations and other factors, making it possible to perform measurements with high precision and good reproducibility, and it was also possible to reduce the size and weight.
第1図は本発明による反応計測装置の実施例の模式図、
第2図は本発明による反応計測装置の他の実施例の模式
図である。
■、1゛ ・・、1″ ・・・水晶振動子2.2”
・・ 2″′1 ・・・試料用セル3
・・・恒温器
4.4゛ ・・、4パ ・・・発振回路5.5゛ ・・
、5″” ・・・振幅検出回路6・・・・・・・・・A
/D変換回路
7・・・・・・・・・マイクロコンピュータ11・・・
・・・・・・信号切換回路
以上FIG. 1 is a schematic diagram of an embodiment of the reaction measuring device according to the present invention,
FIG. 2 is a schematic diagram of another embodiment of the reaction measuring device according to the present invention. ■, 1゛..., 1"...Crystal oscillator 2.2"
・・・2″′1 ・・・Sample cell 3
・・・Thermostat 4.4゛ ・・4pa ・・・Oscillation circuit 5.5゛ ・・
, 5″”...Amplitude detection circuit 6...A
/D conversion circuit 7...Microcomputer 11...
・・・・・・More than signal switching circuit
Claims (10)
圧電振動子が個々に接続された複数の発振回路と、前記
発振回路の出力振幅を検出する振幅検出回路より構成さ
れた反応計測装置。(1) A reaction consisting of a piezoelectric vibrator with a plurality of sample cells, a plurality of oscillation circuits to which the piezoelectric vibrators are individually connected, and an amplitude detection circuit that detects the output amplitude of the oscillation circuit. Measuring device.
回路を設け、単一の振幅検出回路で前記複数の発振回路
の出力振幅を検出する構成である請求項1記載の反応計
測装置。(2) The reaction measuring device according to claim 1, wherein a signal switching circuit is provided between the oscillation circuit and the amplitude detection circuit, and a single amplitude detection circuit detects the output amplitudes of the plurality of oscillation circuits.
路およびデータ処理制御装置を含む構成である請求項1
記載の反応計測装置。(3) Claim 1, wherein the configuration includes an A/D conversion circuit that processes the output of the amplitude detection circuit and a data processing control device.
The reaction measuring device described.
構成である請求項1記載の反応計測装置。(4) The reaction measuring device according to claim 1, further comprising a thermostat that houses the plurality of sample cells.
求項1記載の反応計測装置。(5) The reaction measuring device according to claim 1, wherein the amplitude detection circuit is constituted by a signal smoothing circuit.
れた請求項1記載の反応計測装置。(6) The reaction measuring device according to claim 1, wherein the amplitude detection circuit is constituted by a peak hold circuit.
求項1記載の反応計測装置。(7) The reaction measuring device according to claim 1, wherein the piezoelectric vibrator is an AT-cut crystal vibrator.
請求項1記載の反応計測装置。(8) The reaction measuring device according to claim 1, wherein the piezoelectric vibrator is configured to be detachable at any time.
一定に保持される構成である請求項4記載の反応計測装
置。(9) The reaction measuring device according to claim 4, wherein the piezoelectric vibrator is configured such that an ambient temperature thereof is maintained constant by the thermostat.
ーターとキー入力スイッチと、表示装置と、記録装置と
、入出力信号インターフェースより構成された請求項3
記載の反応計測装置。(10) Claim 3, wherein the data processing control device comprises a microcomputer, a key input switch, a display device, a recording device, and an input/output signal interface.
