Nothing Special   »   [go: up one dir, main page]

JPH03249144A - Production of niobium halide, niobium oxide, niobium nitride, niobium carbide, and metallic niobium - Google Patents

Production of niobium halide, niobium oxide, niobium nitride, niobium carbide, and metallic niobium

Info

Publication number
JPH03249144A
JPH03249144A JP4634190A JP4634190A JPH03249144A JP H03249144 A JPH03249144 A JP H03249144A JP 4634190 A JP4634190 A JP 4634190A JP 4634190 A JP4634190 A JP 4634190A JP H03249144 A JPH03249144 A JP H03249144A
Authority
JP
Japan
Prior art keywords
niobium
nitride
halide
ferroniobium
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4634190A
Other languages
Japanese (ja)
Inventor
Yoshinori Kato
加藤 昌憲
Kiyoshi Kawasaki
清 川崎
Toshio Nayuki
利夫 名雪
Yutaka Yano
豊 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4634190A priority Critical patent/JPH03249144A/en
Publication of JPH03249144A publication Critical patent/JPH03249144A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0617Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with vanadium, niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently produce high purity niobium halide by forming ferroniobium into ferroniobium nitride by a solid nitriding method, applying iron removal to this ferroniobium nitride by means of acid treatment, and carrying out halogenation treatment. CONSTITUTION:Ferroniobium is used as raw material and formed into ferroniobium nitride by a solid nitriding method. This ferroniobium nitride is subjected to iron removal by means of acid treatment and formed into niobium nitride, which is subjected to halogenation treatment so as to be formed into niobium halide. Metallic niobium can be obtained by allowing this niobium halide to react with active metals, such as carbon, a, Na, and Mg, at high temp. or by subjecting the niobium halide to molten-salt electrolysis. Further, niobium oxide is formed from the niobium halide, and metallic niobium can he obtained by using an aluminum thermit method and a carbon reduction method. Moreover, niobium nitride can be obtained by allowing the niobium halide to react with ammonia gas, and metallic niobium can be obtained by subjecting the above niobium nitride to vacuum heat treatment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はハロゲン化ニオブ、酸化ニオブ、窒化ニオブ、
炭化ニオブ及び金属ニオブの製造方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides niobium halides, niobium oxides, niobium nitrides,
The present invention relates to a method for producing niobium carbide and niobium metal.

[従来の技術と課H] 金属ニオブは、スーパーアロイなどのニオブ源として、
また電子材料として近年特に高純度品が要求されている
。さらに酸化ニオブ、炭化ニオブ等は顔料またはセラミ
ック原料などに用いられており、高純度で安価な製品が
求められている。
[Conventional technology and Section H] Metallic niobium is used as a niobium source for super alloys, etc.
In recent years, particularly high purity products have been required as electronic materials. Furthermore, niobium oxide, niobium carbide, and the like are used as pigments or ceramic raw materials, and there is a demand for highly pure and inexpensive products.

上記の製品を得るために、ハロゲン化ニオブが安価に製
造できることが、1つの前提と考えられる。従来のハロ
ゲン化ニオブの製造方法としては、フェロニオブを直接
ハロゲン化して精製する方法、酸化ニオブまたはニオブ
鉱石を炭材と混合したものをハロゲン化する方法等があ
る。
In order to obtain the above product, it is considered that one premise is that niobium halide can be produced at low cost. Conventional methods for producing niobium halide include a method of directly halogenating and refining ferron niobium, and a method of halogenating a mixture of niobium oxide or niobium ore with carbonaceous material.

フェロニオブを直接ハロゲン化する方法はフェロニオブ
中に含まれる数十%の鉄がハロゲン化鉄となり多量に発
生するために、高純度化が工業的に極めて難しく、また
製造装置の配管がハロゲン化鉄の付着により閉塞して安
定生産は非常に困難である。
In the method of directly halogenating ferroniobium, several tens of percent of the iron contained in ferroniobium becomes iron halide and is generated in large quantities, making it extremely difficult to achieve high purity industrially. Stable production is extremely difficult due to blockage caused by adhesion.