The reaction measuring device described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5746190A JPH03257346A (en) | 1990-03-08 | 1990-03-08 | Apparatus for measuring reaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5746190A JPH03257346A (en) | 1990-03-08 | 1990-03-08 | Apparatus for measuring reaction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03257346A true JPH03257346A (en) | 1991-11-15 |
Family
ID=13056317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5746190A Pending JPH03257346A (en) | 1990-03-08 | 1990-03-08 | Apparatus for measuring reaction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03257346A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006064952A1 (en) * | 2004-12-15 | 2006-06-22 | Nihon Dempa Kogyo Co., Ltd | Component measuring device |
US7552639B2 (en) | 2004-12-15 | 2009-06-30 | Nihon Dempa Kogyo Co., Ltd. | Quartz sensor and sensing device |
US7555952B2 (en) | 2004-12-28 | 2009-07-07 | Nihon Dempa Kogyo Co., Ltd. | Sensing device |
US7677087B2 (en) | 2004-12-15 | 2010-03-16 | Nihon Dempa Kogyo Co., Ltd. | Quartz sensor and sensing device |
US7845230B2 (en) | 2005-08-03 | 2010-12-07 | Nihon Dempa Kogyo Co., Ltd. | Concentration sensor and concentration detector |
JP2012211924A (en) * | 2010-03-10 | 2012-11-01 | Nippon Dempa Kogyo Co Ltd | Method of detecting microorganism and microorganism detecting apparatus |
US8802428B2 (en) | 2010-03-10 | 2014-08-12 | Nihon Dempa Kogyo Co., Ltd. | Method of detecting microorganisms and microorganism detecting apparatus |
-
1990
- 1990-03-08 JP JP5746190A patent/JPH03257346A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006064952A1 (en) * | 2004-12-15 | 2006-06-22 | Nihon Dempa Kogyo Co., Ltd | Component measuring device |
US7552639B2 (en) | 2004-12-15 | 2009-06-30 | Nihon Dempa Kogyo Co., Ltd. | Quartz sensor and sensing device |
US7554247B2 (en) | 2004-12-15 | 2009-06-30 | Nihon Dempa Kogyo Co., Ltd | Component measuring device |
US7677087B2 (en) | 2004-12-15 | 2010-03-16 | Nihon Dempa Kogyo Co., Ltd. | Quartz sensor and sensing device |
US7555952B2 (en) | 2004-12-28 | 2009-07-07 | Nihon Dempa Kogyo Co., Ltd. | Sensing device |
US7845230B2 (en) | 2005-08-03 | 2010-12-07 | Nihon Dempa Kogyo Co., Ltd. | Concentration sensor and concentration detector |
JP2012211924A (en) * | 2010-03-10 | 2012-11-01 | Nippon Dempa Kogyo Co Ltd | Method of detecting microorganism and microorganism detecting apparatus |
US8802428B2 (en) | 2010-03-10 | 2014-08-12 | Nihon Dempa Kogyo Co., Ltd. | Method of detecting microorganisms and microorganism detecting apparatus |
US9103748B2 (en) | 2010-03-10 | 2015-08-11 | Nihon Dempa Kogyo Co., Ltd. | Method for detecting microorganisms and microorganism detecting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4558589A (en) | Ultrasonic coagulation monitor and method | |
KR100237946B1 (en) | Apparatus for assaying viscosity changes in fluid samples and method of conducting the same | |
US4312228A (en) | Methods of detection with surface acoustic wave and apparati therefor | |
US5211054A (en) | Method and system for analyzing a gelation reaction by utilizing a piezoelectric resonator | |
US20050015001A1 (en) | Acoustic blood analyzer for assessing blood properties | |
RU2232384C2 (en) | Method of investigation of multicomponent liquid | |
JPH03257346A (en) | Apparatus for measuring reaction | |
JPS63243877A (en) | Method and apparatus for detecting antigen-antibody reaction | |
CA2271179A1 (en) | Process for monitoring and detecting small molecule - biomolecule interactions | |
KR101440203B1 (en) | Method for measuring viscoelasticity and device for measuring viscoelasticity | |
EP0304283B1 (en) | Apparatus for measuring a characteristic of a liquid | |
JP2002148295A (en) | Method and instrument for frequency measurement and analytical equipment | |
JP3041361B2 (en) | Reaction measurement device | |
JPH049744A (en) | Quartz vibrator cell | |
JP2819167B2 (en) | Erythrocyte sedimentation velocity measuring method and apparatus | |
JPH0432767A (en) | Measuring method, measuring instrument and measuring element for gelatinization reaction arising from blood clotting | |
JP2764108B2 (en) | Sample cell | |
JP2632544B2 (en) | Gelation reaction measurement device | |
JPH03165235A (en) | Reaction measuring instrument | |
JPS62153761A (en) | Method for measuring blood clotting time | |
JPH02226043A (en) | Reaction measuring apparatus | |
Chang et al. | Determination of coagulation time in whole blood containing anticoagulant by piezoelectric quartz crystal sensor | |
JPH03279840A (en) | Crystal resonator cell | |
JPH0249131A (en) | Temperature measuring instrument | |
JPH0466843A (en) | Determining method of time of congelation |