ニオブ鉱石を原料とする場合は、発生するスラグが多量
になり、その処理が困難であること、酸化ニオブを原・
料とする場合は、高純度の酸化ニオブが高価であって、
経済的な製造方法ではないなど、それぞれ問題を抱えて
いる。また、炭材と混合してハロゲン化するときの反応
が高温であること、また、この反応により生成するCO
ガスによりニオブの酸ハロゲン化物が生成して、高純度
化することが困難である。
When using niobium ore as a raw material, a large amount of slag is generated, which is difficult to process.
When using it as a raw material, high-purity niobium oxide is expensive;
Each method has its own problems, such as not being an economical manufacturing method. In addition, the reaction when halogenating by mixing with carbonaceous material is high temperature, and the CO generated by this reaction is
The gas produces acid halides of niobium, making it difficult to achieve high purity.

また酸化ニオブの製造方法としては、ニオブ鉱石をHF
およびH2SO4で溶解後、溶媒抽出して5焙焼する方
法、ハロゲン化ニオブ水溶液にアンモニアを添加し、濾
過、焙焼する方法などがある。前者の方法は、溶媒抽出
に用いる溶媒が高価であるとともに分離効率が低いため
多段階処理が必要となり、得られる酸化ニオブは高価と
なる。また、後者の方法は従来方法で製造されるハロゲ
ン化ニオブが高価である等の問題がある。
In addition, as a method for producing niobium oxide, niobium ore is HF
There are methods such as dissolving with H2SO4, solvent extraction and roasting, and adding ammonia to an aqueous solution of niobium halide, filtering and roasting. In the former method, the solvent used for solvent extraction is expensive and the separation efficiency is low, so multi-step treatment is required, and the resulting niobium oxide is expensive. Furthermore, the latter method has problems such as the high cost of niobium halide produced by the conventional method.

さらに、炭化ニオブは酸化ニオブを炭材と高温で反応さ
せることにより得られるが、この酸化ニオブは高価であ
る。
Furthermore, niobium carbide can be obtained by reacting niobium oxide with carbonaceous material at high temperature, but this niobium oxide is expensive.

また、従来の金属ニオブの製造方法としては、フェロニ
オブを塩化して精製した塩化ニオブを用いて炭素および
Al、Na、Mgなとの活性金属を高温で反応させる塩
化法と、酸化ニオブをアルミテルミット反応により得る
アルミテルミット法および酸化ニオブを炭素と高温で反
応させる炭素還元法がある。
Conventional methods for producing niobium metal include a chlorination method in which carbon and active metals such as Al, Na, and Mg are reacted at high temperatures using niobium chloride, which is purified by chlorinating ferroniobium, and niobium oxide is converted into aluminum thermite. There is an aluminum thermite method obtained by reaction, and a carbon reduction method in which niobium oxide is reacted with carbon at high temperature.

上記の塩化法を用いる方法はフェロニオブを全量塩化し
た場合に副生ずる塩化鉄が多量に発生し、安定した塩化
物の生産が難しい、またアルミテルミット法では、製品
中にアルミニウムが数%、残留するという問題がある。
In the method using the above chlorination method, when the entire amount of ferroniobium is chlorinated, a large amount of iron chloride is produced as a by-product, making it difficult to produce stable chloride.Also, in the aluminum thermite method, several percent of aluminum remains in the product. There is a problem.

さらに、炭素還元法では2000℃近くの高温を必要と
するため、設備費、動力燃料費が高くなるという問題が
ある。
Furthermore, since the carbon reduction method requires a high temperature of nearly 2000° C., there is a problem that equipment costs and power fuel costs increase.

なお、従来技術で、ニオブ鉱石を出発原料とする方法は
、近年ニオブ資源国からフェロニオブでの輸出が増加し
、ニオブ鉱石の入手が困難であるという問題がある。
In addition, the conventional method using niobium ore as a starting material has a problem in that it is difficult to obtain niobium ore because exports of ferron niobium from niobium-rich countries have increased in recent years.

本発明はかかる事情に鑑みて鋭意検討を行い、生産効率
がよく純度の高いハロゲン化ニオブ、酸化ニオブ、窒化
ニオブ、炭化ニオブ及び金属ニオブの製造方法を提供し
ようとするものである。
In view of the above circumstances, the present invention has been extensively studied and is intended to provide a method for producing niobium halides, niobium oxides, niobium nitrides, niobium carbides, and metal niobium with good production efficiency and high purity.

[課題を解決するための手段および作用コ本発明による
ハロゲン化ニオブを製造する方法は、フェロニオブを用
いて、固体窒化法により窒化フェロニオブを製造し、前
記窒化フェロクロムを酸処理により脱鉄を行って窒化ニ
オブとし、前記窒化ニオブをハロゲン化処理してハロゲ
ン化ニオブを得ることを特徴とする。
[Means and effects for solving the problem] The method for producing niobium halide according to the present invention includes producing ferroniobium nitride by a solid nitriding method using ferroniobium, and deironating the ferrochrome nitride by acid treatment. Niobium nitride is used, and the niobium nitride is subjected to halogenation treatment to obtain niobium halide.

前記ハロゲン化ニオブを用いて加水分解法、中和沈殿法
または酸化焙焼法により酸化ニオブを得ることができる
Niobium oxide can be obtained by a hydrolysis method, a neutralization precipitation method, or an oxidative roasting method using the niobium halide.

また、前記ハロゲン化ニオブをアンモニアガスと反応さ
せて窒化ニオブを得ることが出来、また前記窒化ニオブ
を真空加熱により金属ニオブがえられる。
Further, niobium nitride can be obtained by reacting the niobium halide with ammonia gas, and metallic niobium can be obtained by heating the niobium nitride in a vacuum.

原料とするフェロニオブは市販されている純度のもので
差支えない、ニオブ含有量は製造コストには関係するが
、市販の組成範囲であれば、はとんど経済的または品位
的に差し支えないものである。
The ferroniobium used as a raw material can be of commercially available purity.Although the niobium content is related to manufacturing cost, as long as it is within the commercially available composition range, there is no problem economically or in terms of quality. be.

窒化工程においてはフェロニオブを窒化フエロニオブと
する。これは次工程の酸処理において、脱鉄ができるよ
うに窒化によりフェロニオブを窒化ニオブと鉄金属相に
分離するために行うものである。フェロニオブの窒化は
真空加熱炉を用いて、窒素雰囲気で、温度を800℃以
上、好ましくは1100〜1400℃として行うことが
できる。800℃以下では次工程の脱鉄が不十分であり
、1400℃以上では窒化設備として特殊なものを必要
とし、経済的に不利となる。
In the nitriding process, ferroniobium is converted to ferroniobium nitride. This is done in order to separate the ferroniobium into niobium nitride and the iron metal phase by nitriding so that iron can be removed in the next step of acid treatment. Nitriding of ferroniobium can be carried out using a vacuum heating furnace in a nitrogen atmosphere at a temperature of 800°C or higher, preferably 1100 to 1400°C. At temperatures below 800°C, iron removal in the next step is insufficient, and at temperatures above 1400°C, special nitriding equipment is required, which is economically disadvantageous.

窒化工程では、窒化および脱鉄の効率を上げるため窒化
の前、または窒化の後に破砕することが望ましい、必要
にに応じて、破砕、窒化、を繰り返すことも可能である
In the nitriding process, it is desirable to crush before or after nitriding in order to increase the efficiency of nitriding and deironation, and it is also possible to repeat crushing and nitriding as necessary.

脱鉄工程では窒化フェロニオブを酸処理により脱鉄して
窒化ニオブを得る工程である。この酸処理は窒化フェロ
ニオブの組織が窒化ニオブと鉄金属相に分離しているこ
とから考えられたものであり、酸処理は通常の酸すなわ
ち硫酸、塩酸などを用いて行われる。酸処理方法として
は種々の方法が考えられるが、経済的には粉末状の窒化
フェロニオブを強攪拌、槽内で酸と反応させ、固体を濾
過回収して、乾燥することが望ましい。
The iron removal process is a process in which niobium nitride is obtained by removing iron from ferroniobium nitride by acid treatment. This acid treatment was conceived based on the fact that the structure of ferroniobium nitride is separated into niobium nitride and iron metal phases, and the acid treatment is carried out using ordinary acids such as sulfuric acid and hydrochloric acid. Various methods can be considered for the acid treatment, but economically it is desirable to vigorously stir the powdered ferroniobium nitride, react it with the acid in a tank, collect the solid by filtration, and dry it.

脱鉄工程で得られる窒化ニオブは微細粒子(1〜10μ
票)の凝集体となり、ハロゲン化工程において、ハロゲ
ンガスを用いて、比較的低温(150〜500℃程度)
でハロゲン化ニオブを得ることができる。
Niobium nitride obtained in the iron removal process has fine particles (1 to 10μ
In the halogenation process, halogen gas is used at a relatively low temperature (approximately 150 to 500°C).
Niobium halide can be obtained by

ハロゲン化の方法としては種々の方法が考えられるが、
前記窒化ニオブを流動槽で反応させ、生成した微量不純
物ハロゲン化物を除去するため数段のコンデンサを用い
ることが望ましい。
Various methods can be considered for halogenation, but
It is desirable to react the niobium nitride in a fluidized tank and use several stages of condensers to remove the generated trace impurity halide.

こうすることによって、ハロゲン化工程では高純度のハ
ロゲン化ニオブを回収することができる0本発明では前
工程の脱鉄工程で、鉄その他の不純物を除去しであるの
で、このハロゲン化におけるハロゲン鉄の生成量が少な
い、このため、配管等の詰まりなどのトラブルが少なく
、また精製での不純物混入やハロゲン使用量も少なくな
って、高純度のハロゲン化ニオブを経済的に安定して生
産できる。
By doing this, high purity niobium halide can be recovered in the halogenation process.In the present invention, iron and other impurities are removed in the previous iron removal process, so the iron halide in this halogenation process is As a result, there are fewer problems such as clogging of pipes, etc., and the amount of impurities and halogen used during purification is also reduced, making it possible to economically and stably produce high-purity niobium halides.

ハロゲン化ニオブを炭素、Al、Na、Mgなどの活性
金属と高温で反応させる方法または、溶融塩電解して、
金属ニオブを得ることができる。また、ハロゲン化ニオ
ブから酸化ニオブを生成し、アルミテルミット法、炭素
還元法を用いて金属ニオブを得ることができる。さらに
、ハロゲン化ニオブとアンモニアガスを反応させ、窒化
ニオブも得られ、さらにこれを真空熱処理によって、金
属ニオブを得ることもできる。
A method in which niobium halide is reacted with active metals such as carbon, Al, Na, Mg, etc. at high temperature, or by molten salt electrolysis,
Metal niobium can be obtained. Furthermore, niobium oxide can be produced from niobium halide, and metallic niobium can be obtained using the aluminum thermite method or the carbon reduction method. Furthermore, niobium nitride can also be obtained by reacting niobium halide with ammonia gas, and metal niobium can also be obtained by subjecting this to vacuum heat treatment.

このように、ハロゲン化ニオブから酸化ニオブ、窒化ニ
オブ、炭化ニオブおよび金属ニオブが本発明の方法によ
り特殊な設備を必要とせずに生産できる。
In this way, niobium oxide, niobium nitride, niobium carbide, and metallic niobium can be produced from niobium halides by the method of the present invention without requiring special equipment.

[実施例] 塊状のフェロニオブを破砕または粉砕して、44μ厘以
下の粒度のフェロニオブ粉末とした。
[Example] A lump of ferroniobium was crushed or ground to obtain ferroniobium powder with a particle size of 44 μm or less.

この組成を第1表−(1)に示す、第1表の組成は重量
比で示し、特に表示のないものは%であって、ppmで
示したものは表中に記しである。また、第 表 (wt%) 前記フェロニオブ粉末500kgを窒化炉に入れて、7
素圧力800Torr 、温度1250℃の雰囲気とし
、24Hrかけて窒化を行った。ここで得られた窒化フ
ェロニオブは545kgで、軽く焼結されており、これ
を解砕して一150μ−の粉末としたが、この組成を第
1表−(2)に示す、この窒化フェロニオブ粉末、20
0kgを容積11Sの攪拌機能をもつ反応槽で、予め装
入されである水6001中に投入し、攪拌しなからH2
SO< −144kgを88rで連続添加し、その後、
16Hr、攪拌を続けた。前記酸処理後のスラリを濾過
、水洗して、アンモニア水でリパルプ後、再度濾過、水
洗を行い、乾燥した。得られた窒化ニオブ124kgの
組成を第1表−(3)に示す。
This composition is shown in Table 1-(1). The compositions in Table 1 are shown in weight ratios, unless otherwise indicated are percentages, and those shown in ppm are indicated in the table. In addition, Table 1 (wt%) 500 kg of the ferroniobium powder was put into a nitriding furnace, and 7
Nitriding was carried out for 24 hours under an atmosphere of an elementary pressure of 800 Torr and a temperature of 1250°C. The weight of the ferroniobium nitride obtained here was 545 kg, which was lightly sintered, and was crushed into a powder of -150μ.The composition of this ferroniobium nitride powder is shown in Table 1-(2) , 20
In a reactor with a stirring function and a volume of 11S, 0 kg was put into 6001 water, which had been charged in advance, and the H2 was heated without stirring.
Continuously add SO<-144kg at 88r, then
Stirring was continued for 16 hours. The slurry after the acid treatment was filtered, washed with water, repulped with aqueous ammonia, filtered again, washed with water, and dried. The composition of 124 kg of niobium nitride obtained is shown in Table 1-(3).

次に前記窒化ニオブをハロゲン化工程によるハロゲン化
ニオブを製造することになるがハロゲンとして塩素を用
いる場合の実施例について説明する。ハロゲンとしては
塩素のみならず、ふつ素、臭素、よう素も用いることが
できる。
Next, a niobium halide is produced by a halogenation process from the niobium nitride, and an example in which chlorine is used as the halogen will be described. As the halogen, not only chlorine but also fluorine, bromine, and iodine can be used.

前記窒化ニオブを第1図に示す塩化炉で塩化ニオブを合
成した。第1図は前記塩化炉のブロック図である0図中
1は反応炉で、ここに原料である窒化ニオブおよび塩素
ガスが装入される。2は高温トラップで、反応炉lから
出るガスのうち、塩化ニオブより沸点の高い塩化物が残
渣としてトラップされる。3は高温コンデンサで製品で
ある塩化ニオブがトラップされて回収される。4は低温
コンデンサで、塩化ニオブより沸点の低い塩化物すなわ
ち塩化鉄などがトラップされる。5は排ガス処理設備で
ある。第1図の塩化炉は連続的に原料が装入され、製品
である塩化ニオブが回収される装置である。
Niobium chloride was synthesized from the niobium nitride in a chlorination furnace shown in FIG. Figure 1 is a block diagram of the chlorination furnace. In Figure 0, 1 is a reactor, into which raw materials niobium nitride and chlorine gas are charged. 2 is a high-temperature trap, in which chloride, which has a boiling point higher than that of niobium chloride, out of the gas discharged from the reactor 1 is trapped as a residue. 3 is a high temperature condenser where the product niobium chloride is trapped and recovered. 4 is a low-temperature capacitor that traps chlorides, such as iron chloride, which have a boiling point lower than that of niobium chloride. 5 is exhaust gas treatment equipment. The chlorination furnace shown in FIG. 1 is an apparatus in which raw materials are continuously charged and the product niobium chloride is recovered.

反応炉1には、前記窒化ニオブおよび塩素ガスが装入さ
れる。高温トラップ2の温度は、製品であるNbC1,
の沸点274℃と、除去すべきFeCl3の沸点315
℃とを考慮して、315℃より多少低い温度に制御し、
高温トラップ2でFeCl3およびその他の高沸点成分
を回収、除去する。
The reactor 1 is charged with the niobium nitride and chlorine gas. The temperature of the high temperature trap 2 is the product NbC1,
The boiling point of FeCl3 to be removed is 274℃ and the boiling point of FeCl3 to be removed is 315℃.
℃, the temperature is controlled to be slightly lower than 315℃,
High temperature trap 2 collects and removes FeCl3 and other high boiling point components.

高温コンデンサではNbCl、を液体および固体で回収
でき、かつ微量低沸点成分(たとえば、5iC14)の
混入しない温度に制御する。
In the high-temperature condenser, NbCl can be recovered in liquid and solid form, and the temperature is controlled at such a temperature that trace amounts of low-boiling components (for example, 5iC14) are not mixed.

本実施例においては、反応炉1の温度は500℃とし、
高温コンデンサ3を200℃、低温コンデンサー4を1
00℃となるように制御した0反応炉1は不活性ガスで
置換後、CI2およびArガスを108m”/mixの
流量で供給し、第1表−(3)に示す組成の窒化ニオブ
を3g/■i■で連続装入した。この結果、高温コンデ
ンサー3で回収される塩化ニオブは6.8x/e+i園
である0回収された塩化ニオブの組成を第1表−(4)
に示す。
In this example, the temperature of the reactor 1 is 500°C,
High temperature capacitor 3 is set to 200℃, low temperature capacitor 4 is set to 1
After replacing the reactor 1 with an inert gas and controlling the temperature to 00°C, CI2 and Ar gas were supplied at a flow rate of 108 m''/mix, and 3 g of niobium nitride having the composition shown in Table 1-(3) was added. /■i■.As a result, the niobium chloride recovered in the high-temperature condenser 3 was 6.8x/e+i.0The composition of the recovered niobium chloride is shown in Table 1-(4).
Shown below.

なお、比較例として反応炉1にフェロニオブを直接、装
入し、同時に01□およびArガスを供給して高温コン
デンサー3で塩化ニオブの回収を試みたが、高温コンデ
ンサー3と配管内に多量の塩化鉄(FeC1s)が付着
して、管路の閉塞を生じ、安定した塩化ニオブの製造は
できなかった。
As a comparative example, an attempt was made to collect niobium chloride in the high-temperature condenser 3 by directly charging ferroniobium into the reactor 1 and simultaneously supplying 01□ and Ar gas, but a large amount of chloride was found in the high-temperature condenser 3 and the piping. Iron (FeCls) adhered to the pipes, clogging the pipes, and stable production of niobium chloride was not possible.

第1表−(4)に示した塩化ニオブをアンモニア水で中
和して得られた沈殿物を濾過、回収した。
The precipitate obtained by neutralizing the niobium chloride shown in Table 1-(4) with aqueous ammonia was filtered and collected.

前記沈殿物を焙焼して得られた酸化ニオブの組成を第1
表−(5)に示す、また第1表−(5)の酸化ニオブか
ら炭素還元法により得られた炭化ニオブの組成を第1表
−(6)に示す、さらに第1表−(5)の酸化ニオブか
らアルミテルミット法により得られた金属ニオブの組成
を第1表−(7)に示す。
The composition of the niobium oxide obtained by roasting the precipitate was
The composition of niobium carbide obtained from the niobium oxide in Table 1-(5) by the carbon reduction method is shown in Table 1-(5), and the composition of niobium carbide obtained from the niobium oxide in Table 1-(5) is shown in Table 1-(6). Table 1-(7) shows the composition of niobium metal obtained from niobium oxide by the aluminum thermite method.

[発明の効果] 本発明によるハロゲン化ニオブを製造する方法によれば
、フェロニオブを固体窒化法により窒化フェロニオブと
し、これを酸処理して脱鉄した後、ハロゲン化処理する
ので、生産効率がよく純度の高いハロゲン化ニオブが得
られ、またこれを原料として純度の高い酸化ニオブ、炭
化ニオブまたは、金属ニオブが得られる。
[Effects of the Invention] According to the method for producing niobium halide according to the present invention, ferron niobium is made into nitride ferron niobium by a solid nitriding method, and this is treated with an acid to remove iron, and then subjected to a halogenation treatment, resulting in high production efficiency. Highly pure niobium halide is obtained, and using this as a raw material, highly pure niobium oxide, niobium carbide, or niobium metal can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例に用いた塩化炉のブロック図である。 1・・・反応炉、2・・・高温トラップ、3・・高温コ
ンデンサー、4・・・低温コンデンサ、5・・・排ガス
処理装置。
FIG. 1 is a block diagram of the chlorination furnace used in this example. 1... Reaction furnace, 2... High temperature trap, 3... High temperature condenser, 4... Low temperature condenser, 5... Exhaust gas treatment device.

Claims (8)

【特許請求の範囲】[Claims] (1)フェロニオブを原料として、固体窒化法により窒
化フェロニオブを得る窒化工程、前記窒化フェロニオブ
を酸処理して脱鉄を行い、窒化ニオブとする脱鉄工程、
および前記窒化ニオブをハロゲン化処理してハロゲン化
ニオブを得るハロゲン化工程、を有することを特徴とす
るハロゲン化ニオブの製造方法。
(1) A nitriding step in which ferroniobium nitride is obtained by a solid-state nitriding method using ferroniobium as a raw material; a deironation step in which the ferroniobium nitride is treated with an acid to remove iron to produce niobium nitride;
and a halogenation step of halogenating the niobium nitride to obtain niobium halide.
(2)請求項1により得られたハロゲン化ニオブを加水
分解法、中和沈殿法または酸化焙焼法により酸化ニオブ
を製造する方法。
(2) A method for producing niobium oxide from the niobium halide obtained in claim 1 by a hydrolysis method, a neutralization precipitation method, or an oxidative roasting method.
(3)請求項1により得られたハロゲン化ニオブをアン
モニアガスを用いて窒化ニオブを製造する方法。
(3) A method for producing niobium nitride using ammonia gas from the niobium halide obtained according to claim 1.
(4)請求項2により得られた酸化ニオブに炭素を添加
し、高温、減圧雰囲気として炭化ニオブを製造する方法
(4) A method for producing niobium carbide by adding carbon to the niobium oxide obtained according to claim 2 in a high temperature and reduced pressure atmosphere.
(5)請求項1により得られたハロゲン化ニオブを活性
金属である炭素、Al、Na、またはMgと高温で反応
させて金属ニオブを製造する方法。
(5) A method for producing metallic niobium by reacting the niobium halide obtained according to claim 1 with an active metal such as carbon, Al, Na, or Mg at high temperature.
(6)請求項1により得られたハロゲン化ニオブを熱分
解法で金属ニオブを製造する方法。
(6) A method for producing niobium metal by thermally decomposing the niobium halide obtained according to claim 1.
(7)請求項2により得られた酸化ニオブをアルミテル
ミット法により金属ニオブを製造する方法。
(7) A method for producing metallic niobium by using the niobium oxide obtained according to claim 2 by the aluminum thermite method.
(8)請求項3により得られた窒化ニオブを真空中で熱
分解して金属ニオブを製造する方法。
(8) A method for producing metallic niobium by thermally decomposing the niobium nitride obtained according to claim 3 in a vacuum.
JP4634190A 1990-02-27 1990-02-27 Production of niobium halide, niobium oxide, niobium nitride, niobium carbide, and metallic niobium Pending JPH03249144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4634190A JPH03249144A (en) 1990-02-27 1990-02-27 Production of niobium halide, niobium oxide, niobium nitride, niobium carbide, and metallic niobium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4634190A JPH03249144A (en) 1990-02-27 1990-02-27 Production of niobium halide, niobium oxide, niobium nitride, niobium carbide, and metallic niobium

Publications (1)

Publication Number Publication Date
JPH03249144A true JPH03249144A (en) 1991-11-07

Family

ID=12744438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4634190A Pending JPH03249144A (en) 1990-02-27 1990-02-27 Production of niobium halide, niobium oxide, niobium nitride, niobium carbide, and metallic niobium

Country Status (1)

Country Link
JP (1) JPH03249144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0591459A1 (en) * 1991-06-27 1994-04-13 Teledyne Industries, Inc. Process of making metal oxides
EP0591390A1 (en) * 1991-06-27 1994-04-13 Teledyne Industries Inc Method for the preparation of metal nitrides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0591459A1 (en) * 1991-06-27 1994-04-13 Teledyne Industries, Inc. Process of making metal oxides
EP0591390A1 (en) * 1991-06-27 1994-04-13 Teledyne Industries Inc Method for the preparation of metal nitrides
EP0591390A4 (en) * 1991-06-27 1994-08-24 Teledyne Ind Method for the preparation of niobium nitride
EP0591459A4 (en) * 1991-06-27 1995-04-12 Teledyne Ind Process of making niobium oxide.

Similar Documents

Publication Publication Date Title
US2823991A (en) Process for the manufacture of titanium metal
KR101148573B1 (en) A method and apparatus for the production of metal compounds
TW200936508A (en) Method of reclaiming ruthenium from waste containing ruthenium
EP0360792A1 (en) Process for making zero valent titanium from an alkali metal fluotitanate
JP2894725B2 (en) Recovery method of high purity tantalum and its derivatives from tantalum scrap
JP3379957B2 (en) Preparation method of niobium nitride
JP4183926B2 (en) Method for recovering tantalum / niobium from tantalum / niobium-containing carbide materials
JPS6053093B2 (en) How to recover titanium from slag
JP2001329321A (en) Method for treating tantalum/niobium-containing raw material and method for producing tantalum/niobium product using the same
JPH03249144A (en) Production of niobium halide, niobium oxide, niobium nitride, niobium carbide, and metallic niobium
CN116287737A (en) Method for realizing cyclic utilization of titanium, vanadium, iron, calcium, silicon, sulfur and nitrogen
CN112723393A (en) Method for preparing high-purity tantalum/niobium pentachloride and lithium chloride from waste tantalum/lithium niobate
JP2022141441A (en) Method for liquefying niobium and tantalum
US5211921A (en) Process of making niobium oxide
US5322548A (en) Recovery of niobium metal
JPH03243726A (en) Production of chromium halide, chromium oxide, chromium nitride, chromium carbide, and metallic chromium
KR0161097B1 (en) The recovering method of zinc oxide
JPH09227965A (en) Refined metal ruthenium powder and its production
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
RU2194670C1 (en) Method of synthesis of niobium pentachloride
JP3586103B2 (en) Method for producing high-purity tantalum oxide from tantalum-containing waste
US5188810A (en) Process for making niobium oxide
JP3406597B2 (en) Method for producing niobium oxide
JP2002241866A (en) Method for recovering tellurium
CN118929746A (en) A kind of high purity titanium dioxide and preparation method thereof